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Magnetisation switching of FePt 
nanoparticle recording medium by 
femtosecond laser pulses
R. John1, M. Berritta2, D. Hinzke3, C. Müller4, T. Santos5, H. Ulrichs6, P. Nieves7,8, J. Walowski1, 

R. Mondal2, O. Chubykalo-Fesenko7, J. McCord4, P. M. Oppeneer  2, U. Nowak3 &  

M. Münzenberg  1

Manipulation of magnetisation with ultrashort laser pulses is promising for information storage 

device applications. The dynamics of the magnetisation response depends on the energy transfer 

from the photons to the spins during the initial laser excitation. A material of special interest for 

magnetic storage are FePt nanoparticles, for which switching of the magnetisation with optical angular 

momentum was demonstrated recently. The mechanism remained unclear. Here we investigate 

experimentally and theoretically the all-optical switching of FePt nanoparticles. We show that the 

magnetisation switching is a stochastic process. We develop a complete multiscale model which allows 

us to optimize the number of laser shots needed to switch the magnetisation of high anisotropy FePt 

nanoparticles in our experiments. We conclude that only angular momentum induced optically by the 

inverse Faraday effect will provide switching with one single femtosecond laser pulse.

Since the �rst discovery of an ultrafast response of a spin system to a femtosecond laser pulse by Beaurepaire 
and colleagues1, our understanding of how to use ultrashort laser pulses to control magnetisation has increased 
considerably2. All-optical switching caused solely by the e�ect of an ultrashort laser pulse was demonstrated 
�rst for ferrimagnets3–6, later for layered, synthetic ferrimagnets7 and recently even for simple ferromagnets by 
Lambert et al.8. Importantly, two di�erent kinds of all-optical (AOS) switching have to be distinguished, namely 
helicity-dependent all-optical switching (HD-AOS)3, 4, 7, where the new magnetic orientation is de�ned by the 
optical angular momentum (helicity, of the circularly polarised laser light), and thermally driven switching 
caused by laser heating with linearly polarised light5, 6, 9–12. �e latter has been observed in ferrimagnets only 
where the phenomenon has been connected with a transient ferromagnetic-like state, i.e., parallel alignment of 
the rare-earth and transition-metal sublattice magnetisations below the picosecond timescale5. Spin dynamics 
simulations5, 9 showed that this state follows from exchange of angular momentum between the antiparallel ori-
ented moments on the two sublattices on a picosecond timescale. However, this mechanism does not apply to the 
HD-AOS observed for single lattice ferromagnets and consequently, the mechanisms underlying HD-AOS are 
currently under intensive debate5, 13–16. It is evident that there must exist an asymmetry related to the helicity of 
the laser excitation which determines the probability of a switching event. �e asymmetry in HD-AOS could orig-
inate from di�erent absorptions of le� and right circularly polarised light17, a helicity-dependent thermal mech-
anism. Alternatively, it could originate from the laser-induced magnetisation caused by the helicity-dependent 
inverse Faraday e�ect (IFE)2, essentially a non-thermal process. Both mechanisms rely on the very same optical 
transitions, and both originate from the interplay of spin-orbit coupling, exchange splitting and the helicity of the 
exciting laser �eld driving the transitions. �erefore, unveiling the microscopic origin of HD-AOS has been pre-
cluded so far. Here we combine measurements and multiscale simulations to come to the bottom of the HD-AOS 
in FePt.
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We investigate FePt granular media designed for heat-assisted magnetic recording (HAMR)18 with µ0HS = 6T 
saturation �eld and employ magneto-optical Kerr e�ect (MOKE) microscopy on the macroscale of a few micro-
metres to record the magnetisation switching. Figure 1a shows the e�ect of writing using HD-AOS on FePt nano-
grains: starting with a randomly magnetised �lm, which means that 50% of the FePt grains are magnetised in 
‘up’ and 50% magnetised in ‘down’ direction, with an average magnetisation of zero, we �nd no magneto-optical 
contrast in Kerr e�ect images for writing with linear polarisation, whereas for right (σ+) and le� (σ−) circularly 
polarised pulses, we �nd a clear bright and dark contrast of the polar MOKE, respectively. �is can be quantita-
tively analysed via cross sectional contrast pro�les. We �nd a nearly symmetric reversal starting with a 50%/50% 
ratio of ‘up’/‘down’ magnetised grains (Fig. 1c). Starting with a 100%/0% ratio of ‘up’/‘down’ magnetised grains 
we obtain writing probabilities of 63% and 41% for σ+ and σ− (Fig. 1d). Moreover, it is possible to write and 
overwrite the information starting with a 50%/ 50% ratio of ‘up’/‘down’ magnetised FePt nanograins, as shown 
by two successive writing lines using �rst right (σ+) and then le� (σ−) circularly polarised light in Fig. 1b. �is 
demonstrates reversibility and hints at helicity as a source of the asymmetry. In addition, the observations point 
to a non-100% reversal for an in�nite number of pulses that has to be understood (a summary of the reversal 
capability given in related works is given in the Supplementary Materials).

Only multiscale calculations can combine information on the electronic level from ab initio calculations 
with the simulation of magnetisation dynamics ranging from single FePt nanograins up to thermal macroscopic 
ensembles of thousands of particles. We start with ab initio calculations of the optical constants n± for circularly 
polarised light and of the transient magnetisation induced by the IFE. �e former lead to helicity-dependent 
absorptions caused by the magnetic circular dichroism (MCD) that induce ultrafast heating. Taking both, the 
thermal e�ect and the imparted transient magnetisation into account, a Landau-Lifshitz-Bloch-(LLB) type 
approach for a thermal spin ensemble allows us to calculate the switching probabilities of the FePt nanograins 
for a single laser pulse. Subsequently, we develop a rate model in which we employ these probabilities to derive 
analytic solutions for the magnetisation dynamics triggered by sequential shots. Based on that we discuss the 

Figure 1. All-optical writing of a FePt recording medium. (a) Magneto-optical contrast images, starting with 
a demagnetised state one obtains a reversed magneto-optical contrast for opposite helicities (σ+, σ−) but not 
for linearly polarised light (L) along the line the laser spot has been moved. �e number of laser pulses was here 
about 250 000 per spot. (b) Overwriting of the magnetisation direction is possible and reverses the magneto-
optical contrast independently of the starting con�guration. (c) Cross sectional contrast pro�les along the 
dotted lines in (a) starting with a demagnetised medium. (d) Starting with a saturated medium with 100% of MS 
‘up’, gives a probability pu being in the ‘up’ state about 63% (σ+) and 41% (σ−) respectively (magneto-optical 
contrast image not shown). �e average laser power onto the sample was 7.5 and 15 mW (6.6 and 13.2 mJ/cm2 
per pulse), respectively. �e magneto-optical contrast images in the saturated starting condition corresponding 
to the data in (d) can be found in the Supplementary Materials.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 4114  | DOI:10.1038/s41598-017-04167-w

conditions needed to realize 100%-one-shot switching. �is provides a multiscale picture of the stochastic switch-
ing process that we compare to our measurements with sequential switching using repeated single laser pulses on 
FePt recording medium.

So far, models have been based on the existence of the IFE seen as a Raman-like optical transient state in die-
lectrics19, 20 or an internal �eld generated by the light �eld21. �e strength of the e�ect, however, was never known 
and treated as a parameter. Di�erently from previous work, we calculate here directly and ab initio the magnetisa-
tion that is induced in FePt through the optical angular momentum, driving the optical transitions, from recently 
derived expressions22. �e IFE is a nonlinear optical e�ect related to electronic Raman and Rayleigh scattering 
processes. �e central quantity is the induced helicity-dependent magnetisation, which is given by

ω ω∆ =
σ σ± ±M K I c( ) ( ) / (1)ind IFE

where σ±KIFE  is the material, helicity and frequency-dependent IFE constant, c is the velocity of light and I is the 
laser intensity. �e calculated IFE constants are given in Fig. 2a. In addition to a strong wave-length dependence 
that increases the induced magnetisation for reduced photon energy, we also observe that, surprisingly, at the 
1.55-eV photon energy used in the experiments, the helicity dependent induced magnetisations do not have 
opposite sign, as it would be if we had started with a paramagnetic material. Instead, in a ferromagnetic material 
the induced magnetisation can have the same sign, but with a di�erent amplitude. To calculate the amount of total 
magnetisation induced, we multiply with the laser intensity. In our experiments, typical intensities range from 30 
to 100 GW/cm2, with peak intensities of up to 200 GW/cm2 before absorption (see methods). �e ab initio calcu-
lated values of = − .

σ− −K T0 033IFE
1 and of = − .

σ+ −K T0 016IFE
1 at ħω = 1.55 eV and a light field intensity of 

68 GW/cm2 result in an induced magnetisation of µ∆ = − .
σ−M 0 23ind B

 and µ∆ = − .
σ+M 0 11ind B

 per unit cell of 
FePt (using a moment of 3.24 µB per FePt pair). Compared with the saturation magnetisation, the size of 
laser-induced magnetisation is small: it is about −7.1% and −3.45% of the saturation magnetisation MS, respec-
tively. We further compute the helicity-dependent optical constants, n±, using n±)2 = εxx ± iεxy, where εij(ω) are 

Figure 2. Ab initio calculations and switching probabilities. (a) �e calculated inverse Faraday e�ect constant 
ω

σ±K ( )IFE  of FePt for di�erent photon energies ħω and helicities σ±. (b) Calculated imaginary part of the optical 
constant n for di�erent photon energies and helicities σ±. (c,d) Magnetisation switching in FePt, following a 
laser pulse triggering a sudden electron temperature rise with a peak electron temperature of about 1100 K but 
with a slight di�erence due to the MCD (i.e., Te(σ±)) at 1.55 eV of about 32 K, a peak inverse Faraday e�ect with 
a decay time of the IFE induced magnetisation ∆M of −7.1% and −3.45% of the saturation magnetisation MS of 
250 fs. �e parameters serve as an input for our magnetisation dynamics calculations using the LLB equation of 
motion. �ese calculations result in switching probabilities from ‘down’ to ‘up’, wdu, and ‘up’ to ‘up’, wuu, in c, 
taking into account both IFE and MCD contributions, and in (d) with the MCD only without IFE. �e scenario 
corresponds to an average power onto the sample of 11 mW (9.6 mJ/cm2 per pulse).
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elements of the ab initio calculated dielectric tensor. The imaginary part of n± that determines the 
helicity-dependent absorption is shown in Fig. 2b. Due to the di�erent absorptions caused by the MCD, the 
increase of the electron temperature is asymmetric by about 40 K at the peak electron temperature. We point out 
that both processes, the MCD and IFE are inherently present at the same time: the IFE stems from the same opti-
cal transitions as the MCD and there is an absorptive contribution to the IFE23. But in contrast to the IFE, the 
MCD cannot induce any magnetisation.

Our magnetisation dynamics calculations are based on the stochastic LLB24, 25 equation with a single 
macro-spin per grain. �e thermal input functions were calculated earlier within a multi-scale framework using 
an atomistic spin model that was based on an ab initio parameterization for FePt26. Speci�cally for FePt, the 
reduced electronic density of states near the Fermi energy causes heating of the electron system well above 1000 K, 
far above the Curie temperature, as shown earlier27. As a consequence, the FePt magnetisation approaches criti-
cality and the grains might lose their magnetisation information. �is temperature rise, however, is slightly asym-
metric because of a di�erence in the absorption of about ±2.5% for the two helicities. In addition to the sudden 
electron temperature rise, a small magnetisation is induced by the IFE, present as an asymmetric magnetisation 
contribution with a decay time which we assume slightly longer than the laser pulse itself (250 fs). All these 
quantities, which enter the magnetisation dynamics simulations are shown in the upper part of Fig. 2. Below, 
the resulting LLB dynamics is shown expressed as transition probabilities either to remain in the initial state 
(‘up’–‘up’) or to switch (‘down’–‘up’). �e excitation pulse with right circular polarisation always favours the up 
state (positive IFE). We calculate the dynamics for two scenarios, in Fig. 2c with IFE and MCD taken into account 
and, for comparison, in Fig. 2d with the MCD only. As a result we obtain di�erent transition probabilities, for 
both cases, two of which are su�cient for the following rate theory, named wuu, wdu, where wuu de�nes the prob-
ability for a transition from ‘up’ to ‘up’ and wdu from ‘down’ to ‘up’. �ese are employed in the rate model illus-
trated in Fig. 3a: because of the large anisotropy, one can assume in a good approximation a granular medium of 
decoupled, bistable FePt grains. �ey are either in ‘up’ or ‘down’ states with probabilities pu and pd in the ensemble. 
�e magnetisation is given by M = MS(T)(pu − pd). �e thermal stochastic response is captured by four di�erent 

Figure 3. Microscopic structure and rate model. (a) Di�erent switching probabilities lead to a �nal 
magnetisation of the FePt grain ensembles. �e transition rates wuu, wud, wdu, wdd determine the number of 
grains in the ‘up’ or ‘down’ states, described by the probabilities pu and pd, a�er each single shot. (b) Structure 
of the nanosize FePt grains: transmission electron micrograph showing the FePt grains on the seed layer. �e 
grains have a coercive �eld of a few Tesla at room temperature, keeping them robust to thermal �uctuations. (c) 
top: probability of being in an ‘up’ state ( pu) versus number of laser pulses starting from three di�erent initial 
states when the helicity-dependent thermal heating via the MCD and the non-thermal in�uence of the IFE are 
taken into account. c, bottom: probability of being in an ‘up’ state versus number of laser pulses starting from 
three di�erent initial states when only the MCD is taken into account, not the IFE. �e scenario corresponds to 
an average power onto the sample of 11 mW (9.6 mJ/cm2 per pulse).
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transition probabilities, wuu, wud, wdu, wdd. �ey are related by wuu + wdu = 1 and wdu + wdd = 1, so that only two 
transition probabilities are independent. �e transition probabilities are determined via time integration of the 
LLB equation by taking into account the e�ects of heating, the IFE and the MCD. �e nanoparticles cool su�-
ciently down between the pulses, so that we have blocked particles between events. Because of the total probabil-
ity being pu + pd = 1, it is su�cient to discuss pu only. A�er one laser pulse the equation for the new probability is:

= + = + −
+p p w p w w p w w( ) (2)u

i
u
i

uu d
i

du du u
i

uu du
1

We assume that the next event has identical transition probabilities. One can reformulate the combined probabil-
ities as a geometrical series, and assuming n independent laser pulses one �nds:

=
− −

− −
+ −p w

w w

w w
p w w

( ) 1

1
( )

(3)u
n

du
uu du

n

uu du
uu du

n0

hence, the magnetisation dynamics a�er successive laser pulses can be expressed in terms of the initial magne-
tisation p0 and two transition probabilities, which are shown in the lower part of Fig. 2. �e �nal state does not 
depend on the initial state but is simply given by the transition probabilities

→ ∞ =
−

− −
=

+
p n w

w w

w

w w
( )

1

1 (4)u du
uu du

du
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We now discuss the consequences of the equation derived. Without any switching asymmetries, and for very high 
peak electron temperatures, FePt demagnetizes, which means that all transition rates become equal, wuu = 0.5, 
wud = 0.5, and pu = 0.5, the demagnetised state. A low peak electron temperature, on the other hand, implies that 
no switching events occur, thus wuu = 1, wud = 0. If we now implement the switching asymmetries, the IFE causes 
that, depending on helicity, either ‘up’ or ‘down’ is favoured. Assuming that ‘up’ is favoured we �nd wuu > wud, 
but also wuu > wud = 1 − wuu. Similarly, MCD leads to di�erent degrees of heating of up- and down-magnetised 
FePt nanograins, so that the probabilities for switching are also asymmetric. �is means that, in our rate model, 
the in�uences of IFE and MCD are not qualitatively distinguishable. However, these e�ects are still di�erent, 
since only the IFE can reverse a magnetisation. �us quantitatively there will be di�erences in their e�ciency: 
the perfect writing in the case of MCD would be a heating above Curie (or blocking) temperature of the down 
grains (wdu = 0.5), resulting in a random orientation, and no e�ect on the up grains (wuu = 1), which would need 
about 5 to 10 pulses for writing. Conversely, for the perfect writing in the case of the IFE, we would need wdu = 1 
and wuu = 1, which is perfect writing in a single step. We thus predict from these two limiting cases that one-shot 
writing with a transition probability of 100% is only possible in the second case.

When the ab initio values are plugged in the Langevin spin dynamics simulation, the LLB-computed transition 
probabilities for the FePt nanograins we obtain are wuu = 0.86 and wdu = 0.38. Plugging these numbers into the 
rate theory, we �nd that writing and rewriting with consecutive pulses are indeed possible. �e resulting probabil-
ities for multiple pulses are presented in Fig. 3c. A�er about 10 laser pulses pu converges to about 0.87, regardless 
of whether one starts with a fully polarised system (‘up’ or ‘down’) or a demagnetised system. �is is in accord 
with our experimental �ndings.

To compare the predictions of our rate theory, HD-AOS switching experiments using a varying number of 
subsequent pulses for writing were performed. Our results are shown in Fig. 4: the top row shows magneto-optical 
images using polar MOKE a�er the switching with σ+ helicity whereas the row below shows those obtained with 
σ− for a varying number of pulses. �e average number of pulses per area was varied from 1 to 128, but only 
the images for up to 16 pulses are presented in Fig. 4. �e central darker contrast is due to the modi�cation and 
damage of the nanoparticles’ carbon coating, in the centre of highest laser �uence. Yet this helps us to follow the 
pulse train to visualize the average number of pulses over an area. With an increasing number of pulses (from 2 
to 16), from le� to right panels, the magneto-optical contrast changes bright or dark for σ+ and σ−, respectively, 
with the accumulation of laser shots. In the area where switching is observed (Fig. 4), the �uence compared to the 
centre �uence, is decreased by one half to below 15 mJ/cm2. �is �uence margin is well in accordance with our 
calculations. To analyse this quantitatively, similarly to the data in Fig. 1, we have taken the change of contrast 
from pro�les along a line perpendicular to the writing direction. For varying the number of pulses the contrast 
obtained is plotted for both helicities in the bottom panel. Our results support the claims of our rate theory for 
helicity-dependent AOS. Both the curves, experimental and theoretical calculation, show an accumulation of 
magnetisation with each pulse increasing to a saturation rate. 

Are there any alternative ways to transfer angular momentum? In our case even for a power of 7.5 mW, we 
�nd a photon number that is close to the number of atoms. Since a dominating part of the light is re�ected and 
unused, one could think of a mechanism - in analogy to the transfer of linear photon momentum - that would 
transfer photon angular momentum to the FePt sample. In fact, the direct transfer of angular momentum from 
circularly polarised light had been described already in the 1930ties for birefringent materials in transmission 
that modi�ed the polarisation of the beam and thus its angular momentum28, 29. Notably, for our �uence range 
the ratio of number of re�ected photons to atoms is almost one, which is di�erent from previous estimations30. In 
re�ecting isotropic materials, however, the reversed helicity from σ+ to σ− or vice versa upon re�ection changes 
together with the reversed traveling direction, so that for zero incidence angle no transfer of angular momentum 
of the photon is found31. For other geometries, speci�cally shaped metamaterial resonators or ring structures32, 
there could exist a transfer of photon angular momentum, which exerts an electrical torque on the electrons, 
leading to a mechanical torque on the whole sample due to electron-lattice coupling. �ere is however no direct 
torque exerted on the magnetisation and hence the spin system is una�ected. �e e�ciency of a microscopic 
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coupling, transferring the angular momentum from the lattice to the spin system, would determine, if such a 
mechanism is practicable at all (see Supplementary Materials). In the meantime, we became aware that also two 
other current publications discuss the in�uence of the IFE onto ultrafast dynamics. One recent work builds on 
the assumption that the IFE does not induce a magnetisation, but a magnetic �eld in the material33. However that 
would lead to a di�erent time-evolution of the laser-excited magnetization. Instead, in a ferromagnetic material 
the induced magnetisation can have the same sign, but with a di�erent amplitude as we have shown by our rig-
orous calculations. It is also of interest to understand how this IFE in�uenced magnetisation correlates with the 
observation of THz emission induced by the circular polarisation in the future34.

From our combined experimental and theoretical investigation, we can unravel thermal and non-thermal 
contributions to the HD-AOS of FePt nanoparticles. We �nd that a principal di�erence between MCD and IFE 
assisted switching is that helicity-dependent heating via the MCD always leads only to a demagnetisation sto-
chastic processes and therefore cannot switch the magnetisation deterministically. As a consequence, single shot 
will never be achieved with MCD. In contrast, the IFE provides an additional magnetisation contribution ∆M 
which could lead to a magnetisation reversal if at the same time the thermal demagnetisation leads to a nearly 
vanishing magnetisation. �us, only the IFE can reverse the nanoparticle’s magnetisation with a single laser shot. 
A full multiscale approach leading to HD-AOS is required for a quantitative determination of the asymmetry 
parameters. Our approach allows the prediction of parameters for 100% switching with one shot for all-optical 
plasmonic write heads with polarisation control, to focus the light by a plasmonic antenna, that may address a 
single ten nanometer diameter FePt grain for future spintronic applications in ultrafast magnetism35. Our work 
furthermore predicts how an optimization of the all-optical control of magnetism of FePt nanograins on fem-
tosecond timescales can be achieved, with the central �nding that optimized switching will be only possible by 
exploiting angular momentum induced via the IFE phenomenon.

Materials and Methods
Fabrication. FePt nanoparticles with L10 order and c-axis out-of-plane orientation were made by sputter 
deposition at elevated temperature18. �e FePt grains are isolated by a non-magnetic segregant material at the 
grain boundaries and have a carbon overcoat protection layer on top. Hysteresis curves for the granular recording 
media reveal µ0HS ~ 6T and coercive �eld µ0HC ~ 4T. �e sample was demagnetised by heating it to 750 K (well 
above the Tc = 700 K) and cooling it rapidly to room temperature with zero applied �eld; whereas a �eld strength 

Figure 4. Magnetisation switching experiments with consecutive single laser shots starting from demagnetised 
recording media. Saturation is reached between 15 to 120 pulses of writing. Dark centre shows some excess 
heating and a structural modi�cation of the FePt nanoparticles, which allows us to identify the pulse train 
distance. �e written area is indicated by the dashed white and black lines. Below the contrast extracted from 
line pro�les (not shown) is plotted as a function of the pulse number. �e lines given in the plot in the bottom 
panel are exponential functions with a decay of 4.4(3) pulses. �e average laser power was 5 mW onto the 
sample (30 mJ/cm2 per pulse).
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of 400 mT was applied perpendicular to the sample surface for saturating the out-of-plane anisotropy of the sam-
ple for having two di�erent initial states of magnetisation.

All-optical switching using ultrafast laser pulses. We have performed AOS using the output of a 
Ti:Sapphire Regenerative Ampli�er REGA 9040 (Coherent, Santa Clara, CA 95054, USA). �e REGA was seeded 
by a Vitara Ti:Sapphire mode-locked oscillator which works at a frequency of 80 MHz. �e pulse width (FWHM) 
a�er compressor REGA 9040 is measured to be 46 fs with a central wavelength of 800 nm. We determined about 
60fs at the sample. �e repetition rate of the laser a�er the ampli�er was 250 kHz for writing/switching with a 
large number of pulses but was tuned down to 20 kHz for switching with a single/few pulses with the help of a 
chopper. �e laser beam focused down to a beam waist of 17 µm in the �rst case and 23 µm in the second case. 
�e average number of pulses over the switching area was varied by moving the sample at di�erent speeds using 
a translation stage from Physik Instrumente GmbH.

Magneto-optical Kerr effect microscopy. Magneto-optical Kerr microscopy36 with polar sensitivity 
has been realized in an adapted polarised light microscope (Zeiss Axio Imager) that is adapted for magnetic 
domain observations. Imaging was performed with a 50x objective with a numerical aperture NA = 0.8 and 
an illumination wavelength of λ = 460 nm, resulting in a spatial resolution of approximately 300 nm. �e weak 
magneto-optical contrast was enhanced by background subtraction of images with reversed magneto-optical 
contrast by switching between two di�erent analyser angle settings in the microscope. E�ects of spatially inhomo-
geneous illumination were compensated through a 2nd order polynomial surface intensity correction.

Thermal modelling and internal light field. A two-temperature model was used to determine the elec-
tron temperature induced by absorption of the light pulse in the opaque FePt. As before, we chose a speci�c set 
of material parameters for FePt, which assured consistency with the demagnetisation dynamics observed in the 
time resolved MOKE and LLB modeling as described in ref. 27. In particular, the model was improved by using 
a Sommerfeld coe�cient of ɣe = 296.7 J/m3K2 derived ab initio from the density of states of FePt. A lattice heat 
capacity of Cph = 1.0·106 J/m3K, and an electron-phonon coupling constant of Ge-ph = 4.0·1017 W/m3K had to be 
used to describe the temperature pro�les. Our modelling shows that about 1.6% of the optical energy incident 
from outside is converted into heat in the FePt layer. In contrast, an optical transfer matrix calculation pre-
dicts a re�ection of 70% of the light incident on the carbon protective layer, and a subsequent absorption of the 
remaining light in the FePt. �is apparent contradiction can be explained by the granular structure of the FePt: 
assuming individual spherical particles, a rough estimate based on a Rayleigh-like absorption cross-section yields 
0.8% absorption, which is close to the 1.6% found. For the calculation of the induced magnetisation value by the 
IFE, the internal light �eld present in the FePt grains was used. �e average power onto the �lm of 1 mW equals 
6.17·109 W/cm2 local power density inside the FePt nanograins, using 21% of the total power and temporal shape 
of the 60 fs laser pulse, a diameter of 17 µm and the repetition rate of 250 kHz (that includes 30% transmitted light 
through the carbon layer and the pulse shape).

Magnetisation dynamics calculations. Our simulations are based on the stochastic LLB equation of 
motion24, 25 with a single macro-spin per grain. �e necessary temperature dependent equilibrium properties 
(saturation magnetisation, exchange sti�ness, parallel and perpendicular susceptibilities) were calculated earlier 
within a multi-scale framework37 based on an atomistic spin model for FePt that was parameterized via ab initio 
methods26. As grain volume we assume (5 nm)3 and we simulate ensembles of 4096 non-interacting grains. �e 
LLB dynamics describes the magnetic reaction to the thermal excitation (the electron temperature rise) and the 
IFE is considered as an additional contribution to the magnetisation component perpendicular to the �lm with 
a decay time of 250fs. A saturation magnetisation of 1050 kA/m was used. At any time during the simulation, 
transition probabilities can be calculated as relative number of grains where the perpendicular component of the 
magnetisation has switched sign. If we take a cell size with a = 3.853 10−10 m with two Fe atoms this corresponds 
then to 6.74 µB, or per unit cell with one Fe atom of 3.24 µB respectively. �e latter is used in the manuscript to 
calculate the induced magnetic moments from the percentages given.
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