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Abstract 

We develop a systematic approach by which to derive boundary conditions at an interface 

between two ferromagnetic materials in the continuous medium approximation.  The approach treats 

the interface as a two-sublattice material, although the final equations connect magnetizations outside 

of the interface and therefore do not explicitly depend on its structure.  Instead, the boundary conditions 

are defined in terms of some average properties of the interface, which may also have a finite thickness.  

In addition to the interface anisotropy and symmetric exchange coupling, this approach allows us to 

take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, 

such as the Dzyaloshinskii-Moriya antisymmetric exchange interaction.  In the case of negligible 

interface anisotropy and Dzyaloshinskii-Moriya exchange parameters, the derived boundary conditions 

represent a generalization of those proposed earlier by Barnaś and Mills and are therefore named 

“generalized Barnaś-Mills boundary conditions”.  We demonstrate how one could use the boundary 

conditions to extract parameters of the interface via fitting of appropriate experimental data.  The 

developed theory could be applied to modeling of both linear and non-linear spin waves, including 

exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-

uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the 

research in magnonics and micromagnetism.   

 

                                                 
*
 Corresponding author: V.V.Kruglyak@exeter.ac.uk  

mailto:V.V.Kruglyak@exeter.ac.uk


2 

 

I. Introduction   

The key issue of the theory of waves propagating in non-uniform media is the nature of boundary 

conditions at interfaces between regions with different material properties.  Owing to the unique 

abundance of spin-related phenomena in general and of parameters characterizing magnetic properties 

of materials in particular,
1-10

 the nature of boundary conditions for spin waves
11-13

 propagating through 

an interface between two magnetic media is of essential importance for magnonics and magnonic 

technology.
14,15

  However, despite some quite old
16-22

 and also more recent
23-27

 important results and in 

contrast to magnonics’ sister-fields of e.g. photonics
28,29

 and phononics,
30,31

 the understanding of the 

nature of boundary conditions for spin waves is incomplete.
32

  This shortfall may hinder interpretation 

of experimental observations and development of theoretical models, which is unsatisfactory in view of 

the rapid progress observed in experimental investigations in magnonics and spintronics.
33-41

  Indeed, 

the spectrum and dispersion of spin waves in planar bi-component magnonic crystals
42

 fabricated by 

various methods
43-48

 can now be conveniently measured e.g. using Brillouin Light Scattering (BLS),
44-

46,49
 while both Ferromagnetic Resonance (FMR) and BLS characterization of thin film magnetic 

multilayers have long been used to extract information about interlayer exchange coupling in 

spintronics.
50-54

   

The planar bi-component magnonic samples are fabricated using a combination of ion etching 

and lithographical tools, often exposed to air at intermediate processing steps.
43

  Hence, it should be 

recognized that the interfaces in such samples might not necessarily be chemically clean and atomically 

sharp.  Instead, they are likely to have finite thickness or even be structured at the atomic scale, which 

could also be done deliberately, at least in principle.  This is in contrast to magnetic multilayers, which 

are routinely fabricated with atomic precision.
50,51

  Yet, magnetic materials can interdiffuse and / or 

segregate at interfaces, forming so called “magnetically dead layers”.
55

  Moreover, results of 

calculations from Ref. 56 suggest that, even when multilayer interfaces are chemically sharp, finite 

temperatures result in smoothing of the profiles of the magnetization magnitude and formation of 

magnetic “transition” layers at interfaces between the basic constituent layers in all-ferromagnetic 

multilayers.  In addition, the itinerant nature of magnetism in transition metals and their alloys and 

associated spin accumulation phenomena mean that the interaction between two adjacent magnetic 

materials is not limited to the immediate vicinity of the geometrical (possibly, atomically sharp) 

interface but penetrates into their bulk regions,
57

 with similar sorts of phenomena suggested to take 

place even at metal-dielectric interfaces.
58

  These considerations show that adequate modeling of 

interfaces of finite thickness can be crucial for understanding and phenomenological description of 

micromagnetism of realistic magnonic and spintronics samples and devices.   

The continuous medium theories of magnetization dynamics in samples with interfaces of finite 

thickness are traditionally based on solving the Landau-Lifshitz equation
59

 under assumption of 

specific model continuous profiles for the variation of particular magnetic parameters (e.g. magnetic 

anisotropy) in the interface region.
60-66

  However, since the actual form of such profiles in realistic 

samples is rarely known, conclusions reached using this approach often lack generality.  Thus, it would 

be useful to have a way of modeling interfaces of finite thickness that would be based on very general 

assumptions of the interface structure, thereby avoiding associated complex theoretical analyses.  It is 

therefore tempting to account for interfacial properties via appropriate boundary conditions that would 

relate the magnetization on opposite sides of the interface yet outside of the transitional region in which 

the variation of magnetic parameters is significant.  Such an approach is similar to the method of 
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boundary layer in fluid mechanics
67

 and in fact has already been adopted in derivation of magnetization 

boundary conditions at boundaries of magnetic bodies.
11,16,23,25

  

In this paper, the approach proposed by Rado and Weertman for the case of boundaries of 

magnetic bodies
16

 is systematically developed and used to derive general boundary conditions (named 

“generalized Barnaś-Mills boundary conditions”, for the reasons that will become clear later) for 

magnetization at an interface of two uniaxial ferromagnetic materials.  The theory is developed using 

the continuous medium approximation, as opposed to the often implemented discrete lattice 

approach,
17,20-22,24

 and is therefore mainly applicable at the mesoscale.  In addition to the symmetric 

exchange coupling and surface anisotropy considered in this context earlier,
11,16

 we also account for the 

possibility of antisymmetric (Dzyaloshinskii-Moriya) exchange coupling
68,69

 in the interface region.  

This is accomplished by describing the interface energy as that of a two-sublattice magnetic material.
11

  

However, the resultant boundary conditions connect the magnetization defined outside of the two-

sublattice interface region, i.e. in regions where magnetic parameters do not vary with coordinates.  

This not only allows us to use the boundary conditions without consideration of the detailed interface 

structure but also avoids the ambiguity in the definition of the exchange field in regions of varying 

exchange interaction strength pointed out in Ref. 70.  The theory is developed in mind with its 

application to analysis of the propagation of exchange spin waves in magnonic crystals.  Nonetheless, 

we argue that it could be adopted in a much broader range of theoretical models, as discussed below.   

The paper is organized as follows.  In section II, we review the key existing forms of boundary 

conditions and their properties.  In section III, we present our theoretical approach and use it to derive 

boundary conditions in the most general case considered in the paper.  In section IV, we offer a detailed 

discussion of a specific example of the proposed boundary conditions that is directly comparable to the 

most common results known from literature, i.e. the Hoffmann
17,18

 and Barnaś-Mills
20,22

 boundary 

conditions, and demonstrate how it could be used to extract parameters of the interface from 

experimental data analysis.  Section V is devoted to general conclusions and summary.   

 

II. Natural, Hoffmann, and Barnaś-Mills forms of magnetization boundary conditions 

We begin by reviewing the derivation of the boundary conditions that naturally follow from the 

equation of motion of the magnetization M, i.e. the Landau-Lifshitz equation,
59

 in the continuous 

medium approximation.  In the absence of dissipation, the Landau-Lifshitz equation reads 

 ffeg
t

HM
M
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


      (1) 

where g is the gyromagnetic ratio.  The effective magnetic field Heff is given by
11
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where w is the magnetic energy density and r is the radius vector.   

The standard system used to derive the boundary conditions in the case of infinitely thin (sharp) 

interfaces is an infinite magnetic sample with magnetic properties described by some integrable (but 

not necessarily continuous) functions of the coordinate x.  In particular, the saturation magnetization 

MS = MS(x), the uniaxial anisotropy parameter β = β(x), and the exchange parameter α = α(x) are 
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assumed to vary without changing sign within a finite interval of x values, (-δ , δ), referred to here as 

“interface region”, and to be constant in the rest of the sample.  The semi-infinite parts of the sample to 

the left and to the right of the interface region are referred to as media A and B.  The easy 

magnetization axis is assumed to be perpendicular to the interface, the normal to which is denoted here 

as n and is parallel to the x-axis.  H is a uniform external magnetic field applied to the sample.  Then, 

the total magnetic energy of the sample can be written as  
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The corresponding effective magnetic fields Heff is given by 
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The Landau-Lifshitz equation is of the second order in terms of the space derivatives, and so, two 

boundary conditions are required to tailor its solutions at the interface.  The first of them is just the 

continuity of the direction of the magnetization.  The second boundary condition follows from the form 

of the Landau-Lifshitz equation and is derived by its integration over the interface region, i.e.   
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The integration yields  
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where the vertical line  


xf  is used to denote the difference of values of the function f at “points”
71

 δ 

and -δ, i.e.      






fff x .   

We take into account that the direction of the magnetization and its time derivative are both 

continuous functions of x, even when the magnetic media parameters (including the saturation 

magnetization) entering the Landau-Lifshitz equation are discontinuous.  Then, we may use the mean 

value theorem for integration
72

 to obtain the following exact identity 
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where m is the unit vector in the direction of the magnetization M, brackets  denote averaging over 

the interface region, and curly brackets   xf  are used to denote the value of function f at point
71

 

  , .  Points ξ at which the values of the various functions of the magnetization and its time 

derivative are taken are generally different for each of the terms, but the distinction is dropped here for 

clarity.  The boundary conditions are now obtained by assuming that the thickness of the interface 

tends to zero.  Then, the terms in the right hand side of the equation also tend to zero, except those 
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containing magnetic parameters the coordinate dependence of which diverges, as can be described by 

the Dirac delta-function, δ(x).  Assuming that the latter is not the case,
73

 the pair of the boundary 

conditions for sharp magnetic interfaces can be written as  
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0

0

0

0S










m
M

M
    )    (8) 

0

0

0


















x

M
M        (9) 

In the following, we will refer to this pair of equations as “natural boundary conditions”.   

This method of derivation was originally used by Rado and Weertman in Ref. 16 to find the 

general form of boundary conditions imposed on the magnetization near a boundary of a magnetic 

sample, as 

T
M
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


x
       (10) 

where T is the sum of all non-exchange contributions to the magnetic energy flux density across the 

boundary.  The Rado-Weertman boundary condition (10) is obtained from equation (7) by assuming 

zero magnetization at one of the limits in its left hand side.  The right hand side then gives T, in which 

usually only the term containing the anisotropy constant is retained to yield the surface anisotropy and 

associated pinning of the magnetization.
16,73

  In this case, the condition of continuity of the 

magnetization direction (8) is irrelevant.  Guslienko et al showed that the account of the demagnetizing 

fields leads to effective magneto-dipole pinning at the boundary of thin magnetic stripes.
23,25

  It would 

be interesting to see the results of Guslienko et al extended to the case of interface between two 

adjacent magnetic stripes.   

The important feature of the natural boundary conditions (8-9) is that they do not depend on the 

strength of the exchange interaction between media A and B.  The media do need to be coupled 

strongly enough for the equation (8) to hold, but the strength of this coupling does not need to be 

known exactly.  Neither can it be extracted from comparison of a theory based on the boundary 

conditions with experiments.  In contrast, theories based on lattice models of the ferromagnetic 

materials lead to so called “Hoffmann boundary conditions” that depend explicitly on the strength, AAB, 

of exchange coupling between the two media 
17,18
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Here, indices A and B denote parameters and variables characterizing materials A and B, respectively.  

The media are separated by distance 2δ.  The separation can represent, for example, the thickness of a 

non-magnetic spacer layer inserted between media A and B, which generally does not prevent coupling 

between them.
50-54

  In the continuous medium approximation, the boundary conditions correspond to 

the following form for the energy of the interface coupling
21
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Adding and subtracting the two equations, we can also write the system in the following 

symmetric form  
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We observe that the natural and Hoffman boundary conditions contain identical second 

equations, i.e. equations (9) and (15) respectively, which are responsible for ensuring that the magnetic 

energy flow across the interface is conserved.
11

  However, the condition of continuity of the 

magnetization direction is broken in the case of the Hoffmann boundary conditions.  Let us investigate 

this aspect somewhat closer.   

In the case of 2δ = a, where a is the inter-atomic distance (lattice constant) at the interface, the 

Hoffman boundary conditions describe the interface between the media A and B in direct contact 
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Here, we have formally introduced a volume exchange parameter in place of the interface one as 

η = aAAB/2.  It is easy to see that the direction of the magnetization becomes continuous if one neglects 

in equation (16) terms of the order of 


a
a

x







m
, where λ is the spin wave wavelength

24
 (or any 

alternative appropriate quantity describing the characteristic length scale of the non-uniformity of the 

magnetization direction).  This assumption (that the spin wave wavelength is greater than lattice 

constants of constituent materials) is the essence of the continuous medium approximation in 

magnonics, in which the natural boundary conditions (8-9) are derived.  In particular, this explains why 

such a continuous medium approach as the plane wave method
70,74-77

 is consistent with the natural 

boundary conditions (8-9) but experiences difficulties adopting the notion of the interlayer exchange 

coupling.   

In relation to the Hoffmann boundary conditions, it is important to note that, in fact, they connect 

solutions that are defined in different points,
71

 δ and –δ in the case of equations (14-15) or a/2 and –a/2 

in the case of equations (16-17).  Then, setting the spacer layer thickness to zero (e.g. in the long 

wavelength approximation) produces the natural boundary conditions, in which the information about 

the interlayer coupling is lost.  In contrast, this limiting case is not achievable when boundary 

conditions of the Hoffmann form are applied formally (i.e. without taking into account the relative 

scales of the terms containing surface and bulk exchange parameters) to relate magnetization values 

that are defined in the same point,
71

 which can lead to erroneous conclusions as was well argued e.g. in 

Ref. 22.  To avoid such difficulties, one needs instead to interpolate the Hoffman boundary conditions 

to the same point.
71

  For example, equations (16-17) are interpolated to x = 0, using formulae 
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neglecting products of derivatives, to obtain
20,22
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In the following, we will refer to this pair of equations as “Barnaś-Mills boundary conditions”.  They 

are particularly useful in verifying that the limiting case of a uniform magnetic material is fulfilled.  

Indeed, assuming MSA = MSB and αA = αB = η, one can prove continuity of m and 
x

m
 at the interface, 

which is located at x = 0 and can now be considered as infinitely thin, in agreement with the continuous 

medium approximation.  Once again, equation (18) demonstrate that the terms neglected in the natural 

boundary conditions (8-9) are of the order of 


a
 .  So, the omission of the terms in the natural 

boundary conditions is perfectly consistent with the continuous medium approximation, while applying 

the Hoffmann boundary conditions to functions defined in the one and same point
71

 is not.  Instead, one 

should use Barnaś-Mills boundary conditions (18-19) if it is important to preserve the notion of the 

interface exchange coupling in the continuous medium theory, which is justified in the case of weak 

coupling.  The case of a significant interface anisotropy was considered e.g. in Ref. 20.   

 

III. Boundary conditions at diffuse interfaces between ferromagnetic media 

In this section, we generalize the Barnaś-Mills boundary conditions in two aspects.  Firstly, we 

incorporate into the boundary conditions effects associated with a broken inversion ( xx  ) 

symmetry, which is a plausible assumption at an interface between two materials even if each of them 

is itself centrosymmetric far from the interface.  This will modify the boundary conditions to include 

antisymmetric exchange coupling terms,
68,69

 which are known to lead to strongly non-collinear 

magnetic configurations in non-centrosymmetric magnetic material.  Secondly, we allow the interface 

to remain finite yet thin so as to formulate general boundary conditions that remove the need for 

assumptions of specific interface structure and thereby simplify theoretical calculations and 

experimental data interpretation in studies in which the structure of interfaces is a secondary topic.  In 

the following section, we will then offer a more detailed discussion of the topic of finite thickness 

interfaces under some simplified assumptions.  Yet, we will leave to further studies the topics of anti-

symmetric interface coupling and associated non-collinear interface configurations, which are very 

interesting but too diverse and complex to be treated here.  
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Figure 1 (Color online) The top panel shows the main idea of the two-sublattice model 

of the interface.  The bottom panel shows schematically the assumed 

coordinate dependence of the magnetic parameters characterizing materials A 

and B, and the two-sublattice material AB of the interface region.    

 

Thus, let us consider the interface between two semi-infinite ferromagnetic media with 

magnetizations MA and MB.  We write the total energy of the sample in the form that takes into account 

the interface interaction energy as that of a two-sublattice magnetic material
11,28
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where all magnetic parameters are assumed to vary within the interface but to be constant in the media 

A and B, as summarized in Table 1 and also schematically shown in Figure 1.  As in the previous 

section, the interface, its thickness, 2δ, and location are defined by the range of variation of the 

saturation magnetizations, i.e.     - x .  Naturally, the values of the magnetic parameters of a 

particular material cannot be defined in regions in which its saturation magnetization is equal to zero.  

In such cases, we assume those magnetic parameters to have zero values, too.  The axes of the easy 

magnetization characterized by unit vectors nA and nB are allowed to have different directions in the 

two media.  In addition, the term with coefficient βAB(x) takes into account the anisotropy energy of the 

interface as a two-sublattice magnetic material.  dAB is the parameter of the antisymmetric 

(Dzyaloshinskii-Moriya) exchange interaction,
68,69

 which usually does not contribute to the energy 

density (since the great majority of magnetic materials are centrosymmetric) but has to be taken into 

account near the interface where the inversion symmetry is broken.  As we will show later, the 

phenomenological terms with coefficients )(AB x  and )(BA x  are responsible for non-local exchange 

coupling within the interface region but can be of more general nature.  This is in contrast to the term 

containing the non-uniform exchange constant αAB, which will be shown not to contribute to the energy 

density but is invariant and is taken into account here for the sake generality.   

As before, we integrate the coupled Landau-Lifshitz equations for the two magnetizations over 

the interface region, and require that the integrals be equal to zero  
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Table 1.  The character of variation of the magnetic parameters in the vicinity of the interface is 

described.   

Magnetic parameter 

Notations 
Corresponding contributions 

to the total energy density material A 

- x  

interface 

     -  x  

material B 

x  

Saturation magnetization 
MSA MSA(x) 0  

0 MSB(x) MSB  

Gyromagnetic ratio gA g(x) gB  

Uniform exchange between 

sublattices 
0 AAB(x) 0 BASBSAAB mmMMA  

Non-uniform exchange 

between sublattices 
0 αAB(x) 0 

xx
MM







 BA
SBSAAB

mm
  

Non-uniform exchange 

αA αA(x) 0 

2

A2

SAA
2

1













x
M

m
  

0 αB(x) αB 

2

B2

SBB
2

1













x
M

m
  

Uniaxial magnetic anisotropy 

(two-sublattice contribution), 

value 

0 βAB(x) 0   BBAASBSAAB nmnmMM  

Uniaxial magnetic 

anisotropy, values 

βA βA(x) 0  2AA

2

SAA
2

1
nmM  

0 βB(x) βB  2BB

2

SBB
2

1
nmM  

Uniaxial magnetic 

anisotropy, axes 

nA nA(x) 
not 

defined 
 2AA

2

SAA
2

1
nmM  

not 

defined 
nB(x) nB  2BB

2

SBB
2

1
nmM  

Antisymmetric 

(Dzyaloshinskii-Moriya) 

exchange interaction, value 

0 dAB(x) 0  nmm BASBSAAB MMd  

Phenomenological non-local 

exchange coupling terms 

0 )(AB x  0 
x

MM


 B
ASBSAAB

m
m  

0 )(BA x  0 
x

MM


 A
BSBSABA

m
m  

 

The effective magnetic fields HeffA and HeffB act on magnetizations MA and MB, respectively, and 

are calculated as 
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Isolating full derivatives in the integrands, the integrals are calculated as  
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Again taking into account that the direction of the magnetization and its time derivative are both 

continuous functions of x, even when the magnetic parameters entering the Landau-Lifshitz equation 

are discontinuous, we use the mean value theorem for integration to obtain the following exact 

identities 
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Again, we note that points ξ at which the values of the various functions of the magnetization and its 

time derivatives are taken are generally different for each of the terms.  The distinction has however 

been lost here for clarity.  

Let us assume that the magnetization directions vary slowly in space on the interval   , , so 

that we can neglect terms containing products of space derivatives (e.g. 


















xx

BA mm
).  Next, to 

obtain the boundary conditions, we assume that the thickness of the boundary 2δ is small enough to 

neglect the left hand side of the equations in comparison to their right hand sides.  Indeed, the last 

terms on the right of each of the equations remain finite even if δ = 0.  As to the terms containing 

products A

~
, B

~
, AB

~
, AB

~
A , AB

~
d ,  AB

~ , and  BA
~ , it is the aim of this 

derivation to consider the case when they remain finite.  Also, we have to take into account the spatial 

dependence of parameters A
~ , B

~ , AB
~ , AB

~ , and BA
~ , and therefore to note that only parameters A

~  

and B
~  remain finite at the limits of integration, i.e. at points –δ and δ, respectively.  Then we obtain  
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By subtracting and adding the two equations, the system can also be written as 
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Finally, the sought boundary conditions are obtained using one of the following approaches.  In 

the first of them, identities        
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intermediate points ξ in terms of the values of either mB and 
x

 Bm
 defined at point δ and mA and 

x

 Am
 defined at point -δ.

71
  All terms containing products of derivatives are neglected, as we have 

already done once.  The resultant boundary conditions can be used to connect the solutions defined on 



14 

 

the opposite sides of the interface of finite thickness, i.e. in the same way as Hoffmann boundary 

conditions are defined and used.   
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are used to express quantities defined at points δ, -δ or ξ in terms of their and their derivatives’ values 

at x = 0.  As before, terms containing products of derivatives are neglected.  The boundary conditions 

defined in this way connect the solutions defined in the immediate vicinity ( 00 ) of the same point of 

the sample,
71

 i.e. in the same way as Barnaś-Mills boundary conditions are defined and used.   

The boundary conditions obtained using any of the two methods outlined above connect solutions 

defined on the opposite sides of the interface of finite thickness, thereby avoiding detailed 

consideration of the interface structure.  It is important to note however that, in both approaches, the 

formal limit of 2δ ≡ 0 results in the loss of coupling between media A and B, and so, δ should remain 

finite.  In terms of the usage, the relation between the boundary conditions defined using the two 

methods is the same as that between the Hoffmann boundary conditions (14-15), connecting solutions 

defined at distance a, and the Barnaś-Mills boundary conditions (18-19), connecting solutions in the 

same point.
71

   

The form of the resulting boundary conditions is very complex in general.  So, in the next 

section, we will discuss their properties in one specific yet very important limiting case.  Firstly, we 

will assume that the sample is characterized by negligible anisotropy both in the bulk of the media A 

and B and at the interface.  Secondly, we will neglect the Dzyaloshinskii-Moriya exchange interaction 

but will include the effects related to the loss of the inversion symmetry described by terms containing 

AB
~  and BA

~ .  In this approximation, the system of equations (30-31) reduces to  
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As a result of the approximations made, this system of boundary conditions does not account for the 

following two major classes of phenomena.  Firstly, it does not account for any pinning at the interface 

due to the surface (interface) anisotropy, which could be described by ensuring that the products 

A

~
, B

~
, AB

~
 remain significant when δ is reduced.  The topic is treated e.g. in Ref. 20.  

Secondly, it does not describe any non-collinearity.
78

  Indeed, even if the easy magnetization axes on 

the opposite sides of and within the interface were all parallel to each other and to the applied magnetic 

field, the coupling terms containing the product AB

~
d  could result in a non-collinear alignment of the 

magnetization vectors on opposite sides from the interface.  Both sets of phenomena are certainly 
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interesting and most likely very rich (see e.g. the recent results from Refs. 79-81) but are beyond the 

scope of this paper.  Nonetheless, using the same procedures outlined above, the corresponding 

boundary conditions can be obtained from equations (30-31) with all necessary terms (e.g. the those 

responsible for interface anisotropy and / or Dzyaloshinskii-Moriya exchange coupling) retained as 

required for a given model.   

 

IV. Discussion 

By performing the interpolation operations described in the previous section, we can rewrite the 

system of equations (32-33) as  
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where we have denoted AB

*

AB

~
4 AA   ,     ABAB

*

AB

~~4 A  and 

    ABBA

*

BA

~~4 A .  ξ is the coordinate of the point in which the cross-product 

 AB mm   is defined in equation (32).
82

  Here, vectors mA and mB are defined outside of the “two-

sublattice” region and therefore are physically meaningful.  The material parameters in equations (34-

35) have physical meaning of effective values obtained by averaging over the interface region.   

Alternatively, we can rewrite the system as  
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where we have denoted   ABAB

*

AB

*

AB

**

AB

~~4 AA   and 

  ABBA

*

AB

*

BA

**

BA

~~4 AA  .  Here, in contrast to equations (34-35), vectors mA and mB 

do not describe directions of any real magnetization vectors defined at point x = 0 but represent 

extrapolated directions of the real magnetization vectors defined just outside of the interface region.   

The two systems of boundary conditions, i.e. (34-35) and (36-37) have similar form, which is also 

similar to that of the Barnaś-Mills boundary conditions (18-19).  The boundary conditions (36-37) have 

fewer parameters to describe the interface, since they do not explicitly depend on its thickness, and so, 
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they should be preferable in use, e.g. in modelling experimental data.  In particular, treating **

AB , **

BA , 

and *

ABA  formally as fitting parameters, one can use their values to extract important information about 

the magnetic interfaces.  In the following, we refer to the equations (36-37) as to “generalized Barnaś-

Mills boundary conditions”.   

The relation between **

AB , **

BA , and *

ABA  is worthwhile a more detailed consideration.  Let us 

assume that their values have been obtained by fitting experimental data to a theory based upon 

boundary conditions (36-37).  Following Mills,
22

 we note that the continuous medium approach 

requires that vectors mA and mB in the energy density term BAAB

~
mmA  be defined at the same points 

of space, while in reality, they are defined in different points of the magnetic lattice, e.g. xA and xB.  So, 

with accuracy to terms linear in magnetization derivatives, the corresponding energy density term could 
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x0 is some point in the magnetic unit cell.  These additional terms have the same form as the terms with 

coefficients )(AB x  and )(BA x  introduced earlier into the energy density (equation (20)) 

phenomenologically.  So, one can expect that parameters **

AB  and **

BA  of this origin should yield 
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, where aeff is the effective magnetic lattice 

constant in the interface region.  The case of 0**

BA

**

AB   would imply the Barnaś-Mills boundary 

conditions.  Finally, assuming that an estimate, ηeff, for the average volume exchange parameter for the 

interface is available, the effective thickness of the interface can be estimated as 
effSBSA

eff

*

AB
eff2




MM

aA
 .  

The value of ηeff could be derived from microscopic or ab-initio calculations, or even estimated as an 

arithmetic average of the corresponding parameters of materials A and B.  The resulting estimate for 

the interface thickness cannot, of course, be smaller than the effective magnetic lattice constant, which 

would indicate that the volume exchange parameter, ηeff, and / or the saturation magnetization values, 

MSA and MSB, in the interface region are significantly reduced relative to the estimations.   

It could be tempting to assume in equations (32-33) that δ tends to zero while product AB

~
A  

remains finite, and therefore to use the following system of equations 
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as boundary conditions.  However, as we have already noted and as it has been discussed in 

Refs. 20,22, this form of boundary conditions leaves questions with regard to the microscopic 

interpretation of the exchange coupling constant *

ABA .  So, either the natural boundary conditions (8-9) 

or the generalized Barnaś-Mills boundary conditions (36-37) should be used instead.   
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Let us discuss systems to which the generalized Barnaś-Mills boundary conditions could be 

applied.  A straightforward example is an interface between two materials that can be described as 

Heisenberg ferromagnets, provided there are reasons to expect that some interdiffusion of the two 

atomic species has taken place in the interface region.  Pure Heisenberg ferromagnets are relatively 

rare.  However, fortunately, there is a plenty of other magnetic materials (notably, including many 

ferrimagnets and itinerant ferromagnets) that demonstrate behavior consistent with predictions of 

Heisenberg-type lattice models or theories based on the Landau-Lifshitz equations, which is evident 

e.g. from the wide use of the Hoffman boundary conditions.  Hence, we believe that the generalized 

Barnaś-Mills boundary conditions will have a similar area of applicability.  Indeed, in spite of the 

artificial separation of two magnetic sublattices in the interface region, the result is expressed only via 

magnetizations defined outside of the interface (equations (34-35)) or their extrapolations (equations 

(36-37)).  At the same time, the excitation of antiferromagnetic resonances is excluded by neglecting 

the terms containing time derivatives in equations (26-27).  The non-collinear static alignment of the 

two magnetic sublattices in the interface region is just a way of describing the magnetic ground state, 

while the actual distribution of the magnetization is given by the net magnetization, i.e. by 

mAMSA + mBMSA.  Thus, to list a few topics of relevance, we expect the problems of spin wave 

scattering from interfaces
83-86

 (including the recently proposed magnonic Goos-Hänchen effect
87

), spin 

wave dispersion in magnonic crystals
24,32,44,46,47,88

 and quasi-crystals,
38,89,90

 spectra and localization of 

defect and surface modes,
91,92,93

 and associated applications in magnonic devices
14,40,41,94

 to be revisited 

with the generalized Barnaś-Mills boundary conditions derived here.   

As far as experimental studies of spin waves are concerned, provided that the conditions of 

applicability of the exchange approximation are met and all relevant energy terms and associated 

torques are included in equations (20) and (30-31) respectively, failure of the generalized Barnaś-Mills 

boundary conditions to describe experimental data could be due to two reasons.  Firstly, this could 

imply that the interface is too thick either for the dynamical terms to be neglected in (26-27), or for the 

first order extrapolation to be sufficient, or both.  Secondly, this could be a result of neglecting 

magnetic damping terms in the calculations, since dissipation could be non-negligible in the interface 

region.
11

  Both cases would require a more complex interface modeling that would account for the 

interface regions on equal grounds with the semi-infinite materials A and B.
60-65,95,96

   

The generalized Barnaś-Mills boundary conditions proposed in this paper are not limited to linear 

spin wave dynamics but could equally be applied to the theory of nonlinear spin waves.
97,98

  Moreover, 

although the discussion above has been limited to the exchange spin waves, the boundary conditions 

could also be applied in the theory of magnetostatic, dipole-exchange, or even retarded spin waves.
12,13

  

This would require that the magnetostatic or full Maxwell equations be solved side-by-side with the 

Landau-Lifshitz equation and appropriate boundary conditions for the magnetic and electric fields be 

applied at the interface.  As a final note of this section, we note that the boundary conditions could be 

used to calculate static non-uniform micromagnetic configurations (e.g. magnetic domain walls
99

,
100

) 

near the interface between material A and B.  Indeed, the static calculation would only differ from the 

one above by that the time derivatives of the magnetizations would be equal to zero strictly rather than 

approximately.  Moreover, this sort of calculation will always need to precede solution of any dynamic 

problem.  Albeit beyond the scope of this paper, these applications of the theory developed here open 

an excellent avenue for future research.   
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V. Summary 

Appropriate boundary conditions at interfaces separating different media represent a mandatory 

complement of any differential equation describing particular physical phenomena in the composite 

system.  In this paper, we have developed a systematic approach by which to derive boundary 

conditions for magnetization at an interface between two ferromagnetic materials.  The approach treats 

the interface as a two-sublattice material, although the final equations connect magnetizations outside 

of the interface region and therefore do not explicitly depend on the interface structure.  Instead, the 

boundary conditions are defined in terms of some average properties of the interface, which can have a 

finite thickness.  In addition to the interface anisotropy and symmetric exchange coupling (which can 

be treated using existing forms of the magnetization boundary conditions), this approach allows us to 

take into account coupling resulting from inversion symmetry breaking in the vicinity of the interface, 

including the Dzyaloshinskii-Moriya antisymmetric exchange interaction.  The corresponding general 

result is given by equations (30-31), in which one would only need to perform the outlined 

interpolation to suit their specific problem.  In this paper, the interpolation has been carried out only for 

the case of negligible interface anisotropy and Dzyaloshinskii-Moriya exchange parameters to yield 

boundary conditions that represent a generalization of those proposed earlier by Barnaś and Mills and 

are therefore named “generalized Barnaś-Mills boundary conditions”.  We demonstrate how one could 

use the latter boundary conditions to extract parameters of the interface via fitting of appropriate 

experimental data.  The developed theory can be applied to modeling of not only linear and non-linear 

spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, but also of non-

uniform equilibrium micromagnetic configurations near the interface.  Finally, we have outlined the 

way how our results would impact the research in magnonics and micromagnetism, listing also some 

theoretical problems solutions of which could be generalized with help of the derived boundary 

conditions.   
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