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� ��

Abstract ��

We present a comprehensive investigation, via first"principles density functional theory ��

(DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major ��

iron oxide which has also a number of applications in electronics and spintronics. We ��

compare the thermodynamic stability and electronic structure among the different ��

surfaces terminations. Interestingly, we find that surfaces modified with point defects ��

and adatoms are close in surface energy and in the oxygen"rich and oxygen"poor ��

regimes can be more stable than bulk"like terminations. These surfaces show different 	�

surface chemistry and electronic structures as well as distinctive spin polarization 
�

features near the Fermi level with regard to those previously considered in the literature. ���

Our studies provide an atomic level insight for magnetite surfaces, which is a necessary ���

step to understanding their interfaces with organic layers in OLED and spintronic ���

devices. ���
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� ��

I. Introduction ��

Iron oxides, particularly magnetite (Fe3O4), have attracted interest in numerous fields ��

including environmental remediation,1 biophysics,2 electrochemistry,3 sensors,4 and ��

catalysis.5 Fe3O4 has also been exploited in organic light"emitting diodes (OLEDs). For ��

example, magnetite electrodes can prevent the short"circuit problems seen in ��

conventional top metallic electrodes as the diffusivity of the oxide species is much lower ��

than its metallic counterparts, and have been successfully deposited on top of tris (8"��

hydroxyquinoline) aluminum(III) (Alq3).
6 Moreover, the use of a thin Fe3O4 layer on 	�

indium"tin"oxide (ITO)7 and Ag8 anodes has been shown to enhance hole injection and 
�

thus reduce turn"on voltage and enhance luminance and current density in devices.  ���

A major potential application of this iron oxide is as an electrode in spintronic devices ���

where spin functionality is built into hybrid organic devices.9 While there have been ���

many materials considered so far as a source of spin injection, including ferromagnetic ���

(FM) metals,10 dilute magnetic semiconductors,11 and Heusler alloys,12 half"metallic ���

ferro" (or ferri") magnetic oxides13"14 can produce a very high magnetoresistive (MR) ���

response. In particular, advantages for using magnetite as an electrode in such devices ���

include its high degree of spin polarization at the Fermi level, high Curie temperature ���

(850 K), and the ability to grow high"quality films at room temperature,15 although device �	�

performance remains underwhelming.16 As the performance of these devices is dictated �
�

by the electronic structure immediately at the interface, a fundamental knowledge of the ���

surface chemistry is required. For a spin field"effect transistor, the spin– injection and ���

detection efficiencies are required to be 99.9995% to achieve the 105 on"off ratio ���

needed in mainstream applications.17 In the case of surface electronic states on a clean ���
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� ��

Fe3O4 (001) surface, from 65%18 to less than 5% of electron"spin polarization at the ��

Fermi"level has been observed.19"20 Thus, even small contributions to the electrode’s ��

electronic structure from defects are of essential importance. However, the study of ��

hybrid interfaces between magnetite and organic layers remains in its infancy. The ��

electronic structure of magnetite varies qualitatively depending on the surface ��

orientation and termination.21"22 Additional complexity is introduced as the control of the ��

stoichiometry is highly dependent on the preparation conditions.23  ��

Bulk magnetite is a ferrimagnet with a cubic inverse spinel structure, with a chemical 	�

formula often written as [Fe3+]A[Fe3+,Fe2+]BO4.  This formula indicates that the 
�

tetrahedral sites denoted as A are occupied by ferric ions while octahedral sites denoted ���

as B contain an equal number of ferric and ferrous ions. In magnetite, the tetrahedral ���

and octahedral sites form two magnetic sublattices with the spin moments on the A ���

sublattice antiparallel to those on the B sublattice. The proposed electronic structure of ���

the octahedral Fe2+ cations corresponds to a situation where an extra electron resides ���

in the lowest unoccupied �2g orbital located at the Fermi level. The high electrical ���

conductivity of 2 × 10� S/cm24 in the thermodynamic standard state can be understood ���

as resulting from rapid electron hopping processes between Fe2+ and Fe3+ ions. ���

However, upon cooling below ~121 K (�� ), magnetite undergoes a Verwey phase �	�

transition,25 with the electronic conductivity decreasing by two orders of magnitude and �
�

an associated opening of the optical gap.26 This transition is also accompanied by a ���

structural distortion from the room temperature cubic system.27"29 ���

Several surface faces of magnetite have been prepared by varying the preparation ���

conditions, including (100), (111), (110), (311), (331), and (511).30"34   Some of these ���
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� ��

facets have been thoroughly investigated previously, for example, the (100) surface, 30, 
��

35"36 which has recently been shown to have �√2 × √2
�45°"reconstructed B termination ��

with assistance of iron vacancies and interstitials in the subsurface.37 In the present ��

study, we have chosen to focus on the Fe3O4 (111) plane since: (i) it is the predominant ��

natural cleavage plane; and (ii) it is the plane compatible with the hematite (α�Fe2O3) ��

(0001) surface that is regarded thermodynamically as the most stable at ambient ��

conditions. However, α"Fe2O3 does not grow epitaxially on Fe3O4(111), the cause of ��

which remains a topic of study.38 Additionally, in comparison to the other natural growth 	�

faces of Fe3O4, Yu ������39 found a higher stability of the (111) surface within a DFT+� 
�

scheme. ���

Here, our goal is to present a comprehensive DFT investigation, using generalized ���

gradient approximation (GGA)+� approach, to describe the electronic and magnetic ���

features of room"temperature magnetite surfaces. This understanding represents a ���

necessary step prior to extending our calculations to interfaces with organic layers seen ���

in OLED and spintronic devices. The calculations presented here provide a thorough ���

analysis of the various magnetite (111) surface terminations in terms of thermodynamic ���

stabilities, surface electronic structures, and surface chemical properties. Our results ���

underline the possible stabilization of the Fe3O4 (111) surface via introduction of point �	�

defects and adatoms. Importantly, our work demonstrates that four modified surfaces �
�

not considered in earlier theoretical studies show comparable surface stabilities to bulk ���

truncated terminations but with significantly different surface chemistry and ���

electronic/magnetic features. They thus appear to be of critical importance when ���

developing atomistic models for magnetite interfaces. ���
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� ��

 ��

II. Methodology ��

a) Terminations examined ��

The magnetite crystal contains layers of either only iron cations or oxygen anions along ��

the [111] direction with the stacking sequence: O1"Feoct1"O2"Fetet2"Feoct2"Fetet1, as ��

displayed in Figure 1; this leads to six unique atomic planes, where we follow the ��

conventional notations to refer to each of the six bulk terminations.23 The four iron ��

terminations can present two different Fe sublayers; one is a dense monolayer (3/4ML) 	�

with all octahedrally coordinated Fe atoms (Feoct1) on the same plane, while the other 
�

sublayer contains three distinct low"density monolayers (1/4ML) involving both ���

octahedrally and tetrahedrally coordinated Fe atoms (Fetet2"Feoct2"Fetet1). Those two iron ���

sublayers are alternating between nearly close"packed oxygen stacking layers (1ML) ���

that present a slight buckling. As the number and charge of the iron and oxygen ions on ���

the surface differ, Fe3O4 (111) can be classified as a type"3 surface in the Tasker ���

classification scheme,40 with diverging electrostatic surface energy due to the presence ���

of a non"zero dipole moment on all the repeat units throughout the material. In order to ���

decrease the internal polarity perpendicular to the surface, major ionic relaxation and ���

electron redistribution as well as surface reconstruction are expected;22 in spite of �	�

multiple studies involving various surface science techniques and computational �
�

approaches, the atomistic details of the Fe3O4 (111) surface are still a matter of debate ���

as the exposed surface depends strongly on the preparation conditions and chemical ���

environment. As the spin"polarization, resistivity, and Verwey transition are dependent ���
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� ��

on the exact stoichiometry of thin films, development of an atomic"level description is ��

vital.  ��

 ��

Figure 1 (a) Top view and (b) side view of the symmetric Fe3O4 (111) slab model. The ��

stacking sequence, labeled O1/Feoct1/O2/Fetet2/Feoct2/Fetet1, is shown in panel (b). Fe atoms ��

are colored blue, and oxygen ions are colored red. ��

 ��

At this stage, it is useful to recall a number of previous observations regarding 	�

magnetite surfaces. Scanning tunneling microscopy (STM) study of Fe3O4 (111) 
�

annealed at 1173 K in 2×10"7 mbar O2 reported a coexisting surface termination ���

composed of a hexagonal array of 6.1 Å and a honeycomb pattern separated by 3.6 ���

Å.41 The authors assigned the second pattern to termination to 2/4 ML of Fe atoms ���

which is predicted to be more stable than the former, 3/4 ML capped by an O atom. In a ���

later paper, the same authors reexamined the surface structure of single crystal UHV"���

prepared Fe3O4 (111) and concluded that the surface mainly consists of Fetet1, Feoct2, ���
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� 	�

and ferryl terminations.42 Full"potential density functional theory calculations by Zhu �����

���43 show that the Feoct2 termination is energetically more favorable using a local ��

density approximation (LDA)+� approach; their result is consistent with that from �	 ��


�
�
� periodic Hartree"Fock (HF) calculations,44 although  HF bulk band"structure ��

calculations fail to reproduce the known antiferromagnetic alignment of magnetic ��

moments within the tetrahedral and octahedral sublattices.26  ��

STM and low"energy electron diffraction (LEED) intensity analysis at 1000 K in a 10"6 ��

mbar atmosphere indicates the Fe3O4 (111) surface forms an unreconstructed bulk 	�

termination that exposes ¼ ML Fetet1 atoms over a close"packed oxygen layer, with 
�

protrusions arranged in a hexagonal lattice with a 6 Å periodicity.45"46 Both Paul �����.47 ���

and Shimizu �����.48 report that the Fetet1 termination is routinely observed in naturally ���

grown single crystals at room temperature whereas Feoct2 appears only when the ���

sample is prepared under oxygen"poor conditions, for instance, when exposed to UHV ���

for a long period of time. This supports the results of GGA+� calculations by Grillo ������

���49 and Kiejna ��� ���50 where they found the two surfaces have comparable ���

thermodynamic stabilities at this limit. Another type of coexistence of surface ���

terminations has been observed by Berdunov ������51 Here the regular Fetet1 termination ���

consists of the superstructure with an oxygen"rich surface for crystalline Fe3O4 (111) �	�

possibly with oxygen vacancies after annealing in an oxygen partial pressure of 10"6  
�
�

mbar at 950 K and subsequently cooling to room temperature.  ���

An alternative to bulk termination reconstruction is the existence of defects, ���, ���

vacancies or adatoms, on the surface. Lennie ������41 have proposed that the irregular ���

texture observed in their STM images indicates the presence of defects in the surface ���
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� 
�

layer. One of the possible defects is an iron vacancy formed on Feoct1 termination to ��

stabilize the surface polarity. In the Feoct1 surface, a single VFe is expected to be more ��

stabilizing than two cationic vacancies as its surface charge (+5) from the remaining ��

octahedral ions is closer to half the absolute value of the subsurface charge ("4), which ��

fulfills the condition for the cancellation of the macroscopic dipole moments according to ��

classical electrostatics.22 Ferric iron vacancies have also been observed on Fetet1"��

terminated epitaxial Fe3O4 (111) films grown on Pt (111) substrates in an 10"6 mbar ��

oxygen partial pressure,46 as have inhomogeneities caused by FeOx agglomerates52 	�

and FeO1"x overlayers46"47 on the surface. In order to evaluate the impact of defects, in 
�

addition to four bulk terminations in the [111] direction (Fetet1, Feoct1, Feoct2, and O1), we ���

have chosen to study single cationic vacancies formed at the octahedrally"coordinated ���

iron layer (Feoct1) on the surface, as shown in Figure 2a. Iron vacancies in octahedral ���

sites are exceptionally noteworthy as they are associated with the oxidation redox ���

cycles of magnetite(100)53 in contrast to oxygen vacancies in other metal oxides.54 We ���

have also considered oxygen vacancies in the close"packed oxygen layer as proposed ���

in earlier STM studies.51  ���

Other possible surface modifications are attachments of foreign atoms or ions from the ���

residual atmosphere due to experimental conditions. Several STM studies have �	�

observed adsorbates above the atomic layer.47, 52 Importantly, high"resolution STM �
�

measurements show there is a distinctive step of 1.2±0.1Å above the regular Fetet1 ���

terminated surface, depicted in Figure 2b, suggesting that surface iron atoms may be ���

capped by a single oxygen atom at the atop position.42 A similar termination, with a ���

hydroxyl group on top of the surface terminating cations, has been proposed after water ���
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� ���

exposure.48, 55 The STM results indicate that dissociative water adsorption to form ��

surface hydroxyls takes place on a termination of Fe3O4 (111) thought to contain a 1/4 ��

monolayer of Fe3+ ions on top of a close"packed oxygen monolayer.56 To evaluate this ��

class of defects, we have modified the Fetet1 termination with two adsorbates, an oxygen ��

atom and a hydroxyl group. Thus, in total, we will consider four defect"containing ��

surface terminations; (i) iron vacancy in Feoct1 (VFe, Figure 2a); (ii) oxygen vacancy in O1 ��

(VO); (iii) oxygen adatom on Fetet1 (ferryl, Figure 2b); and (iv) hydroxyl adsorbate on the ��

Fetet1 termination. 	�

 
�

Figure 2 (a) Top view of the Feoct1 termination with one Fe vacancy. The vacant site is ���

indicated with an arrow. (b) Side view of the Fetet1 termination with ferryl group formation ���

upon attachment of an additional oxygen atom, indicated with an arrow, on the surface. ���

Fe atoms are colored blue, and oxygen ions are colored red. ���

 
���

b) Computational details ���

First"principles calculations have been performed using spin"polarized DFT as ���

implemented in the Vienna �	� 
�
�
� Simulation Package (VASP).57"58 The ionic ���

potentials are described by the projector augmented wave (PAW) pseudopotential59 �	�
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� ���

with valence configurations of 3�74�1 and 2�22�4 for Fe and O atoms, respectively. The ��

cutoff energy for the plane"wave basis set was chosen to be 550 eV.  ��

On the basis of our previous theoretical study on the full electronic structure of cubic ��

Fe3O4,
60 we take the DFT+� approach61 to modify the intra"atomic Coulomb interaction ��

among strongly correlated Fe 3� electrons. We consider the GGA exchange"correlation ��

functional of Perdew, Burke, and Ernzerhof (PBE).62"63  The DFT+� method used here ��

is a simplified rotationally invariant formulation by Dudarev ��� ����� where the on"site ��

Coulomb parameter, �, and exchange parameter, �,� are combined into a single 	�

parameter, U����≡ � – �. We applied U��� = 4 eV for Fe 3� electrons in the calculations. 
�

Brillouin"zone integration was performed on Monkhorst"Pack grids65 with a 7 × 7 × 1 ���

mesh where a Gaussian"smearing approach with σ=0.05 eV is used during the ionic ���

optimization, while total energies and densities of states (DOS) were calculated using ���

the tetrahedron method with Blöch corrections.66 Atomic charges were estimated within ���

the Bader scheme using converged FFT grids.67"68 All of the vacancies and adatoms are ���

uncharged. Bulk properties for Fe3O4 were calculated using a unit cell containing 24 Fe ���

and 32 O atoms which was fully relaxed while preserving cubic symmetry. We found ���

that PBE+� successfully reproduced the electronic and magnetic properties of the bulk ���

Fe3O4 and describe the results from this methodology throughout our discussion. As the �	�

energies calculated using different values of � cannot be compared, the value for ���
�

must be transferrable amongst both the different multivalent oxides and metallic ���

systems.  An alternative to the empirical � term is the use of hybrid functionals which ���

may provide a better treatment of exchange and correlation effects in both extended as ���

well as localized states. In our previous work on bulk magnetite,60 we compared the ���
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� ���

PBE+� results to those of both a conventional exchange correlation functional, PBE, ��

and a modified version of the range"separated hybrid functional, HSE06.69"70 As the ��

optimal amount of Hartree"Fock (HF) exchange is system dependent, we utilized ��

HSE(15%), where the HF exchange mixing coefficient, a, was taken to be 0.15 and ω, ��

the parameter that defines the partitioning between the short" and long"range exchange ��

components, was 0.11 bohr−1. A comparison to these other DFT approaches is ��

presented in the supporting information (SI). The effect of dispersion corrections was ��

examined for a subset of the systems studied, and they introduce only extremely small 	�

changes in the electronic structure. 
�

A well"established tool to investigate the electronic structure of surfaces and interfaces ���

at the DFT level is the repeated slab approach that allows one to take easy account of ���

the two"dimensional periodic character of such systems. The surface has been modeled ���

using a symmetric slab with of a (1 × 1) unit cell which is based on cubic"phase Fe3O4 ���

(a= 8.488 Å). The slabs are separated by a vacuum space of approximately 20 Å.  A top ���

view and side view of the stacking sequence are shown in Figure 1. The optimized ���

lattice vector within PBE+�60 are slightly overestimated compared to the experimental ���

value (a=8.396).71  PBE+� calculations provide a net magnetic moment of 3.99 ZB/f.u. ���

compared to the experimental value of 4.05 ZB/f.u..72 In order to maintain bulk behavior �	�

below the surface, the central layers were kept fixed at the bulk crystal positions during �
�

the structural optimization while the outermost six layers on both sides of the slab were ���

allowed to relax. The ion positions were optimized using a conjugate"gradient algorithm ���

until the Hellmann"Feynman forces were less than 0.01 eV/Å and energy convergence ���

was reached within 10"5 eV/atom. An antiferromagnetic ordering, where the sign of the ���
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� ���

Feoct atoms are antiparallel to those on the Fetet atoms, was taken as the initial magnetic ��

configuration and allowed to relax for all the surface models. The surface energy, ��

atomic charge, magnetic moment, and relaxation pattern were analyzed using a series ��

of Fetet1 terminations with different stoichiometry by changing the slab thickness and the ��

results are shown in Table S1 in SI. The data presented in the text are for slabs ��

consisting of more than 17 layers where these surface characteristics have converged.  ��

c) Thermodynamic stability of surface terminations ��

The stability of various surface terminations of iron oxides can be determined using a 	�

simple thermodynamic approach. If the surface system is modeled in DFT by a slab with 
�

two equivalent surfaces, the surface energy can be obtained by the following equation ���

where it is assumed that the Gibbs free energy (� ) can be approximated by the ���

calculated internal energy (E): ���

 � = �
�� (����� − �����)   (1) ���

In Equation 1, � denotes the surface energy,   the surface area of the unit cell, ����� the ���

total energy of the slab, and ����� the total energy of the bulk system with the same ���

number of atoms as in the slab: ����� = !"#$"# + !&$&; here, ��� and �� represent the ���

numbers of each type of atoms while�Z�� and Z� denote the chemical potentials of a Fe ���

atom and an O atom. When there is enough bulk material to act as a thermodynamic �	�

reservoir, the potentials of the components are no longer independent but are related by �
�

the condition of thermal equilibrium in bulk Fe3O4: ���

 3$"# + 	4$& =	$"#)&*  (2) ���
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� ���

where $"#)&* is the DFT energy of bulk Fe3O4 per formula unit. This constraint can be ��

used to eliminate the dependence of the surface energy on Z��. In this approximation ��

and at equilibrium, the surface energy can be expressed as a function of the oxygen ��

chemical potential as: ��

 � = �
�� [����� −

�
,!"#$"#)&* + -.,!"# − !&/ $&]  (3) ��

In this way, it is possible to determine the relative stabilities of slabs with different ��

stoichiometries.  ��

The oxygen chemical potential varies with its partial pressure (1) and temperature (�): 	�

$&(�, 1) = 	$&(�, 1°) + 1/245� ln -88°/    (4) 
�

where 1°  is the pressure in the reference state and 45 , the Boltzmann constant. As ���

experimental conditions have a considerable impact on the oxygen chemical potential, it ���

is necessary to evaluate the surface energies for various surface terminations as a ���

function of the chemical potential of oxygen to determine the surface stability in a given ���

environment. For example, the oxygen chemical potential at 1 =10"6 mbar and � =900 K, ���

one of the typical conditions for annealing of magnetite,23 is calculated to be "1.78 eV ���

with the $&(�, 1) reference state defined as the total energy of molecular oxygen at the ���

standard pressure, 1°=1 bar.73 It is useful to restrict the range of oxygen chemical ���

potentials by considering the limiting conditions. The oxygen"rich limit can be defined as �	�

the chemical state in which molecular oxygen starts to condense on the surface. By �
�
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� ���

assuming that such condensed oxygen is in equilibrium with gas"phase oxygen, the ��

upper limit of the oxygen chemical potential becomes: ��

$&(�, 1) = �
��&9     (5)  ��

where �&9 is the DFT energy of an O2 molecule. ��

At the oxygen"poor limit, reduction of the oxide from magnetite to wüstite (FeO) and ��

further to metallic iron occurs. Thus, a reasonable minimum $&  corresponds to the ��

condition where Fe crystallizes and oxygen separates onto the surface according to the ��

equilibrium of bulk magnetite, that is:  	�

$& = �
. ($"#)&* − 3$"#,����)                    (6) 
�

where $"#,���� is the DFT"calculated chemical potential of metallic Fe.  ���

III. Results and Discussion ���

We have selectively calculated four bulk terminations in the [111] direction; Fetet1, Feoct1, ���

O1, Feoct2, omitting the Fetet2 and O2 surfaces that were reported to be highly unstable.31 ���

While it must be emphasized that the bulk"terminations have been examined ���

previously,49"50 it is important to include a breif discussion here in order to illustrate the ���

large differences between these surfaces and the four modified surfaces incorporating ���

surface defects (iron vacancy in Feoct1, oxygen vacancy in O1; oxygen adatom (ferryl) ���

and hydroxyl adsorbate on the bulk Fetet1 termination). Below, we will turn successively �	�

to a discussion of: surface stability, ionic relaxation, surface electronic structure and �
�

chemistry, and spin polarization near the Fermi level for each of these surface models.  ���
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� ���

 ��

a) Surface stability ��

Using Equation 3, we have evaluated the relative stabilities of the surface models. The ��

results are plotted as a function of oxygen partial pressure in Figure 3 for the PBE+� ��

functional. Previous theoretical studies containing only bulk terminations have ��

concluded that the Fetet1 termination has the lowest surface energy in the oxygen"rich ��

regime, while the Feoct2 and Feoct1 surfaces are competitive in the oxygen"poor regime.39, 
��

49"50, 74 The defect"containing surfaces that we examine here are viable in comparison to 	�

the bulk"like terminations. For example, as both the VO and ferryl"terminated surfaces 
�

are within 100 meV/Å2 (1.60 J/m2) of the Fetet1 surface near the oxygen"rich limit, ���

specific sample preparation methods or environmental conditions may lead to the ���

observation of these oxygen"rich surfaces. The ferryl termination is more stable than the ���

formally oxygen"terminated surfaces over most of the pressure range. Experimental ���

observations by Berdunov ��� ��.51 indicate the presence of such oxygen"terminated ���

surfaces, which are higher in surface energy than the defect"containing surfaces. This is ���

in agreement with the calculated large binding energy of an oxygen atom located on a ���

bridge position between Fetet1 and Feoct2 atoms by Santos"Carballal �����.74 We note that ���

there is a well"known overbinding problem75 in small molecules within DFT (and �	�

DFT+�), which can lead to an inaccurate energy for molecular oxygen. If we replace the �
�

calculated binding energy of oxygen gas with the experimental value, 5.23 eV76 (�5,#:8.), ���

the chemical potential limit can be rewritten as $&9,#:8 = �5,#:8. + 2$&,<"=. This equates ���

to shifting the oxygen"rich limit to a more positive value by 0.4 eV, shown as the ���

rightmost vertical line in Figure 3. This is smaller than the 1.36 eV shift determined by ���
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� ���

differences in experimental and calculated formation energies over a series of oxides, ��

which was used previously.77 At this extreme, the ferryl termination becomes ��

isoenergetic with the Fetet1 termination.  ��

In the oxygen"poor limit, the Feoct2 termination is shown to be more stable than the Fetet1 ��

termination, as suggested before.41, 47"48 The Feoct1 termination becomes more ��

energetically favored than the Feoct2 termination only at extremely low oxygen chemical ��

potentials, beyond the estimated oxygen"poor limit, because of the higher density of Fe ��

ions on the Feoct1 surface. However, missing Fe atoms on this termination, labeled as 	�

VFe, moderately stabilize the surface, leading to competitive surface energies with the 
�

Feoct2 termination over the entire range of oxygen chemical potentials.  ���

The sensitivity of our results to choice of functional is presented in Figure S1 of the SI. ���

Despite the limitation of using a constant empirical � correction for both the oxide and ���

the metallic species, this method reproduces the enthalpy of formation for binary"���

manganese oxides within 4%.78 Additional quantitative accuracy could be obtained by ���

utilizing a method systematically combining GGA and GGA+� energies (however, ���

further experimental data would then be required79). In general, such additional ���

numerical accuracy is not needed as the surface stabilities using different functionals ���

show the same ordering as the PBE+� method but with ������� stabilization of the ferryl �	�

termination. The hydroxyl surface is also dependent on the hydrogen (or water) partial �
�

pressure and is not plotted in Figure 3. However, the observation of hydroxyl groups on ���

epitaxial Fe3O4 (001) surfaces80 indicate that this termination can appear not only in ���

humid conditions,81 but is competitive in ultrahigh"vacuum environments. ���
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� �	�

 ��

Figure 3 PBE+� derived surface energies of the different terminations plotted against the ��

oxygen chemical potential. The vertical black lines indicate the allowed range of the ��

chemical potential. The bottom two horizontal axes indicate corresponding oxygen ��

pressure in log scale at 300 K and 900 K, respectively (>°= 1 bar). ��

 ��

The modified surfaces presented above are high in defect density, with one defect or ��

adlayer in each unit cell. The stability of the ferryl surface with a lower defect coverage 	�

on the Fetet1 termination (Θ = 1/4) is shown in Figure 4.  This approach has previously 
�

been used to study mixed terminations of hematite surfaces.82 The resulting mixed ���

surface is nearly equal in energy to the Fetet1 termination over much of the potential ���

range, and the point at which it becomes lower in energy shifts further toward lower ���

oxygen chemical potentials. In a macroscopic surface, these defects may be present, ���

even if higher in energy in a small unit cell. Given the stringent requirements for spin" ���

injection and detection in devices, contributions from these slightly higher"energy ���

surfaces may determine the overall success of a device. ���
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� �
�

 ��

Figure 4 Surface free energy change as a function of the oxygen chemical potential for ��

two different ferryl concentrations on the surface: 25% (dotted black) and 100%. (solid ��

black) The blue line indicates Fetet1 termination. The arrows in inset images correspond ��

to the positions where oxygen adatoms are attached. ��

 ��

b) Ionic relaxation ��

As described above, (111) surfaces created from cleavage of bulk cubic magnetite are 	�

unstable as two inequivalent layers of opposite charge densities alternate perpendicular 
�

to the surface. A high dipole moment, 29.5 D, is estimated within the repeat unit of six ���

distinct layers when using formal charges and the bulk interlayer spacing.22 One pattern ���

of stabilization of these surfaces is through significant changes in the nuclear positions ���

of the atoms comprising the surface layers.  ���

The interlayer relaxations are determined mostly by a response to the large dipole ���

moments of alternating polar layers in the surface layers. The relaxations between ���
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� ���

adjacent layers (ij) of the outmost six layers as a percentage (∆ij) of the bulk interlayer ��

distance are shown in Figure 5 for terminations based on (a) Fetet1, (b) O1, and (c) Feoct1. ��

For instance, in the Fetet1 termination, the surface Fetet1 atom shows a strong inward ��

relaxation and the interlayer spacing between the surface layer and subsurface layer ��

decreases by 37%. Further reduction in polarity is achieved by a 22% compression in ��

the O1" Feoct1 distance, which fully stabilizes the surface as there are progressively ��

smaller changes in geometries for the rest of the slab. The overall relaxation of the ��

Fetet1 termination is consistent with a previous LEED analysis.45 For the ferryl and 	�

hydroxyl surfaces, the surface Fetet atom retains its bulk"like tetrahedral coordination by 
�

binding to the oxygen adatom; also, the electrostatic attraction of a surface Fe ion to the ���

oxygen atoms in the sublayer is balanced by the adatom. The newly formed Fe=O and ���

Fe"O bonds are estimated to be 1.62 Å and 1.77 Å, which are consistent with the 1.5 Å"���

height adsorbates reported in STM studies.52 Hence, the Fetet1"O1 distance decreases ���

by 17% and 9% for the ferryl and hydroxyl surfaces. However, the relaxations in the ���

next layers in the slab are now in the opposite direction than in the Fetet1 slab, with the ���

Feoct1"O2 distance being compressed and the O2"Fetet2 distance slightly expanding. ���
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� ���

 ��

Figure 5. Surface relaxations in the outmost six layers given as a percentage (∆ij) of the ��

bulk interlayer distances between two adjacent surface planes (i) and (j) projected onto ��

the c axis for the seven terminations of Fe3O4 (111).  Terminations based on (a) Fetet1, (b) ��

O1, and (c) Feoct1 are shown in separate panels. The bulk interlayer distances between ��

Feoct1/O, Fetet/O, and Fetet/Feoct2 are 1.19 Å, 0.64 Å, and 0.61Å, respectively.  ��

There are only moderate changes in interlayer spacing in the O1 surface, and these are ��

smaller in the VO surface due to the reduced surface charge. The introduction of a Fe 	�

vacancy in the Feoct1 termination (VFe), shown in 5c, changes the local geometries at the 
�

surface, although in a different fashion from the bulk Feoct1 termination. In the VFe ���

termination, one of the four oxygen atoms in the subsurface ends up migrating above ���
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� ���

the iron surface due to the vacated volume and a strong electrostatic attraction between ��

two outermost layers. As a consequence, the surface Feoct1 atoms bind more strongly to ��

the surrounding oxygen atoms with a reduced bond length, 1.88 Å, compared to the ��

bond in the Feoct1 termination, 1.93 Å. Moreover, three remaining oxygen atoms in the ��

O2 layer are allowed to fairly interact with the underneath iron layers, Fetet2 and Feoct2, ��

since the protruding oxygen exclusively forms ionic bonds with the two Fe atoms on the ��

surface.  ��

c) Surface electronic structure and chemistry 	�

Since the surfaces are created by cleaving ionic bonds, significant charge redistribution 
�

occurs due to the appearance of dangling bonds. In this study, density of states (DOS), ���

Bader charge, net magnetic moment, and work function are calculated to describe the ���

related stabilization mechanism upon surface cleavage and change in surface chemistry. ���

 ���

Density of states ���

The DOS projected on Feoct, Fetet, and O atoms for near"surface (3"4) layers of each ���

termination are displayed in Figure 6. The electronic structure of bulk Fe3O4 in a cubic ���

@A3BC phase, shown in the SI (Figure S2), can be described as a half"metallic oxide, ���

which is consistent with the crystal"field splitting explanation for the octahedral Fe ions �	�

that the fivefold � levels separate into three degenerate �2g levels and two degenerate �g �
�

levels.60 The PDOS for the central layers of the slab retain this electronic structure. ���

The PDOS for the surface layers in the Fetet1 termination, plotted in Figure 6a, show that ���

the minority (spin"down) Fe �2g states from the octahedral sites are no longer present at ���
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� ���

or near the Fermi level and there appears a surface state related to tetrahedral"site iron ��

in the middle of the majority spin (spin"up) gap. The partial charge density for this state ��

is shown in Figure 6d, and demonstrates that the 3� orbitals in the direction of reduced ��

coordination, 
���, the [111] direction, are more stabilized and now lie below the Fermi ��

level. In general, surface truncation of iron"terminated surfaces promotes a further ��

splitting within Fetet1 �g and �2g orbitals at the surface as the symmetry is lowered ��

because of missing apical oxygen.83 Since the Fetet1 termination has a positively ��

charged surface, the top Fetet1 layer obtains more electrons through electronic 	�

redistribution to reduce the polarity, with the bottom of the conduction band becoming 
�

occupied. The ferryl termination, where the Fetet1 surface has an additional oxygen atom ���

bound to the exposed iron atom, shows a different DOS with respect to the Fetet1 ���

surface; the ferryl group comprises a set of states near the Fermi level and the surface ���

state related to tetrahedral"site iron no longer appears in the spin"up gap (the PDOS of ���

adsorbate oxygen is colored in magenta in Figure 6). In the hydroxyl termination these ���

hybridized states are stabilized and now located in the same region as the surface ���

oxygen atoms. In the O1 subsurface, oxygen 2�"derived states still have a strong ���

dispersion between "1 eV to "6 eV. Compared to bulk states, they are shifted to higher ���

binding energy by ~ 1 eV in response to the lowered coordination upon surface �	�

cleavage. �
�
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� ���

 ��

Figure 6. Electronic densities of states of near/surface (3/4) layers for the surfaces: (a) ��

Fetet1,(b) ferryl, and (c) hydroxyl terminations from PBE+� calculations from /8 eV below ��

to +2 eV above the Fermi level. The Fermi level (= zero of energy, see text) is indicated ��

with a dashed line. Partial charge densities of the surface states marked with short ��

arrows for (d) Fetet1 and (e) ferryl terminations. PDOS from Fetet1 atoms are blue, Feoct ��

atoms are green and lattice oxygen atoms are red. ��

  	�

In the Feoct1 termination with a vacancy, VFe, there are no longer octahedral states 
�

observed around the Fermi energy in contrast to Feoct2 (see Figure S2 in SI) although ���

the two models have the same Fe coverage over the oxygen sublayer, 
���, ½ ML. ���

Instead, the electrons are redistributed over the surface in a fashion similar to the Feoct1 ���

termination. In both cases, the Fe 3� states on octahedral sites are shifted to lower ���

energy, leading to a reduction of these Fe atoms to stabilize the positively charged ���

outmost layer. The occupied Fe 3� minority spin states (between "1 eV and "0.5 eV) are ���

more populated in the bulk"terminated Feoct1 surface. Despite overall similarity in the ���

PDOS between Feoct1 and VFe, the states just below the Fermi"level (marked with ���

arrows c and d in Figure 7) are qualitatively different. In the Feoct1 surface the charge is �	�
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� ���

delocalized over the first layer of the surface, whereas the iron vacancy leads to the ��

state becoming more localized on each Fe atom on the surface.  ��

 ��

Figure 7. Electronic densities of states of near/surface (3/4) layers for the surfaces: (a) ��

Feoct1,(b) and (b) VFe terminations from PBE+� calculations from /8 eV below to +2 eV ��

above the Fermi level. The Fermi level (= zero of energy, see text) is indicated with a ��

dashed line. Partial charge densities of the surface states marked with short arrows for (c) ��

Feoct1 and (d) VFe terminations. PDOS from Fetet1 atoms are blue, Feoct atoms are green 	�

and lattice oxygen atoms are red. 
�

 ���

For the O1 termination, the surface also tends to be oxidized due to the highly ���

negatively charged surface layer. Hence, the O 2� states which comprise the valence ���

band in the bulk shift above the Fermi level, leading some of these states to become ���

unoccupied upon cleavage. The VO surface shows the similar results. The DOS for ���

these surfaces are shown in the section S5 of SI. ���

 ���

Bader charge and net magnetic moment ���

The ionic and electronic relaxations described above can also be understood through �	�

changes in Bader charge and magnetic moment on each of the atoms when going from �
�

bulk to the surface, as presented in Table 1. The atomic charges for the bulk cubic ���
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� ���

system show that all the equivalent octahedral ions with a formal oxidation state of +2.5 ��

have a Bader charge of +1.72 |e| and the tetrahedral ferric sites, a charge of +1.86 |e|. ��

The oxygen ions each have a charge of "1.33 |e|. In general, the charges of both Fe and ��

O tend to decrease in absolute values compared to the bulk due to reduced ��

coordination of surface atoms and electronic redistribution. We present the results of ��

four terminations in Table 1. The hydroxyl surface has a similar charge and spin ��

distribution as the ferryl surface. As with the surface relaxations and DOS, there is little ��

change between the O1 and VO terminations.  	�

Table 1. Average change in atomic charge and magnetization (per atom) in the top layers 
�

for four terminations. All the values listed represent the changes from the values for the ���

equivalent atoms in the bulk system. Net magnetic moment for bulk Feoct, Fetet, and O ���

atom are 3.96/3.98, 4.09, and 0.03 KB, respectively. The experimental magnetic moment ���

for bulk Fetet
 is 3.82 DE.84 aValues from the PW91+� (U��� = 3.61 eV) calculations of ref. 50. ���

Fetet1  ferryl 
layer ∆q (e) ∆Z (ZB)  layer ∆q (e) ∆Z (ZB) 

   
 O "0.66 "0.12 

Fetet1 +0.41 "0.54("0.53a)  Fetet1 "0.04 "0.83 
O1 "0.07 +0.22  O1 "0.10 +0.21 

Feoct1 "0.19 +0.22  Feoct1 "0.20 +0.22 
O2 "0.04 +0.04  O2 "0.04 +0.04 

       
Feoct1  VFe 

layer ∆q (e) ∆Z (ZB)  layer ∆q (e) ∆Z (ZB) 
Feoct1 +0.60 "0.46  Feoct1 +0.35 "0.37 

O2 +0.03 "0.01  O2 "0.03 "0.05 
Fetet2 +0.02 "0.04  Fetet2 +0.05 "0.04 
Feoct2 +0.24 "0.30  Feoct2 +0.25 "0.33 

 ���

Due to the dangling bonds, the top layer in the Fetet1 termination gains 0.41 electrons, ���

as anticipated from the change in the DOS that the originally unoccupied conduction ���

band of the spin"up channel is slightly shifted below the Fermi level. The oxygen ions in ���

the second layer also help reduction of the surface dipole by losing 0.07 electrons to be �	�
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� ���

less negative, which contributes to further stabilization. Meanwhile, each of the three ��

iron ions in the third layer becomes more positive by 0.19 |e|, which alleviates the ��

overall negatively charged nature of the surface and subsurface. In the ferryl termination,���


���, when adding an atop oxygen to the exposed Fetet1 atom, the charge on the Fetet1 ��

atoms remain close to the bulk value. Just as in the Fetet1 surface, there is an increase ��

in positive charge character for Feoct1 in the third layer.  ��

In the Feoct1 and VFe terminations, there are essentially more electrons residing on the ��

topmost layer than in the bulk system. These electrons reduce the positive charge on 	�

the iron atoms on the surface, although the O2 sublayer preserves its bulk charge state. 
�

Notably, in the VFe termination, the cationic vacancy brings about a lesser electron gain ���

to the remaining two surface Feoct1 atoms.  ���

The variations in magnetic moment of the surface atoms are consistent with the ���

changes in atomic charge, especially for the metal"terminated surfaces. For the ferryl ���

group, there is a decrease in magnetic moment of "0.83 $5 for the Fetet1 atom despite a ���

negligible variation in atomic charge, 0.04 e; this is the result of combined effects due to ���

depopulation of the originally occupied spin"up Fetet 3� orbitals in the valence band and ���

population of the previously unoccupied spin"down Fetet 3� orbitals, which is related to ���

bonding with the atop oxygen atom. �	�

In the top two iron layers of Feoct2 termination, see Table S3, the Feoct atoms gain �
�

electron density in the bulk unoccupied minority spin (spin"down) bands, which leads to ���

a magnetic moment decrease. This is also the case for the Fetet1, Feoct1, and VFe ���
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� �	�

terminations; this result is reasonable as the Fe 3� orbitals in the minority spin states ��

are now more partially occupied while the majority bands stay fully occupied.  ��

 ��

Work function ��

The work function is one of the critical surface parameters and is illustrative of the ��

charge distribution over the surface of a material. The work function, Φ, of a surface in ��

the DFT"slab framework is defined as:  ��

���� Φ = �G�H − �I      (7) 	�

where �G�H  is the plane"averaged electrostatic potential energy of an electron in the 
�

vacuum region away from the slab surface at the distance where the potential energy ���

has reached its asymptotic value, and �I denotes the Fermi energy of the total system.  ���

Table 2 collects the work functions for each surface. The calculated work function of ���

5.76 eV for the model Fetet1 termination is 0.24 eV higher than the experimentally ���

measured value, 5.52 eV, for the same surface.23 The value that we calculate for the ���

Fetet1 surface is 0.28 eV higher than the values from PW91+� (U��� = 3.61 eV) ���

calculations in ref. 50 and 0.15 eV and 0.75 eV lower than the O1 and Feoct2 value, ���

respectively. The other three iron"terminated surfaces have lower work functions by up ���

to 2.61 eV whereas the oxygen"terminated surfaces, ferryl and O1, show a narrow range �	�

(0.33 eV) of work functions. Thus, there is a large difference between the calculated �
�

work functions of the iron" and oxygen"terminated surfaces, which can be explained on ���

the basis of simple electrostatics: Magnetite has a dipole moment in the [111] direction ���
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� �
�

generated by alternating cation layers and anion layers; when the termination ends with ��

a negatively charged layer, the corresponding potential increases at the surface, which ��

gives rise to a relatively high vacuum level, while positively top charged layers give rise ��

to the opposite effect. ��

Table 2.  Work function is calculated for the eight surface terminations. aValue from the ��

PW91+� (U��� = 3.61 eV) calculations of ref. 50. ��

Surface Termination 
Work function 

(eV) 
Feoct1 

3/4ML Feoct 3.91 
VFe 

2/4ML Feoct 4.03 
Feoct2 

2/4ML (Feoct+Fetet) 3.15 (3.90)a 
Fetet1 

1/4ML Fetet 5.76 (5.48)a 
hydroxyl 1/4ML Fetet+OH 5.80 

ferryl 1/4ML Fetet+O 7.61 
VO 3/4ML O 7.33 
O1 1ML O 7.94 (8.09)a 

Exp.23 1/4ML Fetet 5.52 
 ��

The work function decreases by 2.6 eV upon an increase in iron density over the 	�

oxygen layer from 1/4 ML (Fetet1) to 2/4 ML (Feoct2). When introducing a Fe cation 
�

vacancy on the Feoct1 termination, the work function increases by +0.11 eV compared to ���

the bulk"terminated Feoct1 surface (3.91 eV). This small change in work function ���

between Feoct1 and VFe can be attributed to the charge states of the Feoct atoms ���

becoming more positive, from +1.12 |e| to +1.37 |e|, in the presence of the defect. The ���

work function for Feoct2 is also smaller than the work function of the VFe termination with ���

exactly the same iron coverage at the surface. Given that the exposed surface cations ���

of Feoct2 (+1.33 |e|) are as positive as in the VFe surface, the oxygen atom above the VFe ���
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� ���

surface plays a substantial role in determining the work function difference of 0.88 eV ��

between the two surfaces.  ��

In the ferryl termination, the negatively charged oxygen atoms on the top of the Fe ��

atoms bring about a substantial increase of 1.85 eV in work function compared to the ��

bulk"terminated Fetet1 surface. Despite having a significantly less dense oxygen layer, ��

the work function of the ferryl termination then is comparable to that of the oxygen"��

terminated surfaces, O1 and VO. An explanation for this behavior is the bond dipole ��

formed between iron and oxygen, which leads to a large dipole component in the 	�

direction perpendicular to the surface. In the bulk oxygen terminations, the Fe"O bonds 
�

are aligned at an angle to the surface, reducing the component perpendicular to the ���

surface. Thus, the atop oxygen on Fetet1 plays a significant role in considerably ���

increasing the work function despite having a smaller negative charge than the oxygen ���

atoms on other terminations. This impact is diminished by the additional hydrogen in the ���

hydroxyl group. Finally, we note that while there is some quantitative variation ���

depending on the choice of methodology (shown in Figure S3), ���, the work function ���

varies up to 1.53 eV for the O1 surface between PBE and HSE(15%), however, the ���

overall trends upon terminations are similar compared to the results from PBE+�. ���

d) Surface chemistry �	�

As a consequence of atomic displacements and charge redistributions, the surfaces can �
�

have quite different chemistries compared to those predicted from the bulk properties; in ���

addition, defect"modified surfaces can be different than bulk"terminated surfaces.  An ���

example is depicted in Figure 8, which illustrates the electrostatic potential profile ���

measured at 1.3 Å, a typical bonding distance, above from the surface atoms for the ���
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� ���

Feoct1 and VFe terminations. Here, the octahedral Fe positions are distinguishable ��

because of their lower potential, displayed in blue. Combined with the Bader charge ��

analysis, it is clear that Feoct1 and VFe are markedly different surfaces given the fact that ��

in the latter the positive charge near the iron atoms is intensified and the oxygen ��

protrusion contains a slight negative charge, in comparison to the bulk"truncated ��

surface. Thus, it is important to emphasize that the mode of chemisorption of an organic ��

layer, for instance, the binding of a phosphonic acid as was done on the (La,Sr)MnO3 ��

(LSMO) surface,85 could be significantly different on a vacancy"containing surface 	�

compared to a bulk termination. This change in mode of chemisorption would be 
�

significant in the performance of SAM"based magnetic tunnel junctions. ���

 ���

 ���

Figure 8. Planar electrostatic potential plot evaluated at 1.3 Å above the Feoct1 atoms for ���

the Feoct1 (left) and VFe (right) termination. The potential is illustrated in the reverse ���

rainbow spectrum: lower potential in the blue region and higher potential in the red ���

region. ���

 ���

e) Spin polarization near the Fermi level �	�

The spin polarization at the surface is a major factor determining the spin"injection and "�
�

collection efficiency of an electrode. The spin polarization ratio at the Fermi level can be ���
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� ���

defined as J��I
 = (K↑ − K↓)/(K↑ + K↓) where n↑ and n↓ are the densities at Ef of the ��

majority and minority spins, respectively. Dedkov ������86 measured P(Ef) to be "80±5% ��

at room temperature near the surface of epitaxial Fe3O4 (111) films on Fe (110) using ��

spin"resolved photoemission spectroscopy. They attributed the high spin polarization to ��

the bulk Fe3O4 with a small reduction from the ideal value, "100%, due to the excitation ��

of spin waves at the surface. The half"metallic state of Fe3O4 is retained even after high ��

oxygen exposure as the spin"down electrons retain a high density"of"states near Ef ��

contrary to spin"up electrons. In contrast to those results, Pratt ��� ��.87 reported the 	�

opposite spin polarity using the naturally"grown single crystal annealed under <10"8 bar 
�

at 550 °C and proposed P(Ef) of >20% measured using a spin"polarized metastable ���

helium beam [He(23S)] under magnetic fields up to 4 T at 298K. To reconcile these data, ���

the authors assigned the difference to the penetration depth of their probe beams, ���

which is much lower in the latter study than in UV photoemission where the octahedrally ���

coordinated Fe layers below the surface can contribute to the cumulative spin ���

polarization. This is also confirmed in the present study based on the quantitative ���

evaluation of layer resolved spin polarity, as illustrated in Section S7. A comparison of ���

the functional dependence of the cumulative layer polarization is also given in Figure S5. ���

In Figure 9, the spin polarizations, P(E), calculated for the top six layers, 
��� one repeat �	�

unit (corresponding to approximately  4.8 Å  from the surface), are plotted for the eight �
�

terminations. As seen above, the DOS have distinctive features depending on the ���

surface termination; these features are directly reflected in the surface spin polarization. ���

The Fetet1 termination, panel a, shows a positive spin polarization below and negative ���

above the Fermi level. In contrast, the ferryl termination presents a negative spin ���
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� ���

polarization on both sides of the Fermi energy; as seen in the DOS, the negative spin ��

polarity at Ef originates from Fe 3�"O 2� hybridized orbitals of the newly formed Fe=O. ��

The negative spin polarization below the Fermi level is no longer evident in the hydroxyl ��

termination, as the spin"down states associated with the adatom are no longer in the ��

spin"up gap. The defect structure of the Fetet1 termination could significantly decrease ��

the positive value of P(Ef), expected from the bulk electronic structure. As the ��

magnitude and polarization of the PDOS of the Feoct1 and VFe terminations are similar, ��

P(E) presents a similar profile in the region of the Fermi level. In the Feoct1 surface, the 	�

polarization ratio becomes positive slightly above the Fermi level, which is not seen in 
�

the VFe surface. The O1 and VO terminations have nearly +100% spin polarization from "���

0.5 eV to +0.5 eV and "0.5 eV to +0.15 eV, respectively. ���
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� ���

 ��

Figure 9. Spin polarization as a function of energy, P(E), calculated for eight ��

terminations within [NO/0.5 eV, NO+0.5 eV]  The vertical dotted lines indicate the ��

Fermi level. The blue regions correspond to positive spin polarization while the ��

red ones indicate negative spin polarization. ��

 ��

IV. Conclusions ��

We have discussed the results of PBE+� calculations on modified terminations of 	�

magnetite (111) in terms of their structural, electronic, and magnetic properties and 
�
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� ���

compared them to the bulk"terminated surfaces. The most probable surface ��

terminations for Fe3O4 were compared using their relative stabilities for the relevant ��

limiting regimes of oxygen chemical potentials. For the surfaces comprised of bulk"like ��

terminations, the Fetet1"terminated surface has the lowest surface energy over a wide ��

range of oxygen chemical potentials while Feoct2 becomes more stabilized in the oxygen ��

poor limit. Importantly, the surfaces that contain either oxygen adatoms or cationic ��

vacancies are calculated to be close in stability to the Fetet1 surface at oxygen"rich and ��

oxygen"poor conditions, respectively. These modified surfaces with adsorbates or 	�

cationic vacancies have significantly different surface geometries and electronic/ 
�

magnetic structures with respect to the previously considered structures without any ���

defects. In particular, these defects have a major impact on the electron redistributions ���

over surface layers, which lead to different spin polarizations near the Fermi level and ���

distinctive surface chemistries. Current work is in progress in our laboratories to ���

evaluate the impact of these surface chemistries on the nature of interfaces with organic ���

layers. ���

 ���

Supporting Information ���

Electronic Supplementary Information (ESI) available: The methodological details for �	�

the range"separated hybrid functionals are given in Section S1. Convergence of �
�

electronic properties with respect to slab thickness is given in Section S2. Analyses of ���

the surface stabilities and work functions using various DFT methodologies and ���

exchange"correlation functionals are given in S3 and S6. Tabulated data for the ionic ���

relaxations is given in Section 4. Section S5 shows the PDOS for bulk magnetite and all ���
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� ���

seven terminations examined. Section S7 describes the layer"resolved spin polarization ��

variation within PBE and hybrid functionals. ��

 ��
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