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Definition: Magnetic nanoparticles (MNPs) have great potential in various areas such as medicine,
cancer therapy and diagnostics, biosensing, and material science. In particular, magnetite (Fe3O4)
nanoparticles are extensively used for numerous bioapplications due to their biocompatibility, high
saturation magnetization, chemical stability, large surface area, and easy functionalization. This
paper describes magnetic nanoparticle physical and biological properties, emphasizing synthesis
approaches, toxicity, and various biomedical applications, focusing on the most recent advancements
in the areas of therapy, diagnostics, theranostics, magnetic separation, and biosensing.
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1. Introduction

Nanotechnology combines various areas of science. The small sizes of nanomaterials
possess unique chemical, physical, and biological properties. To date, many nanomaterial
types have been described, and many more will be developed for various applications. Mag-
netic nanoparticles have great potential in biochemistry, nanomedicine, and bio-inspired
material areas [1–8]. One of the most promising magnetic nanoparticles is iron oxide (II, III)
due to their ferrimagnetism [1,9–11]. In particular, Fe3O4 magnetite nanoparticles (MNPs)
have demonstrated a promising effect in numerous applications [1–8].

MNPs have become a vital tool for material science, biochemistry, diagnostics, mag-
netic drug and gene delivery, hyperthermia, magnetic resonance imaging (MRI), and
theranostics [1,3–5,7,9,12–30]. The manipulation of MNPs by an external magnetic field
is essential for bioseparation and biosensing areas [1,6,17,30–33]. Moreover, magnetic
transport of MNPs to the tissue allows targeted therapy and diagnostics (theranostics)
applications [1–8,34]. A combination of possible local heating (hyperthermia), anticancer
drug delivery, and monitoring by MRI or other imaging technology open the tremendous
potential for cancer treatment [1–5,8,11,16,21,35].

Many papers about the synthesis, coating, and applications of MNPs have been
reported [1–8,26,34,35]. The number of articles with the key term “magnetic nanoparti-
cles” increases every year (Figure 1). The actual number of papers in the area is much
higher, which can be calculated using other keywords. However, before 1996, less than
100 articles per year were published annually by the Scopus database. After the first
successful clinical trial in 1996, the number of papers greatly increased. Since 2013, more
than 5000 manuscripts have been published annually. Such results are associated with the
increasing recognition of MNPs in achieving excellent results in various applications.

MNPs show high field irreversibility, high saturation field, and superparamagnetism,
which are highly dependent on particle size and surface coating. The relationship between
MNP size and magnetism (coercivity) has been extensively reported [36–40]. The coercivity
gradually increases for bulk nanoparticles to a maximum value at a particular size. In
this region, the magnetization is stable and nonuniform (Weiss domains, magnetic multi-
domain state). The critical size of the magnetite nanoparticles, above which they become
multi-domain, has been theoretically calculated and is 76 nm and 128 nm, respectively,
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for cubic and spherical nanoparticles [38]. However, the experimental data indicate that
the critical size of transition between single- and multi-domain magnetic structure highly
depends on the crystal structure and coating [37,38,41]. By reducing the size of the nanopar-
ticles, the coercivity rapidly decreases to zero, reaching a superparamagnetic state [36,37].
Superparamagnetism is especially important in applications such as drug delivery and
imaging. Particle sizes below 20 nm are required to achieve superparamagnetism for mag-
netite MNPs. Superparamagnetic MNPs provide a stronger response to external magnetic
fields than simple MNPs. Frenkel J. and Doefman J. in 1930 predicted that, below a critical
size, MNPs would consist of a single magnetic domain [42]. However, superparamagnetic
MNP synthesis was achieved half a century later.
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Research on nano-emulsion began in 1943 (Figure 2, historical timeline) [43]. However,
the nanotechnology concept was first proposed in 1959 by Richard Feynman in the lecture
entitled “Plenty of Room at the Bottom”. This was a historical event in nanoscience. The
first synthesis of iron nanoparticles by gas condensation was achieved in 1981. The concept
of using magnetic forces for enhanced therapeutic and imaging performance has evolved
over the years. Two of the milestones were the development of MNPs for imaging purposes
in 1990 and silica-coated MNPs in 1995. Since 2000, numerous studies have investigated
the potential applications of MNPs and nanocomposites with magnetic cores. Another
essential development was the successful magnetic hyperthermia clinical trials in 2010.
Magnetic hyperthermia utilizes MNPs that are exposed to an alternating magnetic field to
generate heat in local regions [23,44]. Magnetic hyperthermia therapy was first proposed
much earlier, in 1957. However, about fifty years were required to synthesize stable and
non-toxic MNPs with optimal physical properties. Colloidal stability, biocompatibility, and
toxicity studies are crucial for in vivo application. Recently, numerous MNP-based “Smart”
nanocomposites with pH-stimuli-responsive drug release, theranostics, and multimodal
constructions have been developed [5,8,13,24,25,45–49]. Numerous research papers have
focused on the possible procedures for MNPs synthesis, coating, drug-loading, toxicity
studies, and clinical trials [1,2,8,20,44,50–54].
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2. Synthesis of Magnetic Nanoparticles

Many research articles have focused on the synthesis and coating procedures of MNPs
to obtain desired morphology, particle size, physico-chemical properties, and biocompati-
bility [1,7,9–11,28,50,51,55]. The basic techniques involved in MNP synthesis are physical,
chemical, and biological in nature (Figure 3, classification of synthetic approaches). Each
route produces MNPs with various properties, which highly depend on the synthesis con-
ditions [1,8,35,56–58]. This section presents the most common syntheses, their advantages,
and their effects over different properties of MNPs.
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Co-precipitation is a widely used, simple, and cost-effective chemical synthesis, which
proceeds in an aqueous solution with a high yield and purity (Table 1). However, the
procedure often requires surfactant and clear reaction parameters (concentration, temper-
ature, tube size, mixing speed, etc.) [1,56]. The method is conducted in a mixture of Fe
(II) and Fe (III) salts with base (NH3 or NaOH solution) at ambient temperature or slight
heating. To prevent Fe (II) oxidation in base conditions, the presence of inert gas flow is
recommended. The changes of such simple reaction conditions result in not having the
same size and shape of nanoparticles, such that reproduction of the synthesis method
usually fails to produce MNPs with the same physico-chemical and biological properties.
Moreover, “in one person’s hands”, the MNPs size usually varies from one synthesis to
another. The only possibility is to thoroughly record all actions, equipment, and chemical
manufacturers during synthesis.

Table 1. MNP synthesis comparison.

Methods Procedure Conditions Temperature, Time MNPs Size and Yield *

Chemical

Co-precipitation Very simple Ambient 20–150 ◦C, min Relatively narrow, High
Hydro/Solvothermal Simple High pressure 150–250 ◦C, h/day Very narrow, High

Sonochemichal Very simple Ambient 20–50 ◦C, min Narrow, Medium
Emulsion Complicated Ambient 20–80 ◦C, h Narrow, Low

Thermal decomposition Very simple High temperature 250–400 ◦C, h Very narrow, High
Sol-hel Simple High temperature 300–500 ◦C, 3–4 h Very narrow, High

Wet Reduction Very simple Ambient 20–150 ◦C, min Relatively narrow, High
Electrochemical Complicated Ambient 25 ◦C, min/h Narrow, High
Polyol Synthesis Simple High temperature 200–350 ◦C, 7–10 h Relatively narrow, High

Physical

Gas-phase deposition Simple High temperature 150–250 ◦C, h Narrow, Medium
Ball milling Very simple Power ball/Ambient 25 ◦C, h/day Highly broad, Medium
Spattering Very simple Ambient 25 ◦C, min/h Broad, High

Laser ablation Simple Ambient 25 ◦C, min/h Broad, High
Electron beam deposition Simple Ambient 25 ◦C, min/h Broad, Medium
Aerosol spray pyrolysis Simple High temperature 300–500 ◦C, h Broad, Medium

Biological
Microorganism and virus mediated Complicated Ambient 25 ◦C, h/day Broad, Medium

Template-mediated Simple Ambient 25 ◦C, min/h Relatively narrow, High
Plant-mediated Complicated Ambient 25 ◦C, h/day Broad, Low

* Yield: High = > 90%, Medium = 60–90%, Low lower = 60%.

A hydrothermal or solvothermal method is used to prepare MNPs under high pressure
and temperature, generally carried out in an autoclave [1,8,35]. This method yields excellent
shape-controlled, monodisperse ultrafine magnetite nanopowders. This route is chosen
over other approaches to grow high-crystalline MNPs. However, the synthesis procedures
usually require a large reaction time.

In the sonochemical or sonolysis method, acoustic cavitation produces bubbles via
ultrasound [1]. The shape and size of MNPs can be easily controlled through the intensity
of irradiation, irradiation time, and reaction time. Despite the synthesis requiring high-
intensity ultrasound, the reaction occurs quickly in mild conditions.

Micro- or nano-emulsion method include a stable liquid mixture (usually water and
‘fatty’ solvent) and amphiphilic surfactant. The properties of MNPs are highly dependent
on surfactant type. The method has a narrow working window to obtain stable emulsion,
high solvent consumption, and low MNP yield [57]. These shortcomings make the emulsion
method unprofitable.

Recently, some modern biosynthesis approaches and green technologies for MNP
synthesis have been reported [1,56,58]. Of course, the first, and best, ‘researcher’ of this
technology is the magnetostatic bacterium. Using intracellular biomineralization processes,
magnetostatic bacteria can synthesize specific organelle magnetosomes [58]. At the moment,
many researchers use plant extracts, DNA, and proteins as templates, microorganisms,
viruses, and fungi for MNPs green/biosynthesis [1,56,58] (Table 1).

In addition to these synthetic routes, gas-phase deposition, ball milling, spattering, laser
ablation, electron beam deposition, aerosol spray pyrolysis, electrochemical synthesis, and
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wet reduction microbial synthesis, among others, have been reported [1,8,35,56–58]. Table 1
summarizes some primary synthetic methods along with their conditions and characteristics.

3. Toxicity of Magnetic Nanoparticles

The toxicity of MNPs is an important factor for future healthcare applications [50]. The
synthetic procedures of MNPs may look easy. However, MNPs toxicity depends on size,
coating, surface modification, etc. MNPs with a size higher than 200 nm will be filtrated
by the spleen. The nanoparticles less than 10 nm can be quickly removed through renal
clearance. The surface chemistry of MNPs is also important. Having the wrong coating for
MNPs leads to magnetic core oxidation, aggregation, instability in physiological liquids,
and high reactive oxygen species (ROS) formation [3,13,50,51,54,59–61]. Various organic
molecules (tannic, polyacrylic, lauric, myristic, hyaluronic, and oleic acids), inorganic
coating (gold, silica, calcium carbonate), artificial (tween or polysorbate, polyethylene
glycol, polyethylene imine, etc.), and natural polymers (e.g., dextran, chitosan, proteins
such as albumin, casein, etc.) are used to improve MNP properties [3,7,11,22,24,62–87].
However, no universal recipe exists. For example, PEG-coating enhances the colloidal
stability of MNPs and decreases protein adsorption [24,79,88]. Oleic acid is the primary
surfactant for improving magnetic properties and stabilize the MNPs [84,85]. Protein-
coating provides greater biocompatibility and biodegradability and less immunogenicity
than MNPs [7,62,89–91]. For the major human plasma protein, human serum albumin
(HSA) [92–94], adsorption on the MNPs surface prevents nucleation and aggregation
and increases colloidal stability in aqueous solution in a wide pH range [62,72,95–103].
Albumin coating prevents non-specific interactions with blood components and immune
response [62,95,97,101,102,104]. HSA enhances biocompatibility, prolongs blood circulation
of MNPs, and provides targeted delivery to tumors [7].

The cytotoxic effect of MNPs lies in Fe ion release, dysregulation of ion channels
and gene expression, immune response, inflammation, ulceration, metabolic disorders,
decrease in growth rate or changes of alterations, etc. [5,50,54]. The literature on the topic
usually presents the simplest cytotoxicity assay (MTT test) on cancer cell lines [105,106].
The MTT assay usually shows only ‘acute toxic effects’. It does not provide interaction with
blood proteins and cells, tissue-specific toxicity, chronic toxicity, etc. Moreover, cancer cells
have activated “survival systems”. Recent research has moved significantly forward with
in vivo toxicological assays [54]. The MNP dose, initial concentration, biodistribution, and
circulation time greatly influence the trials. MNP accumulation in tissues may interfere with
physiological Fe metabolism and activate inflammatory or immune responses [50,54,60].
MNP degradation in the cells may lead to ROS formation with cell or mitochondrial
membrane damage, adverse cell proliferation, DNA oxidation with subsequent point
mutation formation, and cell death. Extended toxicity experiments are hard-going work
for the many researchers involved, which greatly slows down the progress in this area [54].
Despite the widespread introduction of MNPs, new and easier toxicity tests are required.
Integration of nanotoxicology and nanomedicine into one element has proven to be a
significant step toward the sustainable development of nanotechnology for biomedical
applications [107,108].

4. Biomedical Applications of Magnetic Nanoparticles

MNPs have great potential in the nanomedicine field. Magnetic nanoparticles have
been widely used for analytical purposes for biomolecule detection, disease diagnosis,
and treatment. This section focuses on the therapeutic, diagnostic, theranostic, magnetic
separation, and biosensing applications of MNPs.

4.1. Therapy

Nanoparticles have become extremely popular for cancer treatment. Their ability to
pass cell membranes is a potential method to solve the problem of drug resistance [109].
MNPs may act as a carrier providing magnetically guided drug delivery (Figure 4, top
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right). Moving the MNPs by the influence of an external magnetic field is currently used
for modern chemotherapy in several diseases, including cancers [109,110]. Solid tumors
usually have an immature, highly permeable vasculature. For better growth, tumors
produce a nutritional gap in which nanoconstructions accumulate. This effect is known as
the enhanced permeation and retention effect (EPR effect). For cancer treatment, MNPs
can act as nanocarriers for chemotherapeutic drugs. The whole nanoconstruction must
be stable in blood and not prematurely release the drug. In the tumor media, the drug
release should be effective. Controlled drug release is a stumbling stone for drug-loaded
MNPs. A combination of siRNA and antisense oligonucleotides may be used instead of a
chemotherapeutic drug [111–114]. Such cocktails can drastically influence the targeted gene
activity, resulting in a therapeutic effect [115]. This technology is called magnetofection and
is defined as the delivery of nucleic acids using MNPs. Magnetofection has been introduced
as a powerful tool for nucleic acid delivery into cells [114]. The method shows good results
in vitro and in vivo [113,114,116–125].
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Figure 4. Therapeutic applications of MNPs. MNPs could be applied in various fields of therapy,
such as drug/gene delivery, hyperthermia cancer treatment, deep-brain stimulation (DBS), and tissue
engineering for regenerative medicine.

Several strategies could be used for such an approach. One is covalent drug conjuga-
tion, which possesses hard-synthesized smart construction [8,35,109]. A physiologically
cleavable linker for drug binding may be used in this case. However, much work is also
conducted on noncovalent drug-loading procedures on the MNP surface. For example,
doxorubicin (DOX) is a primary chemotherapeutic drug for drug-loaded MNP synthesis.
DOX has been FDA-approved for more than 50 years. However, multidrug resistance and
many side effects are also associated with DOX [126,127]. DOX-loaded MNPs are much
more popular [128–138]. Researchers have tried to obtain good drug capacity per MNP
and high stability at plasma pH~7.4. At the same time, effective drug release is required
in the tumor environment and endosomal compartment with pH~4–5. However, for such
promising constructions, simple MNPs may not be used. The magnetic core may be pro-
tected by noble metals (e.g., gold [139]), calcium carbonate [65,140], various polymers, and
proteins [7,8,35,125,141]. For example, albumin protein MNP bio-inspired coating results
in low ROS production, excellent biocompatibility, and moderate particle uptake, which is
shown in in vitro and in vivo experiments [7]. Moreover, albumin coating could be chemi-
cally modified by address groups for cancer-tissue-targeted delivery [142–144], magnetic
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resonance imaging, or fluorescence reporter groups [145–148]. The protein–nanoparticle
corona is an important tool to prevent MNPs’ toxic side effects and enhance stability
and biocompatibility.

Hyperthermia is a well-established method for cancer treatment [23]. MNP in an
alternating magnetic field generates heat (Figure 4, bottom left). The high temperature
in local regions damages tumor cells. However, the results of the heat release are highly
dependent on the MNPs’ size, shape, geometry, and coating [23,149]. The recent progress
in the chemical synthesis of MNPs with well-controlled composition and morphology has
allowed us to go forward with hyperthermia in medicine. The other limitation is that
MNPs should be successfully delivered to the desired tissue. Combined cancer therapy
may be obtained for drug-loaded MNPs. A smart drug-loaded construction can use the
hyperthermia effect to disrupt the tumor tissue. In this way, a cumulative effect in the cells
can occur [150,151]. Hyperthermia temperature rise may be easily controlled, which could
be exploited in multiple therapeutic approaches. For example, deep-brain stimulation
(DBS) could be obtained by a magnetic hyperthermia procedure (Figure 4, top left). Under
low heating, temperature-sensitive ion channels cause an influx of Ca2+-sensitive promoter
and activation of individual neurons [152,153]. Moreover, shot MNP heating by an external
radio-frequency magnetic field provides the local pH changes, which regulate the complex
formation and cell processes [154].

MNPs can magnetically stimulate stem cells, which influences protein synthesis and
gene expression. This effect may be used for damaged tissues or organ repair and regenera-
tion (tissue engineering, Figure 4) [155]. MNPs have been used for bone, tendon, cartilage
regeneration, and neuroregeneration [156–173].

4.2. Diagnostics and Theranostics

Over the past few decades, MNPs have become essential for various imaging tech-
niques [1,20,28,97,174–176]. MNPs play an important role in magnetic resonance imaging
(MRI) and magnetic particle imaging (MPI). MRI is a primary medical method that provides
high resolution and excellent contrast capabilities without the use of damaging ionizing
radiation [28]. It is often used for disease detection, diagnosis, and treatment monitoring.
MRI is based on the nuclear magnetic resonance (NMR) effect of water protons, which
depends on the concentration, relaxation times (T1 and T2), and mobility of the water
molecules in tissues. Using MNPs, it is possible to change the signal from the water protons
and see the localization of the paramagnetic tracer. MNP-based contrast agents are helpful
for malignant tumor detection. Since 1990, numerous papers have been published on MNP
applications for MRI [20,28,174–176] (Figure 5, application examples).
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Using T1 contrast agents, the MRI image becomes brighter and T2 darker. MNPs are
often known to shorten the T2 time, which leads to a dark zone on the MRI image. The
MNP coating influences the relaxation time due to changes in water molecule availability
near the magnetic core [28]. However, the universal recipe that obtains the best MRI agent
is unknown [28]. In 1996, the FDA approved the Feridex® T2-contrast agent for liver lesion
detection. Feridex is a dextran-coated aqueous colloid of superparamagnetic MNPs. In the
same period, several dextran-coated MNPs (e.g., Endorem, Resovist) were also approved
for clinics. However, Feridex and some other contrast agents were withdrawn in 2009 due to
side effects and major safety concerns (see Section 3, possible toxicity effects) [20]. Notably,
the novel biocompatible MNP-based MRI contrast agents are still receiving attention for
clinical use. There are a number of successful cell experiments, extensive safety experiments,
and undergoing pre-clinical animal studies [20]. However, clinical trials for use in humans
are not successful or in the early stages of investigations [20].

MPI is a relatively novel non-invasive technique [5]. MPI was first conceived in 2001
and reported in 2005. It uses changing magnetic fields to generate a signal from super-
paramagnetic MNP tracers. The signal can be observed without background, providing
information about the probe location with a high signal-to-noise ratio. Among the applica-
tions of MPI are cell tracking, tumor detection, and blood-pool, vascular, and perfusion
imaging (Figure 5) [5]. The high sensitivity of MPI is suitable for cancer detection in the
early stage.

Recently, various MNP-based constructions for multimodal imaging have been de-
veloped [20]. These include systems for simultaneous MRI and MPI detection and com-
binations with computed tomography (CT), single-photon emission computed tomogra-
phy (SPECT), positron emission tomography (PET), optical and ultrasound imaging, and
magneto-acoustic tomography [8,20,177,178]. Combining MNP-based imaging and thera-
peutic approaches provides possible theranostic construction production (Figure 6) [5,8,20].
Theranostic MNPs offer considerable potential for drug-resistant cancer treatment. The
primary theranostic system combines MRI and chemotherapeutic drugs or hyperthermia
treatment (Figure 6). The progress in this area is limited, but has increased over the last
several years [5,7,8,20].
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4.3. Magnetic Separation, MNP-Based Biosensors, and Magnetic Microreactors

The purity of materials plays a crucial role in further analysis, which is why fast and low-
cost separation approaches have to be designed. Magnetic separation is the process by which
various compound separations use a magnet to attract magnetic substances (e.g., MNPs).
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The process is an important method for the bioseparation and quantification of peptides,
proteins, nucleic acids, and metabolites [6,22,32,33,179–192]. Moreover, magnetic separation
may be used for more than simple biomolecule capture. Recently, magnetic cell separation
has become a vital method for a wide range of applications [6]. Magnetic separation using
MNPs is more efficient than traditional approaches, which require several stages, organic
solvents, and chromatography systems [2,32,182,184,193–196]. The procedure of magnetic
separation is presented in Figure 7.
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Figure 7. Basic principles of magnetic separation. Magnetically separated targets may be released
and analyzed by various physical and biochemical methods. Hexagon, circle, and star are analytes in
the solution. The star is a specific analyte, which can be bound for the MNPs surface.

Of course, these are not simple MNPs used for organic molecule and biopolymer
separation. The surface of the MNPs could be modified by ligands, which can specifically
bind the target molecule. Antibodies, aptamers, DNA/RNA, or proteins are used for such
modification [6,16,32,180,191]. For example, avidin-coated MNPs and biotinylated oligonu-
cleotides are utilized for specific nucleic acid separation. The biotinylated oligonucleotide
forms a duplex with a targeted nucleic acid. Afterward, MNPs are added, and biotin
residue interacts with avidin, forming a high-affinity complex. Such avidin-coated MNPs
are commercially available elsewhere.

MNP-based biosensors could be widely used in the detection of antibiotics, toxins,
antigens, proteins, nucleic acids, disease biomarkers, pathogenic bacteria, and viruses [17].
One of the MNP-based sensing strategies is presented in Figure 8. MNP may be used for
target magnetic separation into the detector zone or magnetoresistive sensors [17,197–199].
The first approach enhances detection sensitivity, decreases analysis time, and provides a
high signal-to-noise ratio and complex sample analysis [199]. Without a magnet, the MNP
moves along with the sample in the solution, but when using a magnet, the MNP-target
complex is focused on the signal generation zone. The detection of the target may be
achieved with a wide range of methods: electrochemical (e.g., voltammetry, amperometry,
potentiometry, electrochemiluminescence, and impedance), optical (e.g., surface plasmon
resonance, and fluorescence spectroscopy), and piezoelectric [199,200]. Magnetoresistive
sensors are based on the binding of MNPs to a sensor surface, which results in electrical
current changes. These sensors demonstrate extremely high sensitivity. However, it is not
possible to detect multiple analytes in the solution since the change in the magnetic field is
restricted to only one parameter [199].

Magnetic microreactors have attracted wide attention in nanobiotechnology [201–208].
Enzyme immobilization on the MNPs with reliable magnetic properties facilitates solid-
phase biocatalysis. This strategy offers high stability in enzymes during biomass processing
and their easy separation by an external magnetic field. The process of enzyme recovery
becomes an easy procedure for the protection of enzymes from inhibition, pH, and thermal
denaturation in the continuous-mode microreactor. The MNP–enzyme system has major
advantages in homo- and heterogeneous catalysis in high mass-transfer rates, selectivity,
high yield, easy recovery, recyclability, and high activity [208]. Future research should be
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oriented toward magnetic enzyme microreactor configurations, optimization, and appli-
cation extensions. As it stands, this technology may already represent a significant step
in biotechnology.
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5. Conclusions

MNPs are a promising platform for creating novel therapy, diagnostics, theranostics,
and sensor constructions. Such systems may occupy a niche in the development of next-
generation drugs for disease detection and treatment. Moreover, multifunctional MNPs
with bio-inspired coatings could be a breakthrough in nanomedicine. Even after many years
of research, there are still many challenges that must be taken into account for translating
MNPs into clinics. Understanding the physical, chemical, and biological problems and
principles of property manipulation for MNP may lead to a new era in nanomedicine.
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