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ABSTRACT

Crustquake events may be connected with both rapid spin-up ‘glitches’ within the regular

slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field

decay builds up stresses in a neutron star’s crust, as the elastic shear force resists the Lorentz

force’s desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-

breaking induced by a changing magnetic-field configuration, and use this to investigate strain

patterns in a neutron star’s crust for a variety of different magnetic-field models. Universally, we

find that the crust is most liable to break if the magnetic field has a strong toroidal component,

in which case the epicentre of the crustquake is around the equator. We calculate the energy

released in a crustquake as a function of the fracture depth, finding that it is independent of

field strength. Crust-breaking is, however, associated with a characteristic local field strength

of 2.4 × 1014 G for a breaking strain of 0.001, or 2.4 × 1015 G at a breaking strain of 0.1.

We find that even the most luminous magnetar giant flare could have been powered by crustal

energy release alone.

Key words: asteroseismology – stars: magnetars – stars: magnetic field – stars: neutron.

1 IN T RO D U C T I O N

The crust of a neutron star (NS) is a rigid elastic shell around a

kilometre thick, which connects the supranuclear-density fluid core

with the star’s magnetosphere, and in turn any observable phenom-

ena. As for any elastic medium, however, there is a maximum strain

it can sustain – beyond which the crust will yield locally, causing

seismic activity or ‘crustquakes’.

A crustquake scenario related to changes in rotational strain was

suggested shortly after the discovery of radio pulsars, as a way

to explain observations that the otherwise stable spin-down of a

pulsar can be interrupted by abrupt increases – ‘glitches’ – in spin

frequency and spin-down rate (Baym et al. 1969c). The idea is that

the rotational oblateness at the star’s birth is frozen into the crust; as

the star spins down it wants to become more spherical, and the overly

oblate crust develops strains which eventually break it and cause an

increase in angular momentum of the crust. This mechanism alone,

however, cannot explain the observed timing behaviour; instead, in

the currently standard glitch scenario the spin-up is attributed to a

sudden transfer of angular momentum from a more rapidly rotating

superfluid component to the rest of the star (Anderson & Itoh 1975).

Nonetheless, crustquakes are often invoked in glitch models, either

as a trigger for these sudden angular-momentum transfer events

(Link & Epstein 1996; Eichler & Shaisultanov 2010) or to explain

the persistent changes in spin-down rate seen after some glitches

(Alpar et al. 1994).

⋆ E-mail: S.K.Lander@soton.ac.uk

In addition to these rotational effects, magnetic stresses will also

develop in the crust throughout an NS’s lifetime, as a result of

internal magnetic-field evolution. For typical radio pulsars such

stresses might be negligible, since the crust’s elastic energy exceeds

the magnetic energy, and the elastic force dominates the Lorentz

force. For highly magnetized NSs however, like magnetars – ob-

jects with inferred dipole magnetic fields at least as high as ∼1015 G

– the two energies are comparable, and it is quite feasible that

magnetic stresses could be strong enough to induce crust-yielding:

crustquakes or plastic flow. Such magnetically driven seismic ac-

tivity forms the core of the widely accepted model for magnetar

activity, first put forward by Thompson & Duncan (1995) to ex-

plain bursts in anomalous X-ray pulsars (AXPs) and the bursts and

gamma-ray giant flares in soft-gamma-ray repeaters (SGRs). The

recurrent bursts in magnetars have characteristic durations in the

range ∼0.01-1 s and peak luminosities up to 1041 erg s−1, and are

in many cases associated with glitches or other timing anomalies

(Woods & Thompson 2006; Dib & Kaspi 2014). The potential con-

nection with crustquakes is consistent with the observation that the

burst-energy distribution in magnetars follows a power law (Cheng

et al. 1996; Göǧüş et al. 2000), similar to that of earthquakes.

Recent observations are indicative of a continuum of activity

in radio pulsars and magnetars (Kaspi 2010); SGRs have been

discovered with weak inferred dipole fields (see e.g. Rea et al.

2010), and magnetar-like activity has been seen from some (oth-

erwise rotationally powered) radio pulsars, such as the burst and

coincident glitch in J1846−0258 (Gavriil et al. 2008; Kuiper &

Hermsen 2009). This has led to considerable efforts to explain the

different phenomenologies of NSs in a unified scheme by studying

C© 2015 The Authors
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2048 S. K. Lander et al.

Figure 1. Cartoon of crust-breaking scenario. For clarity, we have shown the motion of an equatorial region of magnetic flux to represent field rearrangement,

but the argument is applicable to any local changes in the field anywhere in the crust. We assume the young NS has reached a hydromagnetic equilibrium by the

time the crust freezes, so that the crust does not initially need to support any stresses (left-hand plot). At some later point in the star’s evolution, the magnetic

field has lost energy and would need to adjust to remain in a global fluid equilibrium, but whilst this adjustment may take place in the fluid core, it is resisted

by shear stresses in the crust (middle plot). The magnetically induced stresses to the crust build, and eventually some region of the crust will exceed its yield

strain and break (right-hand plot). The local magnetic field will be able to return to a fluid equilibrium again.

the thermal and magnetic-field evolution in their crusts (Perna &

Pons 2011; Pons & Rea 2012). These first results suggest that seis-

mic activity induced by magnetic-field evolution is of relevance not

only for magnetars, but also rotationally powered pulsars.

Motivated by the many possible observational manifestations of

crustal stresses in an NS, we study a mechanism in which a rear-

ranging global magnetic field provides the source of these stresses,

eventually causing the crust to yield. We derive a condition for

magnetically induced crustal failure based on the von Mises crite-

rion for the yielding of elastic media. Using a variety of different

magnetic-field models, including NSs with normal and supercon-

ducting cores and with a force-free magnetosphere, we study the

crustal strain patterns that these field configurations would produce

and the point at which regions of the crust will yield. We find a rela-

tionship between the depth of a crustal fracture, the breaking strain

and the corresponding energy release, and deduce a characteristic

field strength associated with crustquakes. We argue that magnet-

ically induced crustquakes could power even the most luminous

magnetar phenomena, contrary to previous suggestions, as well as

operate in NSs with less exceptional inferred dipole magnetic-field

strengths.

2 MAG NETIC - F IELD EQUILIBRIUM

SEQU ENCES

Around a day into its life an NS begins to form a crust, crystalliz-

ing gradually from the inside out over the course of the following

century.1 Before the crust has even begun to form, however, it is rea-

1 See, e.g. Ruderman (1968) for an early discussion of this; Gnedin, Yakovlev

& Potekhin (2001) and references therein for the theory of crustal thermal

relaxation; and Krüger, Ho & Andersson (2014) for a figure of how different

regions freeze into a crust over time.

sonable to expect the magnetic field to have reached an equilibrium

with the fluid star, since the time-scale of this process will be the

same order of magnitude as an Alfvén-wave crossing time (around

a second for typical NS parameters and a 1014 G field; shorter for

stronger fields). The crust will thus freeze in a relaxed state threaded

by its early-stage magnetic field; in the absence of shear stresses the

equilibrium description of this phase will just be that of a magne-

tized fluid body (left-hand panel of Fig. 1). Over time the star will

gradually lose magnetic energy through secular decay processes;

see Section 3. The magnetic field will want to adjust to a new fluid

equilibrium, but its rearrangement will be inhibited by the crust’s

rigidity (middle plot of Fig. 1). The magnetically induced stresses

in the crust will thus grow over time, and eventually exceed the

elastic yield value; when this happens the crust will break in the

region where its breaking strain has been exceeded, and the field

will be able to return (locally) to its fluid equilibrium configuration,

depicted in the right-hand panel of Fig. 1. The stress that builds

up in an NS’s crust will thus be sourced by the difference between

the field configuration present when the crust froze, and the mag-

netic field’s desired present equilibrium, which it is prevented from

reaching by shear stresses. Both the ‘before’ and the (desired) ‘af-

ter’ magnetic-field configurations are therefore fluid equilibria, so

by comparing two such equilibria with different values of magnetic

energy we can determine the expected stresses built up in an elas-

tic crust. A quantitative description of the above scenario is given

in Section 4.2, and its potential shortcomings are discussed in the

following Section 4.3.

To explore the possible range of these ‘before’ and ‘after’

magnetic-field configurations during the evolution of a highly mag-

netized NS, we consider three classes of NS model: accounting

for the possibilities that the core protons are superconducting or

not, and considering a scenario where the star has a magnetar-like

magnetosphere in equilibrium with its interior field (and matches

smoothly to it at the stellar surface). From these various plausible

MNRAS 449, 2047–2058 (2015)
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models of an NS’s field configuration we hope to look for universal

features and also possible differences in how the crust breaks which

could be used to distinguish between them.

Our model NS is composed of protons, neutrons and electrons,

but the electrons have negligible inertia and their chemical poten-

tial can simply be added as an extra contribution to that of the

protons. We are then left with a two-fluid core of protons and su-

perfluid neutrons, matched at 0.9 times the stellar radius R∗ to a

non-superconducting and unstrained crust. We capture these fea-

tures by confining the neutron fluid to the region between the centre

and 0.9R∗, while having the proton fluid extend from the centre

out to the stellar surface, so that the shell from 0.9R∗ to R∗ is a

single-fluid region. Since a relaxed elastic medium obeys the same

equilibrium equations as a fluid, we can thus regard the proton

fluid in this outer single-fluid region as a ‘crust’ (Prix, Novak &

Comer 2005). The equation of state we choose is effectively a dou-

ble polytrope (Lander, Andersson & Glampedakis 2012), setting

the proton and neutron polytropic indices Np, Nn to values of 1.5

and 1.0, respectively, to mimic a ‘realistic’ core proton-fraction pro-

file in the core (e.g. that of Douchin & Haensel 2001). Since the

polytropic indices of the two fluids are different, the stellar models

have composition-gradient stratification. The neutron-density pro-

file has, however, negligible impact on these configurations. Finally,

although it would naturally be more desirable to work directly with

a tabulated equation of state, instead of our double-polytrope ap-

proximation to one, we do not believe that doing so would have any

serious impact on our results; see the discussion in Section 4.1.

The code we use to calculate equilibria works in dimension-

less units, and physical values given here come from redimen-

sionalizing code results to one particular model star of 1.4 solar

masses and with fixed neutron and proton polytropic constants of

kn = 5.65 × 104 g−1 cm5 s−2 and kp = 2.74 × 1010 g−2/3 cm4 s−2, re-

spectively. For our chosen neutron and proton density profiles, these

values produce a star with radius of 12 km (varying very slightly

with field strength). Note that since all our models have the same

mass and the same equation of state (i.e. fixed polytropic indices

and constants), they correspond to the same physical star – allowing

for a direct comparison between different models.

In all cases, we are interested in mixed poloidal–toroidal

magnetic-field configurations, since these are the most generic mod-

els and also the most likely to be stable (Tayler 1980). Although

the toroidal-field component can be locally strong in our models, its

contribution to the total magnetic energy is always small compared

with the poloidal one. The equilibrium models we consider here are

all chosen to have the strongest possible toroidal component; as we

will see later in Section 4, this allows us to put an upper limit on

how readily the crust will yield.

The key differences between our three classes of model come

from the form of the magnetic force Fmag, and the electric current

distribution; we discuss each case next and show example field

configurations, all with a polar-cap field strength Bp = 6.0 × 1014 G

for direct comparison.

2.1 Normal core protons, vacuum exterior

This is the simplest case, where both the core protons and the

crust are subject to the familiar Lorentz force for normal (non-

superconducting) matter,

Fmag =
1

4π
(∇ × B) × B, (1)

Figure 2. Magnetic-field configuration for a model magnetar with a polar-

cap field strength Bp = 6.0 × 1014 G and a total magnetic energy of

6.8 × 1047 erg. The core is a two-fluid system of superfluid neutrons and nor-

mal protons, matched to a normal crust at a dimensionless radius r/R∗ = 0.9.

The thick black arc at r/R∗ = 1 represents the stellar surface. We plot the

poloidal-field lines, denoting the direction of this field component, whilst

the colour scale shows the magnitude of the toroidal component, whose

direction is azimuthal – into/out of the page.

where B is the magnetic field. Note that the neutron fluid does not

feel any magnetic force. We assume that the exterior of the star is a

vacuum, with no charged particles able to carry an electric current,

so that Ampère’s law simply imposes a restriction on the form of

the external magnetic field Bext,

∇ × Bext = 0. (2)

An alternative way to look at this condition is that there could be

magnetospheric currents, but that they do not communicate with the

interior and therefore do not affect its equilibrium.2 One could jus-

tify this rather simplistic model by suggesting that the magnetic field

in a magnetar’s core is strong enough to break proton superconduc-

tivity (Baym, Pethick & Pines 1969a; Sinha & Sedrakian 2014), so

that the normal-matter equations would apply. One key motivation

for us, however, is that it allows us to produce configurations with

stronger toroidal components than in our other cases; see Fig. 2. We

believe the reason for this to be numerical rather than physical – our

code’s iterative scheme converges to strong-toroidal-field solutions

more readily in this case than for the other two models considered

in this paper. This class of model is constructed using the tech-

niques described in Lander et al. (2012), although the resultant field

configurations are not dissimilar to those of single-fluid models.

2.2 Superconducting core protons, vacuum exterior

Our next class of equilibrium models are constructed as described

in Lander (2014). These consist of a core of superfluid neutrons

and type-II superconducting protons, matched to a normal crust.

In the crust, the magnetic field is smoothly distributed (on a mi-

croscopic scale) and the magnetic force is just the Lorentz force

(1), acting on the entire crust. In the core, by contrast, the effect

of proton superconductivity is to quantize the field into an array of

thin fluxtubes; on the macroscopic level, this produces a different

2 The converse assumption – that the interior field does not influence the

exterior – is standard in pulsar magnetosphere modelling; see the discussion

in Glampedakis, Lander & Andersson (2014).

MNRAS 449, 2047–2058 (2015)
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Figure 3. Magnetic-field configuration for a model NS with

Bp = 6.0 × 1014 G, with a superfluid-superconducting core matched to

a normal crust. The total magnetic energy for this model is 3.1 × 1048 erg.

The crust-core boundary and surface are at dimensionless radii of 0.9 and

1.0 as before; and again, we plot poloidal field lines in black and toroidal-

field magnitude with the colour scale. Note the weakness of the toroidal

component compared with the normal-matter model in Fig. 2.

magnetic force. Unlike the Lorentz force, which depends only on

the macroscopic field B, the magnetic force for a type-II super-

conductor also involves the lower critical field Hc1, related to the

magnetic field along fluxtubes (Easson & Pethick 1977; Akgün &

Wasserman 2008; Glampedakis, Andersson & Samuelsson 2011).

This latter field is parallel to B and proportional to the local proton

density: in the centre, where the proton density is highest, it reaches

1016 G, but is on average around 1015 G within the core, irrespec-

tive of the value of B. The most important feature governing these

equilibria is the difference in the form of the magnetic force for the

core and crust,

Fmag =

⎧

⎪

⎨

⎪

⎩

1

4π
(∇ × Hc1) × B −

ρp

4π
∇

(

B
∂Hc1

∂ρp

)

(core)

1

4π
(∇ × B) × B. (crust)

(3)

Our models assume the core and crustal fields match without any

current sheet in this region, and as for the models described in the

previous subsection do not have any exterior current. An example

of a model with core proton superconductivity is shown in Fig. 3.

2.3 Normal core protons, magnetosphere

These equilibria are constructed in the same way as the models

with a normal core, except that we now allow for a toroidal-field

component that extends outside the star. This is sourced by a poloidal

electric current in a magnetosphere of charged particles, located in a

lobe around the equator as argued for by Beloborodov & Thompson

(2007). Outside the lobe region there is vacuum, where the field

obeys ∇ × Bext = 0, but within it there is a force-free region with

∇ × Bext = αBext, (4)

where α is a function constant along magnetic-field lines, governing

the distribution of magnetospheric current; see Glampedakis et al.

(2014) for details on the method of solution for these configurations.

In Fig. 4, we plot two such models of NSs in dynamical equilib-

rium with their magnetosphere, both with Bp = 6.0 × 1014 G, but

with 2.5 × 1046 erg of magnetic energy removed from the toroidal

Figure 4. Two magnetic-field configurations for a normal-matter NS with

a current-carrying corona and Bp = 6.0 × 1014 G, but with the lower plot

having 2.5 × 1046 erg less magnetic energy. All of this energy has been

taken out of the toroidal component, visibly altering the magnetosphere.

The toroidal component attains a maximum value greater than that of the

model in Fig. 3, but still less than that in Fig. 2. The lower model has

5.4 × 1047 erg of magnetic energy.

component in the second plot, illustrating how the magnetosphere

rearranges in this case.

At this point, it is worth speculating about scenarios for the forma-

tion of an equatorial corona of current-carrying plasma, although

this is not the focus of our work. The standard argument for the

formation of such a corona (Beloborodov & Thompson 2007) as-

sumes the interior field evolves in such a way that it wishes to ‘eject

magnetic helicity’ – equivalently, to induce an electric current in

the environs of the star. For a mature NS this process cannot hap-

pen immediately, but initially results in crustal stresses building –

when these are released the initially poloidal field is twisted in an

azimuthal direction, thus generating a toroidal component.

As shown in Glampedakis et al. (2014), given a sufficiently dense

corona of charged particles, the star can form a magnetosphere

which is in dynamical equilibrium with the internal field and hence

supported by a relaxed crust, as opposed to one which has to shear

to generate the field. If we assume the toroidal component is always

MNRAS 449, 2047–2058 (2015)
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confined to the same flux surface (poloidal field line), then the

decay of this field would cause the magnetosphere to change shape,

moving in towards the crust. As before, the magnetic flux’s inward

motion would initially be inhibited by shear forces, but at a later

stage the induced stresses could grow large enough to break the

crust. Fig. 4 assumes a scenario like this, where the configuration

of the upper panel decays into that of the lower panel.

One could also view the panels in reverse, however, where an

internal toroidal field wishes to rise out of the star for whatever rea-

son, but is again inhibited by the crust. Clearly one cannot view the

specific configurations of Fig. 4 as representing this scenario, since

that would require an increase in magnetic energy, but qualitatively

similar solutions with decreasing magnetic energy could be con-

structed. In terms of a changing global equilibrium this way round

seems less likely, but it does broadly represent the corona-formation

mechanism discussed in Beloborodov & Thompson (2007) and Be-

loborodov (2009). Note that the strain patterns that would build

by running the scenario in this order would be the same as in

the reverse order, however, since the strain/yield criterion of Sec-

tion 4.2 remains the same if the ‘before’ and ‘after’ configurations

are swapped around.

3 FI E L D D E C AY

The fact that NS magnetic fields do decay is well established, from

both theoretical and observational study; our knowledge of the rel-

ative importance of different decay mechanisms, and their corre-

sponding time-scales, is nevertheless surprisingly incomplete. If

the activity of young NSs like magnetars is powered by field de-

cay, however, there must be at least one rather rapidly acting decay

mechanism. We therefore consider it reasonable to assume mag-

netically induced stresses will build in an NS crust on a time-scale

short enough to be astrophysically relevant, even if current theo-

retical uncertainties prevent us from pinpointing the mechanism(s)

which will most readily build these stresses. Here, we briefly re-

view the literature on magnetic-field evolution to highlight the most

promising mechanisms for relatively rapid changes in an NS’s field.

The most familiar source of magnetic-field dissipation is Ohmic

decay, which in terrestrial materials and the NS crust is the macro-

scopic result of electrons scattering off a solid material’s ion lattice,

thus heating it and reducing the electric current. Ohmic decay oper-

ates more rapidly on small-scale fields than large-scale ones. In the

crust of an NS, the separate process of Hall drift acts to redistribute

the magnetic flux into structures of progressively shorter length-

scales (Goldreich & Reisenegger 1992); although this process is

not itself dissipative it aids Ohmic decay, which acts more rapidly

on small-scale magnetic fields.

For the core, many studies have argued that the evolution is likely

to be very slow. Ohmic decay itself must be restricted to the thin

cores of normal protons at the centre of fluxtubes – these cores

comprise a minute volume of the NS core, which is otherwise in

a superconducting state, and so this decay mechanism is expected

to be extremely slow (Baym, Pethick & Pines 1969b). Ambipolar

diffusion – a drift of the charged particles, and hence the magnetic

field, with respect to the neutrons – is both dissipative and acts to

move the core magnetic field outwards into the crust (Goldreich

& Reisenegger 1992). However, accounting for the superfluid state

of the neutrons drastically increases its time-scale (Glampedakis,

Jones & Samuelsson 2011).

For magnetic fields B < Hc1 ≈ 1015 G, the Meissner effect is

expected to expel core magnetic flux to the crust-core boundary,

a region of (probably) higher electrical resistivity and hence faster

Ohmic decay. More precisely, the Meissner effect dictates that the

eventual equilibrium state of the field will be one where it is ex-

ponentially screened from the core over some short lengthscale –

it does not specify the dynamical mechanism which might achieve

this, nor the time-scale. Different mechanisms have been invoked

for the transport of magnetic flux out of the core. The fluxtubes may

move out of the core through mutual self-repulsion (Kocharovsky,

Kocharovsky & Kukushkin 1996), driven by a buoyancy force (Mus-

limov & Tsygan 1985; Wendell 1988; Harrison 1991; Jones 1991),

or dragged by the outwardly moving neutron vortices as the star’s

rotation rate decreases (Ding, Cheng & Chau 1993). The result of

these various studies is an assortment of prospective time-scales for

field decay which range over at least eight (!) orders of magnitude

(104–1012 yr). Nonetheless the consensus, inasmuch as there is one,

points to a rather slow core evolution and suggests that observed

field decay is crustal in origin.

Slow core-field evolution may, however, be contradicted by the

observation that young NSs like magnetars are able to build and re-

lease huge stresses: the most energetic giant flare (∼1046 erg) came

from a magnetar believed to be under a thousand years old (Palmer

et al. 2005; Tendulkar, Cameron & Kulkarni 2012). Alternatively,

instead of being the result of secular stress build-up, magnetar giant

flares may be the manifestation of a rapidly acting hydromagnetic

instability (Thompson & Duncan 1996; Ioka 2001) – although that

in itself requires the instability to be somehow suppressed until

some critical point, and therefore one might again have to invoke

the build-up of crustal stresses. There is clearly more work to be

done in attempting to achieve some kind of consensus on the role of

magnetic-field decay in NS phenomena – but if crustquakes induce

magnetar activity, as discussed in this paper, we may in fact be able

to use observations to determine a core-field decay time-scale and

hence reduce the discordance of the theoretical models.

4 M AG N E T I C A L LY I N D U C E D C RU S T QUA K E S

4.1 Crustal properties

To obtain quantitative results about how a magnetic field can act to

strain and eventually break an NS crust, we need a realistic model

of this region – in particular, for the crustal shear modulus and

breaking strain. In our equilibrium models, described in Section 2,

we used a double-polytrope equation of state designed to mimic

a ‘realistic’ core proton fraction, but unfortunately this results in

an unrealistically low-density crust. The crustal density distribution

does not have a strong impact on the magnetic-field configuration,

but is important for calculating a reasonable shear-modulus profile.

Accordingly, we choose to take quantities from a tabulated, ‘real-

istic’, equation of state (Douchin & Haensel 2001), and by doing

so we can take advantage of a recent shear-modulus fitting formula

based on the results of molecular-dynamics simulations (Horowitz

& Hughto 2008).

Using a polytropic crust model to calculate magnetic-field equi-

libria, but then adopting parameters from a tabulated equation

of state to calculate the shear modulus, is clearly not consistent.

Nonetheless, we argue next that the level of inconsistency is justi-

fiable to our order of working. We use our equilibrium calculations

solely to get models of the magnetic field and not, for example, pres-

sure or density profiles. Had we employed the Douchin–Haensel

equation of state consistently throughout this work – i.e. for our

equilibrium calculations too – we would have obtained somewhat

different magnetic-field distributions. The degree of inconsistency

in our approach in this paper, therefore, depends on the difference
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between equilibria calculated using our polytropic models and those

calculated with the equation of state of Douchin & Haensel (2001)

– and this difference should be small, since the dependence of

magnetic-field distributions on the stellar equation of state is in fact

quite weak (Yoshida, Yoshida & Eriguchi 2006).

4.1.1 Shear modulus

From the Douchin–Haensel tabulated equation of state we make

simple polynomial fits to the radial dependence of the baryon num-

ber nb, atomic weight A, atomic number Z and free neutron fraction

xfree
n in the crust. We fit our temperature profile to results for a 1000-

yr-old magnetar from Kaminker et al. (2009, see their fig. 6; we use

their profile for the lower of the two heat intensities, with a heat

source at the top of the inner crust). The maximum temperature

slightly exceeds 109 K. Our fitting formulae approximate crustal

parameters over the density range 0.05ρcc < ρ < ρcc (where ρcc

is the density at the crust-core boundary) and may deviate from

the correct behaviour below this density. On our numerical grid the

crust is covered by 24 radial points, meaning that our fitting formu-

lae are designed to approximate all but the outermost four points –

precise enough for our purposes.

To calculate crustal properties, we first note that the ion number

density in the crust ni = nb(1 − xfree
n )/A, from which we define

the ion sphere radius ai = (4πni/3)−1/3. The Coulomb coupling

parameter Ŵ is then given by

Ŵ =
(Ze)2

aiT
, (5)

where e is the elementary charge (i.e. of a proton). From the various

crustal properties discussed above, we are now in a position to

determine the shear modulus μ of our model NS crust using the

formula from Horowitz & Hughto (2008),

μ =
(

0.1106 −
28.7

Ŵ1.3

)

ni

ai

(Ze)2. (6)

The resulting shear modulus profile we use is shown in Fig. 5. At

the innermost crustal gridpoint μ = 2.4 × 1030 dyn cm−2 – a little

Figure 5. The profile of the shear modulus μ throughout the crust, calcu-

lated using equation (6) – a fitting formula based on the results of molecular-

dynamics simulations (Horowitz & Hughto 2008). The required crustal in-

put quantities (for example, the variation of atomic number within the crust)

come from polynomial fits to the tabulated equation of state of Douchin

& Haensel (2001), and our magnetar temperature profile is taken from

Kaminker et al. (2009).

higher than the crust-core value of μ = 1.8 × 1030 dyn cm−2 from

Hoffman & Heyl (2012) and the classic estimate of μ ≈ 1030 dyn

cm−2 (Ruderman 1969).

4.1.2 Breaking strain

Recent molecular-dynamics simulations indicate that the NS crust is

considerably stronger than previously thought (Horowitz & Kadau

2009; Hoffman & Heyl 2012), with a breaking strain σ max around

0.1 (dimensionless, since a strain is a fractional deformation; a ra-

tio of two lengths). σ max is essentially temperature-independent as

long as one is well above the melting temperature (whose value

corresponds to Ŵ ≈ 175); it is also independent of density, ex-

cept perhaps in a narrow region of ‘nuclear pasta’ at the crust-core

boundary (Ravenhall, Pethick & Wilson 1983); and neither impu-

rities nor strain rate have a significant impact on it. Accordingly,

taking the breaking strain as constant is a good first approximation

(Horowitz, private communication). Note that the breaking stress,

by contrast, is a dimensional quantity (with units of pressure) and

has significant variation within the crust (Chugunov & Horowitz

2010). In this paper, we adopt two canonical values for the breaking

strain: σ max = 0.1 to reflect recent simulations, and σ max = 0.001

to compare with earlier work.

4.2 A criterion for magnetically induced crustquakes

We are interested in how magnetic-field decay/rearrangement

causes strain to build in an NS’s crust, and where and when this

strain might finally cause the crust to break. Since there is no reason

to expect the magnetic field to be uniform – or to decay/rearrange

uniformly – the built-up strains will vary greatly within the crust.

Previous crust-breaking criteria based on global estimates (Thomp-

son & Duncan 1995; Hoffman & Heyl 2012) are therefore not only

somewhat crude, but also give no idea of where the crust will fail.

We aim to improve on these by using a criterion, which we derive

next, accounting for the local changes in magnitude and direction

of the field.

To simplify the algebra in the derivation which follows, we use

standard tensor index notation, denoting tensor indices with i and j.

We start with the general stress tensor for the crust in our model

τij = −pgij + μσij + Mij , (7)

where p is fluid pressure, gij the flat-space 3-metric, σ ij the elastic

strain tensor and Mij the Maxwell (magnetic) stress tensor. In

this problem, we are only considering equilibrium configurations

– either strained or unstrained – so the sum of the stresses should

balance: τ ij = 0ij, where 0ij = 0 ∀{i, j}.

We assume the NS’s crust freezes in a relaxed state, with a certain

magnetic energy and polar-cap field strength; quantities pertaining

to this state will be denoted with a subscript or superscript zero in the

following derivation. With no shear forces present, the equilibrium

at this stage is that of a fluid body

0ij = −p0gij + M0
ij . (8)

Over the star’s lifetime, different secular processes (see previous

section) act to reduce the magnetic energy, so that the star’s evo-

lution can be described by a sequence of quasi-static equilibria,

with incrementally smaller values of magnetic energy. These are no

longer fluid equilibria, however, as the crust resists any adjustment
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of the magnetic field by balancing the Lorentz forces by its elastic

shear force,

0ij = −pgij + μσij + Mij . (9)

The magnetically induced change to the fluid pressure p will be tiny,

and so the difference between its initial value and that at a later time

may safely be neglected, i.e. p0 − p ≈ 0. The strain in the crust is

thus entirely sourced by the difference in the Maxwell stress tensor

between initial and later field configurations,

μσij = M0
ij − Mij . (10)

The magnetically induced stresses in the crust gradually grow, and

are largest where the field wishes to adjust the most. For sufficiently

strong magnetic fields and sufficient readjustment, the crust will

yield in some region, allowing the magnetic field in the affected

region to return to a fluid equilibrium; recall the cartoon in Fig. 1.

To proceed, we need the explicit form of Mij . Since the crust is

not superconducting this is the familiar Maxwell stress tensor,

Mij =
1

4π

(

BiBj −
1

2
B2δij

)

. (11)

Note that taking the divergence of this tensor gives

∇ · M =
(B · ∇)B

4π
−

∇B2

8π
, (12)

the Lorentz force, as expected.

The von Mises criterion predicts that an isotropic elastic medium

will yield when

√

1
2
σijσ

ij ≥ σmax. (13)

This is not, strictly speaking, a criterion for breaking; ‘yield’ means

only that the crust ceases to respond elastically to additional strains,

but may enter a regime of plastic flow before actually breaking. We

ignore the distinction between these two responses for now, and

use the terms ‘yield’ and ‘break’ interchangeably. For the purposes

of our work, the distinction is not so important, as we anticipate

both breaking and plastic flow to release the same total amount of

pent-up magnetic energy, but perhaps in characteristically different

ways and over different time-scales; see Section 5.

Now, from equations (10) and (11),

σijσ
ij =

1

μ2

(

M0
ijM

ij

0 + MijM
ij − M0

ijM
ij − MijM

ij

0

)

=
1

64π2μ2

(

2B2B2
0 + 3B4 + 3B4

0 − 8(B · B0)2
)

. (14)

The von Mises criterion (13) applied to the case of crust-yielding

sourced by a changing magnetic-field equilibrium is therefore

1

8πμ

√

B2B2
0 + 3

2
B4 + 3

2
B4

0 − 4(B · B0)2 ≥ σmax. (15)

Since we will explore varying the breaking strain, we will use the

following quantity in strain plots:

√

B2B2
0 + 3

2
B4 + 3

2
B4

0 − 4(B · B0)2

8πμσmax

. (16)

Accordingly, we expect any regions in the crust where this quantity

exceeds unity to break. We consider the validity of our crustquake

model and alternatives to it in the next subsection, and then present

our results.

4.3 Validity of our crustquake criterion

In this paper, we aim to take a commonly invoked idea of magnetic-

field decay driving crustquakes and put it on a firm quantitative

footing. Our approach, in summary, is to study how a changing

magnetic-field equilibrium strains an NS’s crust. We do not perform

time-dependent simulations of this process, so we cannot actually

simulate a fracture event – instead, we use the von Mises yield crite-

rion to check which regions of the crust have exceeded the breaking

strain, and infer that those regions will yield. We have in mind a

scenario where a substantial region of the crust fails collectively

in a fracture – which appears contradictory to a recent suggestion

that crack propagation, and hence mechanical failure, is inhibited

in magnetized NS crusts by the Lorentz force (Levin & Lyutikov

2012). We are not considering mechanical failures with arbitrary ge-

ometry, however, but ones which are induced by the Lorentz force

and therefore are dictated by the magnetic-field geometry rather

than impeded by it. Nonetheless, even if the crust fails gradually in

small regions and/or enters a regime of plastic flow (Jones 2003;

Beloborodov & Levin 2014), the results we present should still

represent the total energy output over the yield process.

We assume shear stresses are sourced solely by the crust resisting

the rearrangement of the star’s hydromagnetic equilibrium. This is

in the same spirit as Braithwaite & Spruit (2006), although their

approach was to isolate one piece of the Lorentz force to diagnose

the build-up of stress, whereas we have derived a tensor-based

yield criterion which follows rigorously from elasticity theory. By

comparing hydromagnetic equilibria, we are neglecting the separate

secular evolution of the star’s field, and in particular that of the crust

(Pons, Miralles & Geppert 2009); the only role of any dissipative

effect in our models is to induce the field to rearrange into a new

equilibrium. Our study is therefore complementary to the crustquake

modelling of Perna & Pons (2011), who did look at the build-up

of crustal stresses due to magnetothermal evolution in the crust,

but neglected any effects related to changes in the star’s global

equilibrium.

In addition to the potential role played by the secular field-

rearrangement processes in the crust, one other potential concern is

the inherent degeneracy in picking sequences of equilibria to repre-

sent snapshots of the rearrangement of an NS’s decaying magnetic

field. Since this process is dissipative, there is no obvious quan-

tity to hold constant – in contrast with, for example, the case of

accretion-driven burial of an NS’s magnetic field (Payne & Melatos

2004). Although we rescale our numerical results to one specific

physical NS (1.4 solar masses and a radius of 12 km), our picture

of a sequence of equilibria as snapshots of a secular evolution is

therefore not self-consistent. Somewhat arbitrarily, we assume that

the ratio of poloidal to toroidal components remains constant for our

models with only interior currents, whilst assuming that in our ‘mag-

netosphere’ models the exterior current decays most quickly, thus

predominantly reducing the toroidal component (which is partially

sourced by these exterior currents). Ideally one would verify these

assumptions with a full magnetothermal evolution of the coupled

core-crust-magnetosphere system, but the technology to perform

such simulations is not yet available. For now, we believe the work

presented in this paper to be as complete as is currently possible.

4.4 Strain patterns in an NS crust

In Fig. 6, we plot the strain patterns that would develop in an NS

crust after a period in which 2.5 × 1046 erg of magnetic energy

has decayed, assuming the crust’s initial state was relaxed. In all

cases the final, ‘present-day’ polar cap field strength is taken to
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Figure 6. Logarithmic plots of the ratio of magnetic strain to breaking strain within an NS crust; when the ratio exceeds unity (i.e. zero for this logarithmic plot)

the crust should break. The colour scale shows regions where the ratio is 0.5 or greater, corresponding to −0.3 or greater on the logarithmic scale, reflecting the

fact that a real NS crust’s crystalline lattice may contain flaws and impurities which cause it to break before reaching the limit for a pure crust. We plot the crust

at twice its actual thickness to show strain patterns more clearly. All plots show strain built up in NSs with a present-day field strength Bp = 6.0 × 1014 G, after

the loss of 2.5 × 1046 erg of magnetic energy. This loss represents 0.80 per cent of the present-day total magnetic energy for the left-hand plots (superconducting

core protons and a vacuum exterior), 4.7 per cent for the middle plots (normal core protons, non-vacuum exterior) and 3.6 per cent for the right-hand plots

(normal core protons, vacuum exterior). The top row shows results for a very strong crust, with a breaking strain σmax = 0.1; the bottom row is the same set of

configurations but assuming a more ‘traditional’ value of σmax = 0.001. Our models show that an NS crust yields most easily if the star has a locally strong

toroidal-field component, with the failure occurring in the outer equatorial region first.

be Bp = 6.0 × 1014 G. For clarity, the 0.1R∗-thick crust (1.2 km

for our models) has been stretched linearly in the plot to appear at

twice its actual thickness. We consider the three classes of model

described in Section 2: superconducting core protons and a vacuum

exterior; normal core protons and magnetospheric currents; normal

core protons and a vacuum exterior. We plot the quantity from

equation (16), which is greater than unity for regions of the crust

which are expected to yield; since our colourscale is logarithmic,

zero represents the minimum value at which the crust is expected

to yield (given the caveats discussed in the previous subsection). To

include regions on the verge of breaking, we also show parts of the

crust where the quantity (16) exceeds 0.5. These parts may actually

fail, rather than just being on the verge of it, if the crustal lattice

contains flaws/impurities or if a large region fails collectively, for

example. The colour scale shows how much strain builds up in

each region. The top row of plots assumes a very strong crust,

with σ max = 0.1, whilst the bottom row uses σ max = 0.001 for

comparison; see the discussion in Section 4.1.2.

Superficially, Fig. 6 seems to suggest that normal-matter models

with a vacuum exterior are the most prone to fracture, given a fixed

loss of total magnetic energy. If we return to the equilibrium models

used to generate these plots (Figs 2, 3 and 4), however, we see

that the comparison is not quite fair: the three classes of equilibria

have strikingly different toroidal-field strengths, with that of the

superconducting model being an order of magnitude weaker than

the other two. A more reliable conclusion to draw from our results is

that a strong toroidal-field component allows for the greatest build-

up of stress in an NS crust, in agreement with previous studies

(Thompson & Duncan 1995; Pons & Perna 2011). Our results are

also distinct from this earlier work, however, in that we anticipate

the greatest stress build-up – and eventually a crustquake – to occur

in a belt around the equator. By contrast, a poloidal-dominated field

builds up stresses more gradually, and in a region around the pole.

4.5 Energy release and characteristic field strength for

crustquakes

One key question for any model of crustquakes is the amount of

energy that could be released in such an event. Here, we compare se-

quences of models to determine the relationship between the various

quantities in the problem: the energy release in a quake, the depth

of the ‘fracture’ (i.e. the region which fails), the breaking strain and

the polar-cap field strength. For later comparison, we first quote the

result of a back-of-the-envelope calculation (Thompson & Duncan

1995) for crustquake energy release

Eout

1040erg
∼ 4

(

l

1km

)2 (

Bc

1015G

)−2
( σmax

0.001

)2

, (17)
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where Bc is the crustal magnetic field. Note that this estimate gives

the energy released Eout from the failure of an area of size l2; we

find the notion of energy release from a volume more natural, since

magnetic energy is a volume integral over B2.

For our results, we produce sequences of field configurations by

fixing one equilibrium model, the ‘after’ (present-day) model with

crustal strains sourced by the magnetic field, and varying the other,

‘before’ (original) configuration – i.e. the initial star with its relaxed

crust. We assume the ‘before’ field has decayed into the ‘after’ field

– so that the greater the difference in magnetic energy between these

models, the larger the region of the crust that should be strained to

the point of yielding. We also explore the effect of varying the

breaking strain and the ‘after’ field strength. We then compare the

depth of the fracture in each case with the magnetic-energy change

in the region which fails, which we regard as the energy released

over the crustquake and denote Equake.

As discussed in the previous subsection, our models with normal

core protons and vacuum exterior have the highest ratio of toroidal-

component maximum to polar-cap field strength. We believe that

equilibrium solutions with similarly high ratios do exist in other

cases, in particular the case with core superconductivity, but that

our numerical scheme is simply less successful at converging to

them. In this section, we will only consider the class of models with a

normal core and vacuum exterior, and will use the strongest toroidal

components we can, as before, since this seems to be associated

with the greatest build-up of strain. Given that we believe similarly

strong toroidal fields should exist in other cases; however, the results

presented here are intended to be representative of a favourable

crust-breaking scenario for any model.

We begin by fixing the present-day polar-cap field strength as

3.0 × 1014 G and varying the initial field strength. We then calcu-

late the ratio of magnetically induced strain σ to breaking strain

σ max throughout the crust, using equation (16), to determine what

depth of region will fail according to the von Mises yield criterion.

The difference in magnetic energy between the ‘before’ and ‘after’

equilibrium configurations, within the volume of the crust which

breaks, gives us the energy Equake released in such a crustquake,

Equake =
∫

σ≥σmax

(B2
0 − B2)

8π
dV . (18)

Our results for the variation of energy release with fracture depth

are plotted in Fig. 7 for three different breaking strains, to allow us

to check the dependence on this quantity too. For fracture depths

exceeding around half the crustal thickness, we find that the data

is fitted satisfactorily by an exponential relation between energy

release and depth; see top panel. For more shallow fractures, how-

ever, a cubic fit is better (bottom panel). Note that the exponential

relation could not in any case be applicable at shallow depths, since

it does not give the correct limiting behaviour that if there is no

fracture there can be no energy release (i.e. the energy-versus-depth

fit line must pass through the origin).

Since equation (17) suggests our results may be dependent on

the NS’s field strength, we investigate this next. In Fig. 8, we fix

the breaking strain at 0.005 and show the variation of crustquake

energy release with fracture depth for four different present-day

polar-cap field strengths, varying over an order of magnitude. The

data points for the four different field strengths all appear to lie

along the same line, with no evident variation with field strength.

This is not actually so surprising – whilst the stresses are induced

by the magnetic field, they are stored as elastic energy, so that

crustquake energy release depends only on crustal properties: the

volume of the crust which yields and the strain at which this occurs.

Figure 7. The amount of energy released in a crustal fracture, as a func-

tion of fracture depth. Fixing the present-day polar-cap field strength as

Bp = 3.0 × 1014 G, we consider three different breaking strains, as labelled

on the figure: σmax = 0.001, 0.005, 0.01. Top: for sufficiently deep fractures,

the relationship between depth and energy loss is approximately exponential

(shown by the lines). Bottom: a zoomed-in version of the above shows that

for more shallow fractures the relationship deviates from the exponential

one and is better approximated by a cubic function.

Figure 8. The relationship between fracture depth and energy release for

four different present-day polar-cap field strengths, for a breaking strain of

0.005. We see that the results appear to be completely independent of the

field strength. The exponential fit is seen to approximate the behaviour for

deep fractures and large energy release, whilst the cubic fit (inset) is more

accurate for shallow fractures and smaller release of energy.
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The magnetic-field strength is likely to be important in affecting

the rate of crustquake events, but such time-dependent behaviour is

beyond the scope of this paper.

As for Fig. 7, we see in Fig. 8 that the quake energy–depth

relation appears to be exponential for deeper fractures, and cubic for

shallower fractures (see inset). Combining our results from these last

two figures and denoting the crustal thickness by Rc, we find that the

relation between quake depth d and energy release is independent

of the field strength – in contrast with earlier estimates – and given

by

Equake

1045erg
= 0.31

( σmax

0.001

)

exp
[

6( d
Rc

− 1)
]

(19)

for deep fractures (d � 0.5Rc), and

Equake

1045erg
= 0.25

( σmax

0.001

)

(

d

Rc

)3

(20)

for more shallow ones.

Since we work in axisymmetry, the above results apply to the case

of a whole equatorial belt of crust fracturing at once; the width and

length of the fracture3 are therefore not independent of the depth,

and so we obtain relations in terms of this one fracture dimension,

instead of all three. Whilst the width and depth of the fracture are

both related to the crustal thickness, the length l is related to the

larger scale of the circumference of the star 2πR∗ = 20πRc. To

reflect this, we can modify equation (20) by replacing one factor of

d/Rc with the term l/2πR∗ to reflect the expected relationship if the

length of the fracture does not extend right across the star,

Equake

1045erg
≈ 0.25

( σmax

0.001

)

(

d

Rc

)2 (

l

2πR∗

)

. (21)

Note that our results are only quantitatively correct for our partic-

ular (axisymmetric) crust-yielding scenario though, so the above

relation is an approximate one. Now, from the definition of mag-

netic energy as a volume integral of B2, we see that its dimensions

are [E] = [B]2L3; we can therefore use our quake energy–depth

relations to find a characteristic field strength associated with the

crust yielding. In particular, if we take the shallow-fracture formula

(21) and multiply through by 1045 erg and R3
c = (1.2 × 105cm)3 we

get

Equake ≈ 2.3 × 1027
( σmax

0.001

)

d2l erg, (22)

where we have also used the fact that the ratio of fracture depth to

length d/l ≈ Rc/2πR∗ = 1/20π. Equation (22) gives us a relation

in physical units between quake energy, depth and length, with a

constant of proportionality 2.3 × 1027(σ max/0.001), which must

therefore have dimensions of [B]2. Given the expression for mag-

netic energy release (18), we choose to define a characteristic field

strength Bbreak for breaking a cubic region of crust by equating the

3 In Cartesian coordinates, the strain plots of Fig. 6 are in the x − z plane.

Since the fractures we consider are centred around the equator, we use the

term ‘depth’ to refer to the size of the fracture in the x-direction, ‘length’

to refer to the size across the surface of the star, i.e. in the y-direction, and

‘width’ to refer to the fracture’s size in the z-direction.

constant of proportionality from (22) with 8πB2
break. From equation

(22) this then gives4

Bbreak = 2.4 × 1014
( σmax

0.001

)1/2

G. (23)

We interpret this result to mean that, although the quake energy–

depth relation does not involve the field strength itself, there is

nonetheless a characteristic (local) strength of field related to crust-

breaking.

5 D I SCUSSI ON

NSs display a variety of abrupt energetic phenomena – most spec-

tacularly the giant flares of magnetars, but also smaller bursts, and

glitches in their rotation rate. These phenomena all point to some

sudden release of stress that has built up gradually – and the star’s

elastic crust is a natural candidate for a region that can become

gradually stressed then fail suddenly. It is, therefore, worth conclud-

ing with a discussion of the possible role of magnetically induced

crustquakes in flares, bursts and glitches.

We turn first to a class of phenomena for which crustquakes have

traditionally not been invoked: the giant flares of magnetars. The

three events observed to date have all involved energy outputs in

excess of 1044 erg (Fenimore, Klebesadel & Laros 1996; Feroci

et al. 2001; Palmer et al. 2005), an amount thought to be too great

to have come from crustal energy release alone (Thompson & Dun-

can 1995); this worry, in part, has motivated a number of studies

exploring the alternative possibility that spontaneous reconnection

in the magnetosphere is responsible for magnetar flares, in analogy

with dynamics in the solar corona (see e.g. Lyutikov 2003). One

key result of our paper is that a crust stressed by magnetic-field

rearrangement can, in fact, comfortably store the required amount

of energy to power a giant flare.

The most energetic observed giant flare to date was the 2004

event of SGR 1806-20; its estimated energy output over the flare

was an enormous 2 × 1046 erg (Palmer et al. 2005). This value is

not very precise – in particular, the probable anisotropic nature of

the flare would make it an overestimate – but let us nonetheless

assume that this amount of energy was released from a crustquake.

From equation (19), we then have an estimate that the minimum

breaking strain of the crust must be around 0.065 (corresponding to

the case of a fracture extending to the base of the crust). This value

is comfortably below the recent result, obtained from molecular-

dynamics simulations, that an NS crust has a breaking strain of 0.12

(Horowitz & Kadau 2009). These simulations also show that the

crust fails in a large-scale collective fashion – this could conceivably

fit the observed behaviour of giant flares, whose luminosity peaks

rapidly then decays exponentially (Palmer et al. 2005).

We can also use our results to put an upper limit on the expected

maximum size of a giant flare powered by crustal energy release

alone. Taking a breaking strain of 0.12 and assuming a fracture ex-

tending to the base of the crust, equation (19) gives a maximum total

energy release of 4 × 1046 erg. If any future giant flare appears to be

more energetic than this (using the isotropic-emission assumption),

4 Our argument uses an impure form of dimensional analysis, as we have

included the factor of 8π from the magnetic energy expression and the

1/20π factor from the fracture depth-to-length ratio, since both factors are

greater than an order of magnitude in themselves. Readers uncomfortable

with the inclusion of these extra factors can remove them from the final

result for Bbreak by multiplying by
√

8π/20π, resulting in a prefactor of

3.8 × 1014 instead of the value of 2.4 × 1014 in equation (23).

MNRAS 449, 2047–2058 (2015)

 at U
n
iv

ersiteit v
an

 A
m

sterd
am

 o
n
 F

eb
ru

ary
 2

9
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


Magnetically driven NS crustquakes 2057

then either the energy release is not crustal in origin, or it is highly

anisotropic – leaving current estimates for flare energies seriously

in error.

In addition to the rare giant flares, magnetars also suffer far

more common short-duration bursts with energies up to ∼1041 erg

and intermediate events with energies around 1043 erg. If these

bursts are also a manifestation of crustquakes, they must involve the

yielding of much more shallow regions. Unlike the highly rigid inner

regions of the crust, the outermost part of the crust can only support

small stresses, and could feasibly fail at lower strains through some

gradual process (like plastic flow or a succession of small fractures)

instead of one large collective failure; this would account for the

groups of small bursts seen from some sources (Mazets et al. 1999;

Mereghetti et al. 2009). Assuming short bursts are indeed powered

by the release of crustal energy, equation (20) suggests that a 1041-

erg event would be associated with the magnetar’s crust yielding to a

depth of roughly 90m (for a breaking strain of 0.001), or to a depth of

20m (if the breaking strain is 0.1). Interestingly, the burst afterglow

of Swift J1822.3 − 1606 has been shown to be well modelled by a

3 × 1042-erg shallow-depth heat deposition (Scholz et al. 2012) –

which could have resulted from a magnetically induced crustquake;

see also Rea et al. (2013) for similar outburst modelling for SGR

0418 + 5729 and Camero et al. (2014) for SGR 0501 + 4516.

A period of burst activity might indicate the gradual failure of a

somewhat deeper region; our energy–depth formulae should still be

valid for this case, but with the crustquake energy release being the

total energy output over the period of bursting.

The final class of abrupt phenomena we wish to mention are

glitches. Unlike flares and bursts, these spin-up events cannot be due

to magnetically induced crustquakes, since the resulting change in

the stellar moment of inertia due to such a crustquake event could

only ever be minute: it scales with the ratio of magnetic to fluid

pressure. Instead, we expect the usual glitch scenario to apply even

for highly magnetized NSs: the star’s superfluid component cannot

spin-down regularly with the crust and so develops a difference in

angular velocity; beyond some critical value, however, the super-

fluid is forced to re-equilibrate with the crust by transferring angular

momentum, which is then seen as a spin-up of the crust (Anderson

& Itoh 1975). Nonetheless, it may not be safe to assume that the

magnetic field can be neglected in the treatment of glitch modelling.

As discussed in the introduction, radiative changes associated with

glitches have been observed in AXPs, and moreover in at least three

typically rotationally powered pulsars with high magnetic fields

(Antonopoulou et al. 2015). These observations may point to mag-

netically induced crustquake activity occurring simultaneously –

either as a trigger or a result of the glitch.

Finally, we have identified a characteristic field strength (23) as-

sociated with crust-breaking, corresponding to the constant of pro-

portionality in the quake energy–depth relation. It suggests that for

a crustquake to occur, the field strength must reach approximately

1014–1015 G locally (depending on the crustal breaking strain); this

is in agreement with the findings of Pons & Perna (2011), who

considered a different scenario for the build-up of magnetically in-

duced stresses. Superficially, it appears as if this characteristic field

strength might only be attained in magnetars – but in fact, the ob-

served field strengths of NSs are just inferences about the dipolar

field component at the polar cap. It is quite likely that NSs with

inferred dipole fields of the order of 1013 G, or perhaps lower still,

will harbour some region in their crust where the local field exceeds

1014 G. Within our crustquake model, therefore, it would be quite

natural to find crossover sources displaying both ‘radio-pulsar’ and

‘magnetar’ characteristics – and we anticipate the distinctions be-

tween supposedly different classes of NS to become further eroded

over time.
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