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Abstract

The process of the Joule–Thomson adiabatic expansion within

RNED-AdS spacetime is investigated. The isenthalpic P−T diagrams

and the inversion temperature were depicted. The inversion tempera-

ture depends on the magnetic charge and RNED coupling constant of

black holes. When the Joule–Thomson coefficient vanishes, cooling-

heating phase transition occurs. We consider the cosmological con-

stant as a thermodynamic pressure and the black hole mass is treated

as the chemical enthalpy.

General relativity possesses black hole solutions which are characterized
by the mass, angular momentum and charges. The authors of [1], [2], [3],
[4] discovered that a black hole is a thermodynamic system with entropy
and temperature and the first law of black hole thermodynamics was for-
mulated. But in that form of black hole thermodynamics the P − V term
of ordinary thermodynamics was absent. Later, this problem was solved by
adding the negative cosmological constant treated as a thermodynamic pres-
sure which is conjugated to a volume [5], [6], [7]. Thus, we need to consider
anti-de Sitter (AdS) spacetime to include P −V term in the first law of black
hole thermodynamics. It was shown that in such extended theory of gravity
(Einstein-AdS) phase transitions in black holes occur [8]. Such black holes
phase transitions are similar to liquid-gas (for Van der Waals gases) phase
transitions in ordinary thermodynamics [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22]. Within Einstein-AdS theory of gravity
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a holographic principle was detected with the connection to conformal field
theories [23], [24], [25].

In this letter, we study the Joule–Thomson adiabatic thermal expansion,
with heating and cooling regimes, in the framework of rational nonlinear
electrodynamics (RNED) AdS black holes. The Joule–Thomson adiabatic
expansion happens when a black hole mass, which is an enthalpy, is con-
stant during the expansion. When the pressure of the expanding black holes
decreases then at some point (the inversion pressure) a cooling-heating transi-
tion happens [26], [27], [28], [29]. RNED was proposed in [30], [31] to remove
singularities and to take into consideration quantum gravity corrections to
classical Maxwell fields. The model of RNED at weak-field limit becomes
the Maxwell electrodynamics and coupled to gravity perfectly describes the
universe inflation [32] and gives the correct shadow of M87* black hole [33].
Thermodynamics of RNED-AdS magnetic black holes in the extended phase
space was studied in [34].

Einstein–RNED AdS space-time is described by the action

I =
∫

d4x
√−g

(

R − 2Λ

16πGN
+ L(F)

)

, (1)

where GN is the Newton constant. The negative cosmological constant can be
written as Λ = −3/l2, where l is the AdS radius. We use RNED Lagrangian
[30]

L(F) = − F
4π(1 + 2βF)

, (2)

where F = F µνFµν/4 = (B2−E2)/2, Fµν = ∂µAν−∂νAµ is the field strength.
It is worth mentioning that the singularity of the electric field in the center of
point-like charges is absent and the maximum electric field is E(0) = 1/

√
β

[30]. Setting β = 0 in Eqs. (1) and (2), one finds the action for the Einstein–
AdS space-time. From action (1) we obtain the field equations

Rµν −
1

2
gµνR + Λgµν = 8πGNTµν , (3)

∂µ
(√−gLFF

µν
)

= 0, (4)

where LF = ∂L/∂F . Here, we use the four-dimensional static spherical
symmetry line element squared

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(

dθ2 + sin2 θdφ2
)

. (5)
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We study magnetic black holes because electrically charged black holes pos-
sess singularity [35]. The metric function with the spherical symmetry can
be written in the form

f(r) = 1− 2m(r)GN

r
. (6)

The mass function is given by

m(r) = m0 +
q3/2m

8
√
2β1/4

[

ln

(

r2 −√
2qmβ

1/4r + qm
√
β

r2 +
√
2qmβ1/4r + qm

√
β

)

+2 arctan

(√
qmβ

1/4 +
√
2r

√
qmβ1/4

)

− 2 arctan

(√
qmβ

1/4 −
√
2r

√
qmβ1/4

)

]

− r3

2GN l2
, (7)

where m0 is the Schwarzschild mass which is the constant of integration.
When the cosmological constant is zero, Λ = 0 (l = ∞), one comes to the
mass function given in [31]. The magnetic mass of a black hole is finite and
reads as

mM = 4π
∫

∞

0

q2m
8π(r4 + βq2m)

r2dr =
πq3/2m

4
√
2β1/4

≈ 0.56
q3/2m

β1/4
. (8)

It should be noted that in the Maxwell case, β = 0, the magnetic energy is
infinite. With the help of Eqs. (6) and (7) one obtains the metric function

f(r) = 1− 2m0GN

r
− q3/2m GNg(r)

4
√
2β1/4r

+
r2

l2
, (9)

with

g(r) ≡ ln

(

r2 −√
2qmβ

1/4r + qm
√
β

r2 +
√
2qmβ1/4r + qm

√
β

)

+2 arctan

(√
qmβ

1/4 +
√
2r

√
qmβ1/4

)

− 2 arctan

(√
qmβ

1/4 −
√
2r

√
qmβ1/4

)

.

In the following we use the units with GN = 1. Making use of Eq. (9) and
the equation for the horizon radius r+, f(r+) = 0, we obtain the black hole
mass

M ≡ m0 +mM =
r+
2

+
r3+
2l2

+
πq3/2m

4
√
2β1/4

− q3/2m g(r+)

8
√
2β1/4

. (10)

3



The Hawking temperature T = f ′(r)|r=r+/(4π), where f ′(r) = ∂f(r)/∂r,
becomes [31]

T =
1

4π

(

1

r+
+

3r+
l2

− q2mr+
r4+ + βq2m

)

. (11)

At β = 0 in Eq. (11), we arrive at the Hawking temperature of Maxwell-
AdS black holes. Making use of the equation for the black hole pressure
P = 3/(8πl2) and Eq. (11), one finds the equation of state

P =
T

2r+
− 1

8πr2+
+

q2m
8π(r4+ + βq2m)

. (12)

It should be noted that first law of black hole thermodynamics states that
the black hole massM is the enthalpy. The Joule–Thomson adiabatic process
is isenthalpic expansion and occurs at the constant black hole mass. To study
cooling-heating phases, one introduces the Joule–Thomson thermodynamic
coefficient

µJ =

(

∂T

∂P

)

M

=
1

CP

[

T

(

∂V

∂T

)

P

− V

]

=
(∂T/∂r+)M
(∂P/∂r+)M

. (13)

Equation (13) shows that the Joule–Thomson coefficient µJ is the slope in
P − T diagrams at the constant mass. At the inversion temperature Ti

(when µJ(Ti) = 0) the sign of the coefficient µJ is changed. When the
initial temperature during the black hole expansion is bigger than inversion
temperature Ti (µJ > 0), the temperature decreases which corresponds to
the cooling phase. For the heating phase, the initial temperature is lower
than Ti and the temperature increases. Making use of Eq. (13) and equation
µJ(Ti) = 0 we find the inversion temperature

Ti = V

(

∂T

∂V

)

P

=
r+
3

(

∂T

∂r+

)

P

, (14)

where we use the expression for black hole thermodynamic volume V =
4πr3+/3. The inversion temperature corresponds to the temperature maxi-
mum in the P − T diagram and is a borderline between cooling and heating
processes. The inversion temperature line connects points in maxima of P−T
diagrams at the constant black hole mass and separates cooling and heating
phases [27], [19]. The black hole equation of state (11) can be represented in
the form

T =
1

4πr+
+ 2Pr+ − q2mr+

4π(r4+ + q2mβ)
. (15)
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Setting β = 0 in Eq. (15) we find the equation of state for Maxwell-AdS
black holes. From Eq. (10) one obtains the equation for pressure

P =
3

4πr3+

[

M − r+
2

− πq3/2m

4
√
2β1/4

+
q3/2m g(r+)

8
√
2β1/4

]

. (16)

Making use of Eqs. (15) and (16) we depicted the P −T diagrams in Fig. 1.
By using Eqs. (14) and (15) one finds the equation for the inversion pressure
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Figure 1: The plots of the temperature T versus pressure P and the inversion
temperature Ti with qm = 10, β = 1. The dashed-dotted line corresponds
to mass M = 13, the dashed line corresponds to M = 14, and the solid line
corresponds to M = 15.

Pi =
q2m
(

3r4+ + q2mβ
)

8π (r4+ + q2mβ)
2
− 1

4πr2+
. (17)
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Substituting Pi from Eq. (17) into Eq. (15) we obtain the inversion temper-
ature

Ti =
q2mr

5
+

2π (r4+ + q2mβ)
2
− 1

4πr+
. (18)

Numerical solutions to equation Pi = 0, (17), and the minimum of the in-
version temperature (18) at q = 1 are given in Table 1. We did not present

Table 1: The minimum of the event horizon radius corresponding to the
minimum of the inversion temperature at q = 1

β 0.01 0.03 0.05 0.07 0.09 0.1 0.2 0.3

rmin
i 1.220 1.211 1.201 1.190 1.179 0.174 1.103 0.937

Tmin
i 0.0216 0.0215 0.0214 0.0213 0.0212 0.0210 0.0199 0.0153

solutions for negative values of the minimum of inversion temperature which
are non-physical. Table 1 shows that when coupling β increases the minimum
of the inversion temperature decreases. From Eqs. (17) and (18) at Pi = 0,
β = 0, one finds the minimum of the inversion temperature for Maxwell-AdS
magnetic black holes

Tmin
i =

1

6
√
6πqm

, rmin
+ =

√
6qm
2

. (19)

Equation (19) agrees with the result obtained in [26] for electrically charged
Maxwell-AdS black holes. Taking into account the critical temperature Tc

for β = 0 [34] and Eq. (19), we obtain the relation Tmin
i = Tc/2 that holds

for electrically charged Maxwell-AdS black holes [26]. In our case β 6= 0 one
has Tmin

i 6= Tc/2. Equations (17) and (18) define the inversion temperature
Ti versus Pi in the parametric form. The plots of T versus pressure P for
various black hole masses and Ti(Pi) are depicted in Fig. 1. According to
Fig. 1 the inversion point increases when the black hole mass increases. The
plots of the inversion curve Pi − Ti are given in Figs. 2 and 3 for different
magnetic charges qm and couplings β. In accordance with Fig. 2 when
magnetic charge qm increases, for fixes coupling β, the inversion temperature
increases. Fig. 3 shows that if the coupling β increases at fixed magnetic
charge qm, the inversion temperature decreases. With the aid of Eqs. (15)
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Figure 2: The plots of the inversion temperature Ti versus pressure Pi for
qm = 10, 15 and 20, β = 1.

and (16) we find

(

∂T

∂r+

)

M

=
1

2πr2+
− 3(8

√
2β1/4M − 2q3/2m π + q3/2m g(r+))

8
√
2πβ1/4r3+

+
q2m(3r

4
+ + βq2m)

2π(r4+ + βq2m)
2
,

(

∂P

∂r+

)

M

=
3

4πr3+
− 9(8

√
2β1/4M − 2q3/2m π + q3/2m g(r+))

32
√
2πβ1/4r4+

+
3q2m

8πr+(r
4
+ + βq2m)

.

(20)
Making use of Eqs. (13) and (20) we obtain the Joule–Thomson coefficient

µJ(M, r+) =
2r+(1− 2a+ b)

3(1− a + c)
, a =

3(8
√
2β1/4M − 2q3/2m π + q3/2m g(r+))

8
√
2πβ1/4r+

,
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Figure 3: The plots of the inversion temperature Ti versus pressure Pi for
β = 0.01, 0.5 and 1, qm = 10.

b =
q2mr

2
+(3r

4
+ + βq2m)

(r4+ + βq2m)
2

, c =
q2mr

2
+

2(r4+ + βq2m)
. (21)

If the Joule–Thomson coefficient is positive for some model parameters, we
have a cooling process and when µJ < 0, a heating process occurs. The
region with µJ > 0 in Fig. 1 takes place in the left side of the inversion
temperature borderline and the region with µJ < 0 is in the right side of the
borderline Ti.

In this letter we have investigated cooling and heating phase transitions
of RNED-AdS black holes via the Joule–Thomson adiabatic expansion. Isen-
thalpic P − T diagrams and the inversion temperatures curves for different
parameters were depicted in Fig. 1. The plots of the inversion temperature

8



versus the inversion pressure for some magnetic charges and RNED couplings
of black holes are given in Figs. 2 and 3.
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[26] Ö. Ökcü and E. Aydinir, Eur. Phys. J. C 77, 24 (2017).

[27] H. Ghaffarnejad, E. Yaraie and M. Farsam, Int. J. Theor. Phys. 57, 1671
(2018).

[28] J. X. Mo, G. Q. Li, S. Q. Lan and X. B. Xu, Phys. Rev. D 98, 124032
(2018).

[29] C. L. A. Rizwan, A. N. Kumara, D. Vaid, and K. M. Ajith, Int. J. Mod.
Phys. A 33, 1850210 (2018).

[30] S. I. Kruglov, Ann. Phys. 353, 299, (2015).

[31] S. I. Kruglov, Grav. Cosmol. 27, 78 (2021).

[32] S.I. Kruglov, Int. J. Mod. Phys. A 35, 26 (2020).

[33] S.I. Kruglov, Mod. Phys. Lett. A 35, 2050291 (2020).

[34] S.I. Kruglov, Eur. Phys. J. C 82, 292 (2022).

[35] K. A. Bronnikov, Phys. Rev. D 63, 044005 (2001).

10


