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1 DETERMINISTIC LLG EQUATION AND
TREATMENT OF THE ENERGY
DISSIPATION IN MICROMAGNETICS

1.1 Origin and limitations of the standard
LLG equation

An equation of motion for the magnetization of a ferromag-
net, known as the Landau-Lifshitz equation
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netism. © 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7.
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has been introduced 1935 by L.D. Landau and E.M. Lifshitz
in their pioneering work (Landau and Lifshitz, 1935) devoted
to the phenomenological evaluation of the permeability
tensor of ferromagnets.

The first term in (1) describes the magnetization precession
of the total effective field and can be derived in frames
of a general phenomenological theory which is based on
the assumption that for low temperatures and slowly (in
space in time) varying magnetization the magnitude of
the magnetization vector M = Mg is conserved. The latter
statement, in turn, follows from the assumption that the
equilibrium value of My is fixed by the exchange interaction,
which is assumed to be the strongest interaction in a
ferromagnet, which is definitely the case for all ‘normal’
ferromagnetic materials. Comparison of the equation (1) with
the precession equation for a ‘free’ magnetic moment in
the small damping limit provides the value y, = gle|/2m.c
which is the so-called gyromagnetic ratio. The g-factor in
this definition, being g = 2 for a free electron, may slightly
vary around this value dependent on the concrete material.
Usually at least the combination y,Ms may be measured
with a high accuracy using FMR, so that the treatment of the
first term in (1) is quite straightforward.

In contrast to the precession term, the handling of the
energy dissipation processes in ferromagnets turned out to
be a highly complicated issue. The double vector product
term in (1) was chosen in the original paper (Landau
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and Lifshitz, 1935) basing on the purely phenomenological
reason that energy dissipation processes (i) should drive the
magnetization toward the effective field direction (in the
minimal energy state the magnetization is directed along
Heff), but (ii) the magnetization magnitude Mg should still
remain constant. The second term in (1) obviously satisfies
these both conditions, being directed toward the effective
field and perpendicular to the magnetization.

It was pointed already by the authors of (Landau and
Lifshitz, 1935) themselves that the damping form suggested
by (1) is by neither the only possible nor the most general
one. First of all, it can be seen by a sole inspection of
this equation that if we understand the coefficient before the
damping term A in a usual way, that is, as a parameter whose
value is proportional to the intensity of the energy dissipation
processes in our system, then (1) cannot be used to describe
the magnetization motion for moderate and large damping.
The reason for this limitation can be seen immediately if we
consider the overdamped regime (A > 1) where the magnetic
moment motion is dominated by the dissipation term. In this
case, the basic equation (1) predicts that the magnetization
relaxation is getting faster when the damping value increases
which is in a strong contradiction with a physical picture of
damping.

This circumstance was realized already by Landau and
Lifshitz themselves, who have pointed out that their equation
may be used in the precession-dominated regime (A < 1)
only. The first phenomenological equation which qualita-
tively, reasonably describes the magnetization motion in the
whole dissipation range was suggested by Gilbert (1955):

dM o dM
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Gilbert has derived this equation starting with the equation
of the undamped magnetization precession rewritten in the
Lagrangian formalism. In this formalism, the damping can be
rigorously added to the system using the so-called Rayleigh
dissipation function (Landau Lifshitz, 1981). Transforming
the resulting equation back to the force-torque form, Gilbert
arrived at the equation (2), where the damping is represented
by the second term in the round parenthesis with o being the
damping constant.

The dissipation term form introduced in the Gilbert
formulation of the magnetization dynamics can also be
understood in the following way. First, the energy damping
is supposed to slow down the precession of the magnetic
moment, so the term describing the energy dissipation can
be added directly to the effective field which is responsible
for the moment precession and defines its frequency via
o=y, H eff Second, the magnitude of this term should
be proportional to the relaxation speed, analogously to

a standard (e.g., hydrodynamical) viscous damping. And
finally, the added damping term should still conserve the
magnetization magnitude. All these three conditions are
satisfied by the dissipation term (2), which is called the
Gilbert damping. It is straightforward to show (Kikuchi,
1956) that this formulation leads to the intuitively expected
dependence of the switching time (relaxation speed) on the
damping o, where the switching time is large both for
small damping (precession-dominated regime, the moment
performs many precession cycles before switching) and large
damping (magnetic moment does not precess, but moves
slowly owing to a large o value).

The Gilbert equation in its native form (2) is highly
inconvenient to use, because it contains the time derivative of
the magnetization on both sides. Fortunately, it can be easily
cast into an explicit form (dM/dr on the left-hand side only)
by multiplying both sides by the vector M, transforming
the double vector products using the standard vector algebra
rule and utilizing the conservation of the magnetic moment
magnitude as (M-M) = M3. The final result
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has the form of the Landau-Lifshitz equation (1) if we
replace the gyromagnetic ratio y, by y,/(1 + «?) and put
o = A. It is also evident that in the small damping limit both
equations coincide if o = A, as it should be.

Summarizing, we point out that the two most widely
used equations for the description of the damped magneti-
zation motion are formally equivalent. However, the physics
involved in the definition of the damping coefficient is quite
different: Whereas in the Gilbert form (2) the value of the
damping parameter « can be assumed to be proportional to
the intensity of the energy dissipation processes which slow
down the magnetic moment motion, for the Landau—Lifshitz
form it is true only in the small damping limit. Although this
issue has been discussed in the past several times (see in addi-
tion to the original papers of Landau et al. and Gilbert, e.g.,
also comments in Kikuchi (1956) and Mallinson (1987)),
everybody who is familiar with the contemporary literature
will surely agree that recalling them once more will at least
not harm. The difference mentioned in the preceding text
tends to be forgotten simply because for the overwhelming
majority of applications (including, but limited to the mag-
netic random access memory (MRAM) technology and high
density storage media) the case of the small damping is of
major interest. However, this circumstance detracts no way
from the importance of the physical meaning of the param-
eters entering into these equations.
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We conclude this subsection with the following important
remark. As soon as we have introduced the restriction
M = Ms, the magnetization is allowed only to rotate so
that any magnetization change AM should be perpendicu-
lar to M itself. Hence, one can gain the impression, that
the equation (1) (or its equivalent forms) is the most gen-
eral form of the equation of motion in this situation: from
a purely mathematical point of view (1) can be consid-
ered as an expansion of the magnetization time derivative
(which should lie in the plane perpendicular to the magne-
tization) over the two vectors [M x H] and [M x [M x H]]
which form an orthogonal basis in this plane. Coefficients
y and A can then be viewed simply as the expansion
coefficients of an arbitrary allowed magnetization change
in this basis. However, from the physical point of view
the equation (1) and its analogues contain a much stronger
assumption than the trivial statement about the existence of
such an expansion. Namely, the form (1) means that the
expansion coefficients are time-independent scalar variables,
so that the magnetization motion including damping can
be described on a phenomenological level with two scalar
parameters whose values do not depend on the instanta-
neous magnetization configuration. As we shall see in the
subsequent text, this is not necessarily true. However, in
many cases the combined Landau-Lifshitz—Gilbert (LLG)
equation (3) provides a convenient and at least semiquanti-
tatively adequate description of the damped magnetization
precession.

Concluding this subsection, we would like to briefly men-
tion possible extensions of the standard LLG-equation (3)
to the case, when the magnetization magnitude is not con-
served, which may be particularly interesting for tempera-
tures not very far from the Curie point. One of the possi-
bilities to account for a change of the magnetization value
on the mesoscopic level is the insertion into the LLG
equation of the longitudinal relaxation term. This question
was discussed already by Aharoni in the 1980s. For the
recent development, including a more detailed discussion
of possible forms of such an additional term, other physi-
cal problems concerning this topic (e.g., calculation of the
corresponding relaxation time) and some simulation results
obtained with such a generalized LLG equation, we refer
the reader to the publications (Garanin, 1997; Smith, 2002;
Grinstein and Koch, 2003; Garanin and Chubykalo-Fesenko,
2004).

1.2 To the possibility of alternative forms
of the damping term

Rigorous evaluation of the damping constant entering the
LLG equation is one of the most complicated problems

of the modern solid-state magnetism not only due to a
large variety of the damping mechanisms in ferromag-
nets, but also because in most cases it is really difficult
to separate the contributions of these mechanisms to the
energy dissipation rate measured experimentally (e.g., using
FMR). To the mechanisms mentioned in the preceding text
belong the spin-lattice relaxation (magnon-phonon interac-
tion), two-and many-magnon processes, magnon-impurity
interactions, magnon scattering on the surface and interface
defects and so on, we refer the interested reader to the con-
tributions in the Volume 1 of this Handbook.

For this reason, aphenomenological approach which could
provide nontrivial conclusions about the form of the damping
term and supply methods for the evaluation of the damp-
ing value beyond the simplest LLG phenomenology, but still
valid for a relatively broad class of the energy dissipation
processes is in principle highly desirable. However, a devel-
opment of such an approach is a delicate matter, requiring
careful analysis of each step of a corresponding ‘general’
procedure.

As an example of a such an attempt we would like to
analyze a recently developed and meanwhile widely cited
approach of Safonov and Bertram (2003) and references
therein, who suggested to use the normal mode analysis
of a magnetic system coupled to a thermal bath. Up to
a certain level such an analysis can be performed with-
out specifying the concrete energy dissipation mechanism,
but merely employing general assumptions concerning the
Hamilton function, which describes the interaction between
the magnetization and thermal reservoir.

In the simplest case of a uniformly magnetized ferromag-
netic particle, the normal mode analysis starts with the Taylor
expansion of the magnetic energy density E/V over small
magnetization variations M, and M,

Ho, Ho,
= 0 2 02 )
2Ms 2Ms

E

v
near the equilibrium moment orientation My, whereby the Oz-
axis is directed along M. Dimensionless coefficients before
the squares of magnetization components M,y in (4) can
be written in the form Ho,(y)/Ms, where parameters Hoyy)
(which describe the curvature of the energy surface for the
equilibrium magnetization state) have the dimension of a
field [1].

Any equation of motion which describes the magne-
tization precession in terms of components M, and M,
leads to the coupling of their time-dependencies and is
thus unsuitable for the identification of the system nor-
mal modes. For this reason, Safonov and Bertram pro-
ceed by introducing the (complex-valued) functions a(t) ~
M, +iM, and a*(t) ~ M, — iM,. These functions are fully
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analogous to the corresponding quantum-mechanical oper-
ators which increase/reduce the z projection of the angu-
lar momentum, but the formalism developed by Safonov
and Bertram is a purely classical one. The functions a(r)
are required to describe the interaction of a magnetic
system with a thermal bath, because they appear in the cor-
responding interaction term of a Hamiltonian; this is the rea-
son why this intermediate transformation should be explic-
itly introduced. The second transformation a(t) ~ uc(t) +
vc*(t) and a*(t) ~ uc*(t) 4+ vc(r) diagonalizes the Hamilton
function, which becomes H: woc*c, with wy = y./Hox Hoy
being the FMR frequency of our system. Equation of motion
for these new ‘coordinates’ are uncoupled, that is, ¢(¢) =
—iwpc(t) and ¢*(t) = iwoc*(1).

At the next step the interaction between the normal modes
of the magnetization oscillations and a thermal bath described
as a set of harmonic oscillators is introduced via the insertion
of a linear coupling between functions a(z) and the thermal
bath normal modes b; into the system Hamiltonian (see
Safonov and Bertram, 2003 for details):

H ~ Emag + Epath + Zk [Gk(ab;: +a*by)

+ Fy(abx + a*b})] S)

where Ej,e and Ep,yp are the energies of a magnetic system
and thermal bath only.

Transformation of the interaction term to the variables c(t)
and c¢*(¢), solution of the resulting dynamic equations for the
thermal bath modes by and substitution of the expression for
by into the dynamic equations for c(¢) leads to the equation

dc .
3 = "o+ do)e —ne+ f(1) ()

which describes a damped harmonic oscillator under the
influence of a random force (noise) f(z). The damping
constant 7 in this formalism

~ 12
n = |G| D(wo) )

is proportional to (i) the squared interaction coefficient G; =
uGy + vFy of a magnetic system with the bath normal mode
having the same frequency wg as the undisturbed magnetic
system and (ii) the density of states D(wy) of a thermal bath
at this frequency.

An important conclusion which can be drawn from the
consideration in the preceding text is that in this phe-
nomenological model the magnetization damping present in
the Gilbert or Landau-Lifshitz equation of motion for the

components of the system magnetization M(z)

dM a dM
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cannot be reduced anymore to a scalar variable, but is a
tensor

Hy O O
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where the diagonal components of this tensor are propor-
tional to the parameters Hoy(y) characterizing the energy
surface curvature near the equilibrium magnetization state
(expression (9) may be verified by rewriting M, and
M, via the functions c(t) and c¢* () and substituting
the resulting expressions into (8), thus arriving at the
equation (6)). This tensor reduces to a scalar only for
a symmetric energy minimum with Hyx = Hp,, which is
rather an exception.

The formalism outlined in the preceding text can be
extended to magnetic systems with arbitrarily nonhomo-
geneous equilibrium magnetization configuration (Bertram,
Safonov and Jin, 2002). After the discretization of a fer-
romagnetic body into N finite elements the eigenmodes
of its magnetization state can be identified using the
equation of motion without damping Mi = —y[M; x Hfff].
Expanding the system state magnetization vector T =
My, ...,M;,. .., My) the near the equilibrium state one
obtains a set of coupled equations 7 = —yﬁT where ten-
sor H consists of corresponding effective field compo-
nents. Diagonalization of this tensor provides the eigen-
vectors ¢;, which give the spatial distribution of the i-th
eigenmode and eigenvalues, which are proportional to the
mode oscillation frequencies ;. Further analysis proceeds
then as in the simplest case discussed in the preceding
text.

However, the procedure sketched in the preceding text,
which leads to the conclusion that the damping in the
LLG equation should be a tensor, is incorrect, as shown
by Smith (2002). Taking into account that the ques-
tion about the form of the phenomenological damping
term is crucially important for micromagnetic calcula-
tions, we shall briefly reproduce here the argumentation
of Smith, replacing his simple illustrative example by an
even simpler one.

To find out where is the flaw in the argumentation of
Bertram and Safonov, we consider the simplest possible
mechanical system with more than one eigenmode, that is,
two particles of equal masses m, each of which is attached
to a wall via a spring with the stiffness constant k. Particles
are placed in the isolated reservoirs filled with a fluid with
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different viscosities (this is the only difference between
the particles) and coupled via a spring with the stiffness
kc. If particle coordinates x; and x, in the mechanical
equilibrium are set to zero, the corresponding equations of
motion are

miy = —n %1 — kxy + ke(xa — x1) + Ff (10)

miy = —myks — kxy — ke(xa — x1) + Ff (11)

Here, the friction coefficients n; and 17, are different
owing to different fluid viscosities. Random thermal forces
F" responsible for the Brownian motion of the particles
are obviously uncorrelated (because the reservoirs with the
particles are isolated from each other), § correlated in time
and their mean-square values are proportional to the system
temperature 7 .

The determination of the system normal modes should
be performed in a standard way, using the equations (10)
and (11) without dissipative and fluctuation forces. In this
very simple case, it is enough to add and subtract these
equations in order to find out that the normal modes are
xi = (x +x2)/\/§ and x" = (x] — xz)/\/i, so that the
transformation matrix U between the vector of the particle
coordinates x and the normal modes of our system x" (i.e.,
x=Ux")is

U_lll 2
=5 - (12)

Next, we apply this transformation to the initial equations
of motion system, (10) and (11), written in the matrix
form

Mx = —Hx + Kx + F- (13)

where the mass and friction matrices are diagonal
(M =diag(m,m),H =diag(n, n,)), and the stiffness mat-
rix K has both diagonal Ky = Ky = —(k + k.) and off-
diagonal elements K| = K| = k.. The transformation to
the normal modes proceeds in the usual way: we insert the
unit matrix in the form 7 = U-UT into the matrix-vector
products into the equation (13) and multiply it by the matrix
UT from the left. Using the relation UTx = x" and per-
forming the matrix multiplications M=U"MU=MH=
UTHU, K = UTKU, we arrive at the equations of motion
for the normal modes:

|:m 0].[551}:_1[7714‘772 ’71—’72]
0 m xn 20 mi—=n2 nm+mn

| 545

i —k 0
e T 0 —k+ 2k

x0 Frb
Mzl

=

where the vector of fluctuation forces F™ = UT-F- now
contains the corresponding forces for the normal modes
defined as F'" = (FL + F}) /2, F™ = (FF — F})/V2.

It can be immediately seen from equation (14) that the
equations of motion for the normal modes which include
the damping term are correlated owing to the non-diagonal
character of the transformed damping matrix H = UTHU.
This means that the simple phenomenological addition of
the uncoupled damping terms like the term —n-c in (6) is
incorrect. This term in (6) results from writing the equations
of motion for the coupled system ‘magnetic body + thermal
bath’ directly in terms of the normal modes (see (5)), which
hence turns out to be incorrect at least when the coupling
of these modes and correlation properties of corresponding
random (fluctuation) forces are important. The conclusion
(9) about the obligatory tensor form of the damping in the
LLG equation, being a direct consequence of the uncoupled
damping of normal modes, is for this reason erroneous.
A detailed extension of this discussion to the case of
micromagnetic equations can be found in (Smith, 2002).

Another very important point is that the addition of
uncoupled fluctuation forces into the equations of motion for
the normal modes (instead of using corresponding equations
for real particles) as it is done in equation (6) is also
physically incorrect. Namely, if thermal forces acting on
the normal modes would be indeed uncorrelated, then the
corresponding forces acting on real particles (obtained via
the backward transformation as FX = U-F™") would be
correlated, which is completely unphysical. This is evident
at least in the case considered in the preceding text where
particles are placed into separate isolated reservoirs. Taking
into account that the random (Brownian) forces are caused
by the chaotic motion of the fluid molecules, any correlations
between these forces in two separate isolated fluid volumes
are obviously absent.

The discussion in the preceding text should remind the
reader, that although normal modes of the system are
doubtlessly a very useful physical concept, one should not
forget that initially dynamical equations must be written
for real particles (magnetic moments) where the physical
meaning of various terms in such equations can be directly
examined.

The last comment in order is that the argumentation line
presented here does not mean that the tensor form of the
damping term is forbidden. As already mentioned by Smith
(2002), this only means that any conclusion about the specific
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form of the damping should be based on the consideration
of the corresponding physical mechanism responsible for the
energy dissipation.

2 STOCHASTIC LLG EQUATION:
CHOICE OF THE STOCHASTIC
CALCULUS

2.1 General introduction to the solution of SDEs

Equation-of-motion simulations of the remagnetization dyna-
mics including thermal fluctuations require, in contrast to the
case T = 0, the solution of stochastic differential equations
(SDE), which is by far more difficult. A simple example of
such stochastic (Langevin) equations arising in the theory of
stochastic processes is the equation of motion for a particle in
a viscous medium under the influence of a deterministic force
Fyer and thermal fluctuations represented via the random (or
Langevin) force & (1 denotes the friction coefficient)

1
X =  Faa®) +alx, 0-6L.(0) (15)

& (¢) is usually assumed to be a random Gaussian variable,
8 correlated in time:

() =0, (50)-5()=2D-5(r) (16)
with the noise power D ~ T. The ‘good’ function a(x, t)
contains the coordinate- and time-dependencies of the noise
characteristics.

The problem with the equations of this kind is that
they can by no means be interpreted as the ‘usual’ dif-
ferential equations (DE). Namely, any attempt to integrate
equation (15) as an ordinary DE leads to the integral

W(r) =/$(t/)-dt’ 7)
0

which obviously represents a random process, because
its integrand is a random variable. From the correlation
properties (16) it follows that W (¢) is the standard Wiener
process (Brownian motion) Gardiner (1997). This pro-
cess is not differentiable — the ratio (W (r + At) — W(¢t))/At
diverges in the limit Ar — O almost surely. Because the
derivative dW/dr = £(¢) does not exist, in the usual sense
the equation (16) including this derivative does not exist also
and hence cannot be interpreted as a ‘normal’ ordinary DE.

The proper way to assign a mathematically correct mean-
ing to the equations like (15) is to introduce the differential

of the Wiener process dW (which is usually viewed by a
physicist as a replacement of the product &(¢)ds) and to
define the corresponding integral

1 =/a(x,t)~dW(t) (18)

analogously to the standard Riemann—Stieltjes integrals as
the limit of partial sums

1= lim » a(e(r). t)-AW(AL)

i=1
= lim Y a(e(), T W) = W)l (19)
i=1

with the points 7; where the integrand values are evaluated
lie inside the interval [t;_1, ;].

This limit, being understood in the mean-square sense (see
any handbook on stochastic calculus) is convenient enough
to develop the complete analysis of such stochastic integrals.
The real problem is that (in a heavy contrast to the standard
analysis) this limit itself — and not just the values of partial
sums in (19) — depends on the choice of the intermediate
points 7; (see Chapter 3 in Gardiner (1997) for a simple
but impressive example).

The only way to cope with this problem is to introduce
some standard choices of the intermediate points and to
find the best choice from the physical point of view. The
two standard choices — (i) 7; = #;—1 coincide with the left
points of the intervals ({to stochastic calculus) and (ii) t; =
(ti—1 + t;)/2 are in the middle of the intervals (Stratonovich
interpretation) — lead to different solutions if the noise in
a stochastic equation is multiplicative — that is, the random
term is multiplied by some function of the system variables.
In this case, usually the Stratonovich interpretation provides
physically correct results, recovering, for example, some
important properties of physical random processes obtained
using more general methods (Gardiner, 1997).

In micromagnetics, the most common way to include ther-
mal fluctuation effects into the consideration is the addition
of the so-called ‘fluctuation field’ to the deterministic effec-
tive field in equation (LLG). This leads to the stochastic LLG
equation (Brown, 1963b) for the magnetic moment motion.

dM y
— —. Hdet Hﬂ — A
o y M x (H™ + HY)] s

M x [M x (H* + H"]] (20)

Here, the deterministic effective field H' acting on the
magnetization includes all the standard micromagnetic con-
tributions (external, anisotropy, exchange and magnetodipo-
lar interaction field). Analogous to the random force in
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the mechanical equation (15), Cartesian components of the
fluctuation field H' are usually assumed to be & correlated
in space and time (Brown, 1963b)

(Hgﬂ,i) -0 (H;Z(())H:;](t)) = ZD-S(I)'&'j'agx/f (21)

where i, j are the discretization cell (magnetic moment)
indices and &,¢¥ = x, y,z. The noise power D evaluated
using the fluctuation-dissipation theorem (see subsequent
text for a detailed discussion) is proportional to the system
temperature 7 and depends on y and the damping constant A:

A kT
D=——5 ——— (22)
1 +2% yMsAV

We note in passing that the fluctuation field H" in the
dissipation term of (20) can be omitted by rescaling
correspondingly the noise power D (Garcia-Palacios and
Lazaro, 1998; Braun, 2000). We shall use this possibility
below by comparing the Ito and Stratonovich interpretations
of the LLG equations.

The noise in the Langevin equations 20 is multiplicative,
because in the vector products the random field projections
are multiplied by the magnetic moment projections. This
fact was pointed out already in the pioneering paper of
Brown (1963b), who suggested to use for this reason the
Stratonovich interpretation of the equation.

Analytic solution of (20) is possible only in a few
simplest cases, so that really interesting magnetic systems
can be studied only numerically. For such simulations, the
choice of the stochastic calculus is, in principle, of primary
importance, because different numerical integration schemes
converge to different stochastic integrals: The Euler and
the simple implicit methods converge to the Ito solution,
Heun and Milstein schemes — to the Stratonovich limit
(McShane, 1974) and Runge-Kutta methods can converge
to both types of the stochastic integrals (including the in-
between cases) depending on their coefficients (Riimelin,
1982). Most authors (see, e.g., Garcia-Palacios and Lazaro,
1998; Scholz, Schrefl and Fidler, 2001; Berkov, Gorn and
Gornert, 2002) and commercial micromagnetic packages
(advanced recording model (ARM), LLG, MicroMagus) use
the Heun, Runge-Kutta or modified Bulirsch—Stoer methods
converging to the Stratonovich solution, but several groups
employ the Ito-converging Euler (Zhang and Fredkin, 2000;
Lyberatos and Chantrell, 1993) method and implicit schemes
(Nakatani, Uesaka, Hayashi and Fukushima, 1997). These
last papers were criticized in Garcia-Palacios and Lazaro
(1998) where it has been claimed that only the Stratonovich
interpretation ensures the physically correct solution of (20).

Fortunately, we could show that for standard micro-
magnetic models (where |M| = Mg = Const) both Ito and

Stratonovich stochastic calculi provide identical results, so
that the only criterion by the choice of the integration method
is its efficiency by the solution of the LLG stochastic equation
for the particular system under study. In the next subsec-
tion, we address this question in more detail because of its
methodical importance.

2.2 Equivalence of Ito and Stratonovich stochastic
calculus for standard micromagnetic models

In this subsection, we shall prove that for the system in which
the dynamics is described by the stochastic equation (20)
the Ito and Stratonovich versions of the stochastic calculus
are equivalent if the magnetization magnitude (or the mag-
nitude of the discretization cell/single particle) is assumed to
be constant [2]. This is true for many magnetic system mod-
els including the classical Heisenberg and related models,
spin glasses, fine magnetic particle systems (Dotsenko, 1993;
Hansen and Morup, 1998), and in standard micromagnetics
(Brown, 1963a).

First, we repeat that the fluctuation field in the dissipation
term of (20) that can be omitted by rescaling correspondingly
the noise power D (Garcia-Palacios and Lazaro, 1998; Braun,
2000). Thus we can restrict ourselves to the study of a simpler
equation

dm,-

)

- )u[m,- X [mi X h;’ff]] (23)

To proceed, we recall that by the transition between the Ito
and Stratonovich forms of a stochastic differential equation
the additional drift term appears: if one adds to a SDE system

dx i

o = A0+ Buky (24)
k

the deterministic drift Dij Bji(dBix/dx;), then the Iro
solution of this new system
dxi

0B;
— = A1)+ D) By : +) By (25)
dr I axj k

is equivalent to the Stratonovich solution of the initial system
(24) (Kloeden and Platen, 1995).

For the LLG equation written in Cartesian coordinates the
matrix B is Bijy =Y ; €ijkm j, and the additional drift term
reduces to dm;/dt = —2Dm;. This drift is directed along
the magnetic moment m; trying to change its magnitude,
which is forbidden by the model. Hence, this term must
be discarded, which leads to the equivalence of the Ito and
Stratonovich schemes.
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The same result can be obtained (and understood) in a
much simpler way rewriting the LLG equation using spheri-
cal coordinates (6, ¢) of the moment unit vector m (Cartesian
coordinates of magnetic moments are not independent: owing
to the conservation of a moment magnitude they are subject
to the restriction m? ; +m7 ; +m?; = 1). In spherical coor-
dinates the part containing the fluctuation (stochastic) field
part of (23) which is of interest for us reads (Brown, 1963b;
Braun, 2000).

de dg | B
S P 26
dr ¢ dr sin "¢ (26)
so that the matrix B responsible for the drift mentioned in
the preceding text is

_( Bes Bay \ _ 0 1
B _< By, By, )‘( —1/sin6 0 @7

and this drift is exactly zero:D ij Bjx(dBix/9x;) =0
(i, j,k=1,2and x; =60, x, = ¢). Hence, we arrive at the
same result that Stratonovich and Ito stochastic integrals
are equivalent in this case, which means that for stochas-
tic dynamics of models with rigid dipoles (dipoles with con-
stant magnitudes) there is no difference between the Ito and
Stratonovich solutions of corresponding stochastic differen-
tial equations (Berkov and Gorn, 2002).

It is interesting to see why the opposite statement made
in Garcia-Palacios and Lazaro (1998) is incorrect. Using the
Fokker—Planck equation (FPE) which describes the evolution
of the probability distribution of the magnetization orien-
tation P(m, t), the authors of Garcia-Palacios and Lazaro
(1998) have shown that an additional drift term d(mP)/0m
appears in the FPE derived from the [fo interpretation of
the Langevin equation. But this term should be excluded
from the FPE because it leads to the probability density
drift along the magnetization vector which would change
the moment magnitude (this can be most easily seen in
spherical coordinates (m, 6, ¢) where this term reduces to
d(mP)/om).

To support our conclusion about the equivalence of the
Ito and Stratonovich integrals for models with constant
magnetic moment magnitudes, we have performed numerical
experiments simulating equilibrium (density of states) and
nonequilibrium (time dependent magnetization relaxation)
properties of a disordered system of magnetic dipoles. We
have solved the stochastic LLG equation (20) using methods
converging either to its Ito (Euler scheme) or Stratonovich
(drift-modified Euler and Heun schemes) solutions. Results
obtained by all these methods coincide within the statistical
accuracy, confirming that Ito and Stratonovich calculi lead,
for these systems, to the same physical results despite that
the noise in the stochastic LLG equation is multiplicative.

However, we point out that the proof in the preceding text
heavily relies on the conservation of the moment magnitude.
Hence for models where this is not the case — for example,
by simulations of the heat assisted magnetic recording
(HAMR) or for models attempting to relax the local restric-
tion M = Mg = Const (see preceding text) — one should pay
close attention to the choice of a numerical method used to
solve equation (20).

3 STOCHASTIC LLG EQUATION:
THERMAL NOISE CORRELATIONS

3.1 Thermal fluctuations for a single magnetic
moment

3.1.1 Introduction

As it was stated in Section 2, the ‘standard’ way to take
into account the thermal fluctuations of the magnetization in
micromagnetic simulations is the inclusion of the ‘fluctuation
field” H" into the basic equation (20), which we write out
here for a single magnetic moment g once more to have it
at hand:

dp

5 = 7l @ HD]

- A%-[u x [wx @S +HD]]  (28)

Components of the this field H? are supposed to have §
correlation in space and time

(HE)) =0 (HP.(0)-HJ} ;1)) =2C-8(1)-8i;8ey  (29)

where i, j are the discretization cell (or magnetic moment)
indices and &, = x, y, z. The proportionality coefficient
before the § functions in (29) is the noise power C, which
can be evaluated as (when the random field is present in both
terms on the right-hand side of (20))

KT h kT

T+ v 1+22 yMsY,

(30)

In the last equality we have used the relation u =
MgV, between the particle magnetic moment (, saturation
magnetization of the particle material Mg and the particle
volume V.

The question of main interest is whether the properties
(29) and (30), introduced by Brown (1963b) for a single-
domain particle — actually for a single magnetic moment
surrounded by a thermal bath — would survive for a typ-
ical micromagnetic system, where complicate interactions
between the magnetic moments of the finite elements used
to discretize a continuous problem are present.
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We start the discussion of this principal problem with the
statement that it actually contains two separate question:

1. Whether the correlations between random field compo-
nents can be really treated as § -functional ones and

2. Whether the noise power can be evaluated using the
universal expression like (30) which contains only the
system temperature 7', the gyromagnetic ratio y, the
damping constant A and the magnitude of the cell
magnetic moment 4 = MsAV, and thus does not depend
on any interaction details and other features of the
concrete system under study.

To answer these questions for a micromagnetic system, we
first recall how the § correlations (29) of the random noise
are introduced for a single magnetic particle, how the power
of this noise (30) can be obtained for this simplest case, and
discuss a physical sense of the expression (30).

First of all, in case of a single particle (single magnetic
moment) we are not interested in spatial correlation proper-
ties of the noise. The statement that temporal correlations of
the random field components are § functional is an assump-
tion based explicitly on the properties of that physical compo-
nent of a thermal bath which is responsible for the appearance
of thermal fluctuations. The most common point of view is
that thermal fluctuations are mainly due to the interactions
with phonons. In this case, we are interested in the correla-
tion time associated with typical phonons, which contribute
to thermal bath fluctuations. If we study the properties of
our system at room temperature, which is of the same order
of magnitude as the Debye temperature of typical materials,
then we are speaking about phonons with the wavelength
about several interatomic distances; typical life time of such
room-temperature phonons is about a picosecond or less, so
for remagnetization processes on time scales much larger
than that we can safely accept the temporal correlation func-
tion 6(¢) in (29). We note in passing that for the description of
the magnetization dynamics on a much shorter time scales
the phenomenology (20) is not valid anyway, because the
equilibrium between various subsystems of a magnetic body
(electrons, phonons, magnons etc.) cannot be reached. We
also point out that the logic presented above to justify the
8-functional character of temporal noise correlations fails for
systems at low temperatures, where the decay time of the
characteristic (long-wave) phonons may be more than several
nanoseconds, especially in pure materials.

3.1.2 Derivation of the relation between the noise
power and system properties for a mechanical
Brownian motion

Let us now examine the derivation of the relation (30).
Usually it is quoted as a consequence of a so-called

fluctuation-dissipation theorem (see subsequent text), but in
many cases it can be obtained in a much simpler way, which
also make the physical sense of this relation more trans-
parent. To illustrate this point, we start with the mechanical
Brownian motion of a ‘normal’ free particle described by the
Langevin equation

d?x dx
m— = —n—
ndt

P + F (1) (31)

where the first term on the right is the friction force
and the second term represents the Langevin (fluctuating)
force, which has by the assumptions outlined above zero-
mean value and the correlation properties (F 10).Fi@)) =
2C-5(t). Introducing the particle velocity v = dx/dt, we
obtain for v from the equation above a simple first-order
differential equation

1
— + —v=—F) (32)
m m
which explicit solution

1
v(t) = v(0)e "M + % / e N=OmER Gy (33)
0
allows the straightforward evaluation of the mean-square
velocity: writing the velocities for two different time
moments v(#;) and v(t2) using (33), multiplying these quanti-
ties and taking the thermal average, we obtain the expression
for the product (v(#;)v(f;)) which contains only the cor-
relation function (F(r))-F(,)) = 2C-8(t; — 1) (all other
terms are zero because the velocity values are not correlated
with the values of the random force). Putting #; =1, and
using the basic property of the § function, we finally obtain
the desired result (v?) = C/2nm. On the other hand, in the
thermal equilibrium the average kinetic energy of the particle
is (Eg) = m(v?)/2 = kT /2, so that (v?) = kT /m. Equating
these two expressions for the mean square of the particle

velocity, we obtain the desired result

C = kT (34)

which connects the noise power C with the friction coeffi-
cient 1 and system temperature 7. Note that by derivation
of this relation we have used only the fact that the system
(particle) is in a thermodynamical equilibrium with the sur-
rounding thermal bath.

For a particle which moves in an external potential and
hence possesses the energy V(x) the situation is more
complicate, because no general analytical solution of the
corresponding Langevin equation

dx fl
g =YV + Flo) 35)
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is available in (35) we have neglected the inertial term for
simplicity, which means that we are interested in times much
larger than the velocity equilibration time #, = m/#. In this
situation, the relation between the noise power C and the
system features can be established using another principal
equation of the theory of stochastic processes — the FPE.

The FPE describes the temporal and spatial evolution
of the probability density w(x,¢) which gives the proba-
bility w(x,t)-dx-dr to find the particle inside the region
[x; x + dx] during the time interval [¢; ¢t 4 dt]. This equation
can be derived in many ways; the most transparent gen-
eral method to obtain the FPE starts from the so-called
Chapman—Kolmogorov (also called Smoluchovski) equation.
From a physical point of view, this latter equation simply
states that the conditional probability P (x1, #;|x3, #3) to find
the particle at x; at the time 7y, if its position at the time f3
was x3, can be obtained by integrating the product of condi-
tional probabilities for the transitions (x1, #;) — (x2, t2) and
(x2, ) — (x3, 13) over all intermediate particle positions x».
The derivation of the FPE from the Chapman—Kolmogorov
equation is conceptually very simple (see, e.g., Gardiner,
1997) and assumes only the existence of the limits

(x(t 4+ At) — x(1))

)= Jim, S0
_ 2
B(x.1) = %Al,igo ((x( + AZ; x(1)7) (36)

The resulting FPE reads in a general case

Jw(x, 1) _ 0 A
T_—g[ (x,t)’w(x5t)]
82
+ 5 [B(x, )-w(x, 1] (37)
0x

Here, the first term on the right describes the systematic
particle drift due to the potential force Fpo(x) = —VV(x)
and the second term is responsible for the particle diffu-
sion due to thermal fluctuations. For each concrete system
the limits (36) can be evaluated from the corresponding
Langevin equation (Coffey, Kalmykov and Waldron, 2004) in
conceptually the same manner as the mean square of the par-
ticle velocity was derived from (32). For the simple system
described by the equation (35) the result is

A=-VV(x)/n, B(x)=Const= C/n2 (38)

(C 1is the noise power from the correlation function

(F(1))-Fi(t,)) = 2C-8(t; — 1) of the random force) so that
the FPE (37) has the form of a standard diffusion equation

dwlx, 1) _ 9 [lﬂ (39)

} C Pw(x,1)
= (x, 1) ——
Jt 0x

n 0x + 7 ax2

which means that the noise power C is equal to the diffusion
coefficient.

To establish now the required relation between the noise
power and other system properties, we use the statement
that in the equilibrium state (where the time derivative
dw/dt = 0 the probability distribution function should be
given by the (normalized) Boltzmann exponent w(x) =
N exp(—V(x)/kT). Substitution of this expression into the
right-hand side of the FPE (39) gives the equation, which is
worth to be explicitly written out:

d?v C 1 [dv? C
w i) (@) ()= @
The equation (40) should be satisfied for an arbitrary
potential V(x) which leads exactly to the same relation
C =n-kT between the random noise power and system
parameters as the result (34) for a free particle. Now we
have proved that this relation does not depend on the
concrete potential V(x), and thus represent a very general
statement. Again, the only physical assumption used to
derive this formula was the statement that the system is
in a thermodynamical equilibrium, so that the Boltzmann
distribution for the probability density w(x, t) could be used.

3.1.3 FPE and noise power evaluation for a single
magnetic moment

The FPE can be derived for a single magnetic moment in
the same way as in the preceding text for a mechanical
particle. The resulting equation is, however, much more com-
plicate due to the following reasons: (i) we deal here with
a rotational diffusion and (ii) the precession term (which
is the counterpart of the inertial term in mechanics) in the
corresponding Langevin equation (20) cannot be neglected,
because this would lead to a gualitatively incorrect descrip-
tion of the magnetization dynamics for the overwhelming
majority of physically interesting systems.

The first derivation of the corresponding FPE was pre-
sented (up to our knowledge) by Brown (1963b), who used
the ‘physical’ or ‘intuitive’ method, employing the continuity
equation for the distribution density w (0, ¢) of the magnetic
moment directions. This equation relates the time deriva-
tive of w(#, ¢) and its flux on the (0, ¢) sphere, whereby
the diffusion term is added to the flux in a phenomenolog-
ical way using the similarity with the equation describing
the mechanical rotational diffusion. The rigorous derivation
of this FPE, which uses the functional analysis methods
can be found in the Appendix of Garanin (1997). Another
derivation of the same FPE from the Langevin equation (20)
which employs the relations (known from the general rules of
stochastic calculus) between the coefficients of the Langevin
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equation and corresponding terms from FPE is contained
in Garcia-Palacios and Lazaro (1998). The structure of the
resulting equation

dw(m, 1) .
= —Vm{y[m x HMw
— y-a[m x [m x HMw

+ Dam x [m x Vllw)  @41)

is obviously inherited from the Langevin equation in the LLG
form (20) which the FPE (41) has been derived from: the
first term in the curved parenthesis describes the drift of
the probability density due to the precession term in (20),
the second term corresponds to the drift due to the damping
torque and the third (diffusion) term also has the structure
of the damping term in the original LLG. The operator Vp,
acting on the vectors on the right-hand side of (41) means the
divergence over the components of the vector m, so that, for
example, in Cartesian coordinates Vma =) . da; /dm; (i =
x,y, z2). The coefficient before the rotational diffusion term,
expressed in terms of the quantities entering into the LLG
equation (20), is

Dot = y*(1+2%)-C (42)

where C is the noise power of the fluctuating field HI.

The procedure for the calculation of the noise power
using this FPE is fully analogous to that described in the
preceding text for the mechanical translational diffusion.
Namely, we substitute the equilibrium probability density
w(x) = Nexp(—=V (@, ¢)/kT) into the equation (41) with
zero left-hand side (dw/dt = 0). Taking into account the
effective field definition H®T = —3V/dm we arrive after
a very tedious, but straightforward differentiation at the
relation similar to (40), which in this case can be satisfied
only if

A
Doy = kT- 12 43)
w

Equating the two expression (42) and (43) for Dy, we
arrive at the final result which establish the relation (30)
between the noise power C and the system parameters:

A kT kT
CLHAZ v 142 Y MY,

(44)

As in the corresponding relation (34) for the mechanical
translational Brownian motion, the noise power is propor-
tional to the system temperature k7 and to the friction con-
stant A. Also, fully analogous to the mechanical noise power
(34), the value of C in (44) does not depend on the concrete

potential V (6, ¢) acting on the magnetic moment, which
can be understood as a first hint that this result will remain
unchanged for a system of interacting magnetic moments
also. The appearance of the gyromagnetic ratio y in the
denominator is due to its presence as a common factor for
both drift terms in the initial FPE (41), so that after the
substitution of an equilibrium Boltzmann probability density
and differentiation it appears in the equality (43). The factor
(1 4+ 2?) in the denominator reflects the special structure of
the LLG (28), where the fluctuating field H" has been added
both to the precession and dissipation terms. It is also pos-
sible to use an alternative form of this equation — with H
added to the precession term only, in which case the factor
(14 22) in the relation (45) is absent (Garcia-Palacios and
Lazaro, 1998).

One aspects of this relation deserve a special discussion,
namely, the inverse proportionality of the noise power C
to the total particle magnetic moment u, or — taking into
account that the saturation magnetization of the particle
material Ms is constant — to the particle volume V},. In other
words, the noise power, or the dispersion of the fluctuation
field oﬁ = ((H"?)decreases linearly with the increasing
particle volume. This dependence can be understood on
an intuitive level in the following way. Let us consider a
small magnetic particle consisting of N atoms with magnetic
moments u,. For each atomic magnetic moment the equation
of motion (we neglect damping to simplify the discussion)
can be written as

dp;
dr

= —y- [ x H* +HD] (45)

Here, we have assumed that the particle is so small
deterministic effective fields are approximately equal for all
elementary moments. Thermal fluctuation field H? randomly
varies from one atom to another. To obtain the equation
of motion for the total particle magnetic moment f,, =
Zl{\;l i;, we have to sum the equations (45) over all particle
atoms:

dp; dp
) R UL

i

— vy [m xH]] (46)

Taking into account the independence of H®' on the
elementary moment index, the first sum on right-hand side
immediately transforms to [p,, x H%®!]. Situation with the
second (random field) term is more complicate, because H?
is a random quantity. Using again the assumption that the
particle is small enough to ensure that due to the exchange
interaction atomic magnetic moments are nearly parallel, we
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can write the elementary moment on the second sum as
;i = R/ N and factor the i-independent total moment out
of the sum. Then the equation (46) takes the desired form of
the Langevin equation for the total moment

du 2
=7 [ < B =y [ o ZH?}

-V ["Ltot S (Hdet + Hg)t ] 47

if we define the fluctuation field H acting on the total
moment as

N
1
Hy =+ D H] (48)

i=1

The relation (48) between the total and elementary thermal

fields means that the dispersion of the total fluctuation field
2

Oy can be evaluated as
N
1 1 1
2 Z 2 2 2
Otor = N2 o = m'NGat = N'aat (49)

where we have used the assumption that all fluctuation fields
are random independent variables with equal dispersions
0?=02Vi=1,...,N. The dispersion of the fluctuating
field on a single atom o2, does not depend on the system
volume, so the equality (49) explains why the dispersion
of the total fluctuation field H?m which appears in the LLG
equation (28) is inversely proportional to the number of
elementary magnetic moments in the system, that is, to the
system volume.

The relation (30) can also be understood as the statement
that with increasing particle volume the importance of
thermal fluctuation decreases, in accordance with an intuitive
picture of Brownian motion.

Already here we would like to point out, that the increase
of the noise power (30) with the decreasing particle vol-
ume just discussed has serious consequences for numerical
micromagnetic simulations. The random field H present in
the LLG equation of motion is the main factor, which limits
the simulation time step when an algorithm with the built-
in adaptive step-size control is used (which should always
be the case). The reason is quite simple: fluctuation field,
being a random process, is not a smooth function of time
and space, which naturally strongly diminishes the efficiency
of any numerical integrator. It can be even shown that the
order of a numerical integration scheme applied to a stochas-
tic equation is usually a square root of the order of the same
scheme applied to an ordinary differential equation (Kloeden
and Platen, 1995). Hence, the growth of the mean fluctuation
field amplitude with the decreasing discretization cell volume

(entering into (30) instead of the particle volume) enforced
by the relation (30) leads to the decrease of the integration
time step in micromagnetic simulations on finer grids, which
should be always kept in mind by estimating simulation time
basing on the data obtained on coarser grids.

3.2 Noise correlations for an interacting system:
general theory

The most interesting question concerning the random field
concept used to simulate magnetization dynamics under the
influence of thermal fluctuations is the following: can the
random field components on different spatial locations (dif-
ferent discretization cells) still be considered as independent
(uncorrelated) random variables, despite the strong interac-
tions between magnetic moments? The hand-waving argu-
ment that this interaction should not influence the correlation
properties of random fields, because all the interaction kinds
are already included in the deterministic part of the effec-
tive field H®' cannot be considered as fully satisfactory.
For example, in a system of interacting particles moving in
a viscous media, random forces acting on different parti-
cles should be treated as correlated ones to ensure correct
statistical properties of such systems (see, e.g., Ermak and
McCammon, 1978). For this reason, we have to resort to a
general theory which allows to evaluate noise correlations in
interacting many-particle systems in a rigorous way.

This theory operates with the so-called thermodynamically
conjugate variables (Landau and Lifshitz, 1980) (which
should not be confused with the conjugate variables known
from quantum mechanics) and we repeat here briefly the
major points of this concept to make this review self-
contained. In short, we consider a system which state is fully
characterized by a set of N variables {x = x1, x2,. .., Xy}
chosen so that their values at equilibrium are zero: xo = 0. If
the system fluctuates, that is, the values of system variables
deviate from these equilibrium values and change with
time, then the time derivatives dx;/df can be expressed as
functions of instantaneous values of x(¢) as x; = f;(x). If the
deviations from the equilibrium are small, we can expand the
functions f; around x = 0 and maintain only the first order
terms in small quantities x; (at equilibrium in the absence of
thermal fluctuations x; = 0), obtaining a system of first-order
differential equations describing the relaxation of the system
variables to their equilibrium values as

dx; af;
& ZA,-kxk, where Aj = 8){[
k

e 50)

To account for thermal fluctuations, we introduce into (50)
random forces &, (t) which are assumed to be responsible for
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the fluctuations of the system variables:

dxcllt(t) = ; Nixi (1) + §;(1) (51

Assuming that the correlation times of these forces are
much less than all characteristic system relaxation times,
we can write the correlation functions Kj(7) of the random
forces as (£;(0)&,(¢)) = 2Cx-8(t). The problem is to calcu-
late the correlation coefficients C;; in order to obtain from
the system (51) correct statistical properties of the system
fluctuations.

It turns out that the correlation matrix C;; can be
expressed in the simplest way when the system (51) is
rewritten in terms of thermodynamically conjugate variables
{X= Xy, Xs,..., Xy} defined as derivatives of the system
entropy S over the ‘initial” variables x: X; = —95/0x;. Near
the equilibrium the difference between the system entropy S
and its maximum (equilibrium) value Sp,,x can be expanded
over small deviations x;: S — Smax = —% Zi’k BirXiXk, SO
that thermodynamically conjugate variables X; are linear
functions of {x}:

0S
Xi = —— = BiXks
8)6,'

or X=px (52)

where 3 = {B;i}- Substituting x = ﬁ_lX into the sum on the
right-hand side of (51), we obtain the stochastic equations for
thermal fluctuations of our system near its equilibrium state
in the form

dx o N oa

T = —Ax+g=—AB HX+¢
=-1X+§&, or (53)

dxi

— == TuXi+§ 54

o 4 Xk + & (54)

with the matrix [' = {I";x} defined as [= f\,@il.

The usefulness of these transformations becomes apparent
when we express the correlation coefficients of the random
forces Cj; in terms of matrices f\, f’, and B . Corresponding
derivation for the many-variable case is quite tedious, so
we restrict ourselves to the system characterized by a single
variable x and its conjugate X = —9S/dx = Bx. Such a
system is described by the relaxation equation

A _  axa ‘ 55
P x(t) +&(t) (55)

The temporal correlation function of x defined as ¢(r —
") = (x()x(¢")) may depend on the difference r — ¢’ only

(stationary fluctuations) and can be easily found multiply-
ing (55) by x(¢'), performing statistical averaging (---)
and taking into account that the values of x(¢') and &(¢)
are uncorrelated. The result is ¢(f) = (x2) exp(—Alt]) =
(1/B) exp(—Alt]), where the mean square of x was evaluated
from its probability distribution w(x) exp{S(x)} using the
above mentioned quadratic expansion S — Spux = — (B /2)x2
near its maximum.

Denoting the Fourier transform (FT) of x(¢) as x(w), we
rewrite the definition of ¢ (1) as

@t —1") = (x(O)x()
1

= Gyt / (F(@)F(@))e @D dpde’  (56)

The statement that the CF ¢(r — ') may depend on the
time difference only (see above) requires that the FT prod-
uct in (56) has the form (X(w)X(w')) =27 -Py(w)-8(w +
). Here Py(w) is the spectral power of x(z) and is,
according to (56), the Fourier transform of its correla-
tion function ¢(z) = (x(¢)x(0)) (Wiener—Khinchin theorem).
For ¢(t) = (1/B) exp(—Alt|) the simple integration gives
Py (@) =20 /B (0 + A?).

Now we apply the same method to calculate the correlation
function of the random force. Expressing &(¢) via its FT
£(w), (due to (55) we have & (w) = (A — iw)X(w)), and using
the definition K (t — t') = (£()&(¢)), we obtain

/ 1 P SNy ,—i(wt+a't)) /
Ke(r —1) = 2n)? (§(@)§())e dodw
= @/ A —iw)(h —io){x(w)

x ¥ (@))e @) qpda

1 / 2 2 —iwt
=— | W+ )P (w)e dw (57)
2

where by the last transformation the property (¥(w)x(w’)) =
27 Py (w)-8(w + ') was used. Equation (57) means that the
spectral power of the random noise fluctuations Pg(w) is
related to the spectral power P,(w) of the x-fluctuations via
P (w) = (w? + A?) P, (w). Hence the random force spectrum
P:(w) = 2A /P is frequency independent, as it should be for
the quantity with the CF K (r) = (£(¢)£(0)) = (2A/B)-8(¢).
In terms of the conjugate variable the relaxation equation
for a single-variable system reads dx/dr = —I"- X (¢) + £(¢),
so that é(a)) =TI-X(w) — iwX(w). The procedure identical
to (57) results in the relation P;(w) = @” Py (w) + I'? Px(w)
between the spectral powers of the random noise, x () and its
conjugate X (¢). The spectrum Px(w) = 28A/(w> + A?) can
be found from the equation dX/df = —AX () + &(¢)/pB for
X (t) (it follows from (55) and X = Bx). Combining P, (w)
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and Px(w) into the noise spectrum Ps(w) and using the

relation I' = A /B (analogue of matrix relation [= f\B _l),
we obtain P:(w) = 2I', so that (£(¢)£(0)) = 2T"-8(¢).

The whole exercise presented in the preceding text makes
real sense only for the many-variable case (random noise
correlations as a function of I" can be obtained for a single-
variable system immediately from the equation dx/df =
—Ax(t) +&(t) and the relation I' = A/B). For a system
described by many variables, however, we need a set of
CF’s ¢ (t) = (x;(1)x;(0)) and their FT’s P} (). The sys-
tem of differential equations for these CF’s dg;,(r)/dt =
> A (t) is transformed into the system of linear alge-
braic equations for Pl.(,f) (w). Solving this and analogous sys-
tem for spectral powers Pi(kX) (w) of the conjugates, using of
the relations between the FT’s of noise components, initial
and conjugate variables §,~(a)) = Zk Fik)?k(a)) —iwX;(w)
(which follows from dx;/dr = — ", TiuXi (1) + &;(1)) we
obtain the result Pl.(,f)(w) = ['jx + I'x;. Hence the required
correlation properties of the random noise components are

(6:1)&;(0)) = (Nix + Tki)-8(2) (58)

which is a direct generalization of the single-variable relation
(§(0§(0)) =2I'-8(2).

The simplicity of the relation (58) which gives the
correlation coefficients of the random noise matrix directly
in terms of the elements of I'-matrix is the reason to
use equation (54) where the stochastic motion of a system
near its equilibrium state is described using the conjugate
variables {X]}.

The relation (58) can be used to derive correlation prop-
erties of the random noise in a very important particular
case, which includes also micromagnetic models. To do this,
we begin with the important remark that our starting point,
namely the relaxation equations (50) for the system variables
are not the equation of motion derived from some physical
formalism (like Newton laws or Lagrange mechanics), but
are merely a direct consequence of the mathematical assump-
tion that the relaxation rates dx;/dr of the system variables
near its equilibrium state can be expanded in terms of small
deviations {x} from their equilibrium values. Equations (50)
maintain only the first-order terms of this expansion.

For many physical system the expansion coefficients
['jx may be given in a more specific form, which allows
further progress by evaluating the correlation matrix (§,&;) =
(Cijx + T'y;). First we note, that the entropy change by the
system deviation from its equilibrium state may be expressed
via the minimal work Anin required to transfer the system
from equilibrium into the state with the entropy S as S —
Smax = —Amin/ kT (see, e.g., Landau and Lifshitz, 1980).
This allows us to calculate conjugate variables as derivatives
of this work: X; = —9S/0x; = (1/kT)-(0 Amin/0X;).

Further, for a wide class of physical systems this minimal
work Anin is equal to the energy difference E — E between
the system energy in the equilibrium state E( and in the given
state E, which can be also expanded near the equilibrium
state as

1
E—Ey=

=5+ %ja,-kx,-xk (59)

so that

1 0Amn 1 JE 1
T kT 9x; kT dx; kT -

ajrxy  (60)

i

which means that the matrix {8;,} from the definition (52)
in this case is B = a/kT.

If the deterministic motion of the system can be described
by the Newtonian equations with the inertial term neglected,
that is, in the form »;-dx; /dt = F;, then, evaluating the forces
as F; = —0E/dx; = — Zk ajr X, introducing particle mobil-
ities as inverses of the corresponding friction coefficients
k; = 1/n;, and adding random forces to the right-hand side
of the equation of motions, we obtain these equations in the
form

dx,-

EZ_Ki§aikxk +§&; (61)

where the random forces &; are related to the forces F;
used in (35) via &; = F;/k;. Comparing this system to the
relaxation equations (51), we find that in this case [=
K diag@l, where the diagonal matrix & gag contains mobilities «;
on its main diagonal. Substituting = K diagd and B =a/kT
into the definition of the matrix [ = A ,3_1 , we arrive at the
important result

[ = kTR diag (62)

This means that for a system where (i) the minimal work
required to bring it out of the equilibrium is equal to
the corresponding energy change and (ii) the relaxation of
the system coordinates can be expressed via the damped
equations of motion, the correlation matrix of random forces
acting on different variables

(§;(1)84(0)) = (Tig + I'i)-6(2)
= 2k;-kT-8;-5(t) (63)

is diagonal. This property is independent on the specific
expression of the interaction energy E{x} between the
particles, which means that for such a system random noise
components are uncorrelated despite the presence of an
interparticle interaction.
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3.3 Noise correlations for an interacting system:
application to micromagnetic simulations

Using the formalism developed above, we shall rigorously
demonstrate in this subsection that physical correlations
between the random fields on different cells or between the
random field components on one and the same cell are absent.

The formalism from the previous subsection may be
applied directly to micromagnetic Langevin dynamics sim-
ulations of magnetization fluctuations in a thermodynamic
equilibrium. Although the situation in micromagnetics is
slightly more complicate than for systems discussed in
Section 3.2 (due to the presence of a precessional term),
a complete description of random field correlation properties
is nevertheless possible.

For a micromagnetic system the variables {x}, which deter-
mine its state are the magnetization projection. Here we
consider a system which is already discretized into finite ele-
ments (cells) and denote the projections of the magnetization
inside the i-th cell as M{, « = x, y, z. The most important
step now is the establishing of the corresponding conjugate
variables. Comparing the definition of the deterministic effec-
tive field

Hde I oF or
! AV; oM;’
1 OF

appearing in the LLG equation for a discretized system

dgf" = —y~[M,- x (H +H?)]
- A-MLS-[Mi x[Myx @ +HD ]| 65)

with the definition (60) of the conjugate variables X; =
(1/kT)(0E/dx;), we immediately see that the variable X¥
conjugate to the projection M} is simply proportional to the
corresponding effective field projection:

H (66)

The direct consequence of this proportionality is the
absence of correlations between the random field projection
on different discretization cells, because in the LLG equation
of motion for the magnetization of the i-th cell only the effec-
tive field projections for the same cell (and hence — conjugate
variables with the same index i) do appear. This means that
the matrix elements Ff’kﬁ from the system (54) with differ-
ent cell indices i # k are automatically zero, ensuring the
absence of intercell correlations according to (58).

To find out, whether any correlations between the random
field components on one and the same cell do exist, some
technical work should be done. To simplify the treatment, we
assign to each cell its own coordinate system with the Oz-
axis parallel to the equilibrium direction of the cell moment.
The quadratic energy expansion around the equilibrium
magnetization state

1
E—Eo=> N awampam? (67)
i,j op=xy

will then include small deviations AM{ <« M} ~ Mg (from
zero) of the x and y magnetization components only,
because the magnitude of the cell magnetic moment should
be conserved. The deterministic effective field evaluated
according to (64) will have on each cell also only x and y
components H;"* which will be of same order of magnitude
as AM}. Writing the LLG equations of motion (65) for
AM; and AM;, neglecting the terms AM; 4 )-Hi{]z which
are small compared to Mf~fo(y) (because AM{ < M)
and linearizing the resulted equations with respect to small
deviations AM} = M} and AM; = M;, we obtain the
system

1AMy , , o
yMs dt - +(Hi~de‘ + Hi,ﬂ) + A(Hj 4o + Hi,ﬂ) (68)
—1 dMiy x x y y
s ar = it Hi) + A (H] go + Hig) (69)

It is evident from these equations that the coefficients F?kﬂ
for a # B obey the relation T} = —T';", so that the cross-
correlation coefficients of the fluctuation field projections
on the given cell are identically zero: C;; = C;;" ~ (I';] +
I']") = 0. This property, being obtained in our specific
coordinate system, should remain the same in any other
coordinates due to the space isotropy. Hence there are no
physical correlations neither between the random fields on
different cells nor between the random field components on
one and the same cell. This result was obtained also in
Chubykalo et al. (2003) with a somewhat more complicated
method.

Note that this statement does not apply to artificial (having
nonphysical nature) correlations between the random fields
on different cells that appear due to the finite-element
discretization of an initially continuous problem. This topic
is discussed in the next subsection.

%k %k ok

A very interesting theme is the discussion of the correlation
properties of the random thermal fields in micromagnetics
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from a point of view of the fluctuation-dissipation theorem
(FDT). Due to the space limitations we preferred not to
include this topic into the current review, because it requires a
careful and detailed discussion supplemented by a substantial
amount of the readers theoretical knowledge. A very trans-
parent and clear discussion of this topic at a high scientific
level can be found in Smith (2001).

4 DISCRETIZATION EFFECTS IN
DYNAMIC MICROMAGNETIC
SIMULATION

4.1 Discretization effects for 7 =0

In this subsection, we discuss the influence of a finite-element
representation of the continuous micromagnetic problem
(discretization) on the magnetization dynamics observed in
numerical simulations performed without taking into account
thermal fluctuations, that is, for T = 0.

To demonstrate the importance of the discretization effects
we have chosen the following problem: we study the switch-
ing dynamics of a nanoelement with lateral sizes L, x L, =
400 x 600 nm, thickness 7 = 5nm (our Oxz-plane coincides
with the element plane), Mg = 1000 G and exchange stiff-
ness A= 10"%ergem™!. To simplify our task, we have
set the magnetocrystalline anisotropy to zero. The switch-
ing of this element is simulated integrating the LLG
equation (1) using an optimized Bulirsch—Stoer algorithm
with the adaptive step-size control. We start from the
S-type remanent state applying at ¢+ = 0 the external field
H = H,e, with H, = —2000e; this field is well beyond

(a)

the corresponding quasistatic switching field H,, ~ —80 Oe.
To study the discretization effects simulations were done
for five sequentially refined grids (N, x N, = 40 x 60, 60 x
90, 80 x 120, 120 x 180,200 x 300) with the same (1:1)
aspect ratio of the grid cell.

The switching process for the most interesting low
damping case A = 0.01 is shown in Figure 1(a) (grid N, X
N, =120 x 180): it starts with the reversal of closure
domains near the short element borders, proceeds via the
reversal of the central domain and is completed by the ‘flip’
of narrow domains near the long sides.

To emphasize the importance of the discretization effects
we have compared results for several grids listed above. In
Figure 1(b) we present corresponding m,(t) dependencies,
because in our geometry the influence of the discretization
effects can be most clearly seen on this projection. It can be
clearly seen that the remagnetization curves do not converge
to any limiting curve up to the finest grid N, x N, = 200 x
300. The effect is even qualitative, as it can be seen from the
comparison of final states (m,-gray-scale maps on the right
in Figure 1(b)) for all discretizations N, x N, < 120 x 180
and for N, x N, =200 x 300.

This discrepancy can not be attributed to an insufficient
discretization of the interaction (energy) terms, because
already for a moderate grid N, x N, = 80 x 120 the cell
sizes Ay = A, = 5nm are smaller than our characteristic
micromagnetic length lgem, = (A/MSZ)I/2 = 10nm. We have
also verified starting from the grid N, x N, = 60 x 90
quasistatic hysteresis loops did not change when the grid
was refined further.

The reason for a significant modification of the switch-
ing process by the grid refinement is a strong influence

N, x N,
0.8 -
my —— 40 x 60
60 x 90
0.6 7 —— 120 x 180
—— 200 x 300

0.4 A
024"
0.0

-0.2 1

(b)

Figure 1. Switching of a thin ‘soft’ magnetic element (400 x 600 x 5nm) with a low damping (A = 0.01) in a field H, = —200 Oe starting
from the S-type remanent state: (a) time-dependencies of all magnetization projections for the discretization N, x N, = 120 x 180(m,-
grey-scale maps for several times v = ty Mg are shown). (b) m, time dependencies simulated using various grids as shown in the legend.
(Reproduced from D.V. Berkov et al., 2002. © 2002 with permission from IEEE.)
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of magnetic excitations with a short wavelength. For the
static case, it is sufficient to discretize the system using
the mesh size somewhat smaller than the characteristic
(exchange or demagnetizing) magnetic length of the mate-
rial. For dynamics it is, generally speaking, not true. Even
if the mesh is fine enough to represent all the features
of the starting magnetization state, during the remagnetiza-
tion process magnons with the wavelengths shorter than the
grid cell size may play an important role, so that magnons
with decreasing wavelengths appear when the remagneti-
zation proceeds. As soon as the grid is unable to sup-
port these magnons, simulations became inadequate (Berkov,
2002a). This means that in such situations dynamical sim-
ulations on a given lattice are valid up to some maxi-
mal time duration.

The problem emphasized in this subsection requires
further thorough investigation, because recently the so-
called spin-injection driven magnetization dynamics was
predicted theoretically and discovered experimentally (see
the review of Miltat, Albuquerque and Thiaville, 2001
in this Volume). It has been shown that when the mag-
netization dynamics is excited by a spin polarized cur-
rent, both (i) large deviations of the magnetization from
its equilibrium position and (ii) quasichaotic magnetization
dynamics (where spatial variations of the magnetization are
very fast) are possible and even represent quite common
features of corresponding remagnetization processes. This
rapidly developing topic with potentially very rich appli-
cations makes the study of numerical artifacts due to the
interplay of the discretization grid with short-wavelength
magnons really important.

For systems with larger dissipation the effect demonstrated
above may be absent due to a much smaller decay times
of the short-wave magnons (so that they do not play any
significant role by switching).

X ce\ls

(@)

4.2 Influence of the discretization on the random
field correlations

We proceed with the consideration of discretization effects on
the magnetization dynamics simulated at finite temperatures,
that is, with the fluctuation field H(r, 7) included into the
LLG equation. The standard assumption (29) that this field
is § correlated in space and time may become invalid due
to the following effect: as pointed above, by discretizing a
continuous magnetic film we exclude all magnons with the
wavelength smaller than the grid cell size A = min(Ax, Az).
However, these magnons can still have a mean free path
much larger than the grid cell size, thus causing substantial
correlations especially of the exchange fields on neighboring
cells. Although these excitations cannot be included into
simulations on the given grid explicitly, it is possible to
take them into account as an additional contribution to
the fluctuation field H" with the corresponding correlation
properties.

To compute the correlation function (CF) of the effective
field produced by such short-wave magnons, we have first
performed simulations (with the white noise only) solving
LLG equations at the grid which was finer than the ‘actual’
grid intended to be used for final simulations. Then from the
total effective field produced at this fine grid all contributions
with the wavelength larger than the cell sizes of the ‘actual’
grid A were cut out, so that only magnons with short
wavelengths A, < A remained. Afterwards magnetic field
generated by these short-wave magnons was calculated and
averaged over all subcells inside the given cell of the actual
simulation grid. Finally, the correlation properties of this
averaged field were evaluated (Berkov and Gorn, 2004).

The resulting CF has a quite complicated form both in
space (Figure2a) and time (Figure 2b) and can be roughly
described as exponentially decaying oscillations. Both the

15 (h,(0) hy(t) 1=0.01
10 A =0.1
A=1.0
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Figure 2. Correlation functions (CF) of the x component of the random field H resulting from the short-wave magnons. (a) 2D spatial
CF, (b) Temporal CF on one and the same cell for various dissipation constants L. (Reproduced from Berkov et al., 2004, with permission

from Elsevier. © 2004.)
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time and space oscillation periods are determined by the
corresponding properties of the magnons with the short-
est wavelength available for the ‘actual’ grid. The space
decay length depends mainly on the ‘quasistatic’ magnetic
system parameters like the saturation magnetization and
exchange constant, whereas the decay time is determined by
the damping X.

To take into account the influence of the short-wave
magnons which are cut off by the given grid, one should,
strictly speaking, perform simulations on this grid by solving
the SDE system (20) with both the standard white noise term
and an additional colored noise with correlations imposed by
the field of these short-wave magnons. For this purpose it is
necessary to implement an algorithm, which could generate a
Gaussian random noise with any given correlation function.

Several methods for generation of such a noise are
available. Matrix methods (James, 1980) can generate ran-
dom sequences with arbitrary given CF, but are very time
and storage consuming. Linear Langevin equation (Garcia-
Ojalvo and Sancho, 1994) or the so-called ‘physical’ meth-
ods (simulation of a simplified system without long-range
interactions) are fast, but can generate only noise with
monotonously or regularly oscillating exponentially decreas-
ing CFs. These methods may be in principle applied to
micromagnetic systems, because correlations caused by the
short-wave magnons are mostly oscillating and exponentially
decreasing.

However, correlation functions like those shown above
still exhibit significant irregularities, which cannot be repro-
duced by ‘physical’ method. In this case, some version of
a spectral method (Romero and Sancho, 1999) should be
used, because this method can generate arbitrarily correlated
random numbers. The method is based on the usage of the
temporal and spatial FT of the required correlation function

12x10% 7 £ x Jm(f) 2

8x 108

4x10°8

which after the multiplication with the so-called anticor-
related (in the Fourier space) random numbers gives the
Fourier image of the random number field with requested
correlations. Their inverse FT provides the requested ran-
dom numbers themselves (Romero and Sancho, 1999). The
important disadvantage of the method is that the com-
plete correlation matrix should be stored (for a spatially
2D system our the dimension of the this matrix would be
N, x N, x L,, where L, is the number of time steps), requir-
ing large memory resources. For this reason, in most cases the
usage of so-called ‘external storage’ of the Fourier transform
is unavoidable (Press, Teukolsky, Vetterling and Flannery,
1992).

4.3 Discretization and the density of magnon
states

Finite-element discretization of a micromagnetic system
qualitatively affects the spectral power its thermal excitations,
so this question should be addressed here in detail. To present
the main point as transparent as possible, we consider a
simplest model: a square region of an extended thin film
(periodic boundary conditions are assumed) in an external
field perpendicular to the film plane and neglect anisotropy
and magnetodipolar interactions.

A spectrum of equilibrium thermal magnetic excitations
can be efficiently computed using the Langevin dynamics
(Berkov and Gorn, 2005). Starting from the saturated state
along the external field we integrate the SDEs (20) till
the total energy does not change systematically with time
(equilibrium is reached). From this time moment we save the
trajectories of every cell magnetization during a sufficiently
long time (which depends on the desired accuracy and

plw), a.u.

van Hove
singularity
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Figure 3. (a) Power spectrum of m,-oscillations for various discretizations. Cusps are the manifestations of the magnon DoS singularity
(right panel). The dashed rectangle represents the spectrum expected in the limit of very fine discretization for a low frequency region
available for the 40 x 40 discretization; (b) density of magnon states for the model (70). The cusp by w. = @min + ®max)/2 is the van Hove
singularity common for all 2D models with the cosine like w(k) dependence. (Reproduced from Berkov et al., 2005, with permission from

Elsevier. © 2005.)
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frequency resolution of the spectral power finally obtained).
Finally we perform the temporal FT of these trajectories and
averaging over several thermal noise realizations.

Corresponding results for a thin-film region with lateral
sizes 400 x 400 nm, thickness # = 5nm, Ms = 1000G, A =
10~%ergem™! placed in an external field H,,; = 100 Oe are
presented in Figure 3(a), where oscillation power spectra
of m, projection at T = 10K are shown for two different
discretizations. The most striking features of these spectra
are (i) sharp cusps in the middle and (ii) a shift of this cusp
towards higher frequencies when the grid is refined.

This result can be easily understood as follows. After the
in-plane discretization of the film into Ny x N, cells with
the sizes Ax and Ay and volumes AV the system energy
E = Ecx¢ + Eexcn 1s converted into the sum over cells i, j

Ny(y)
) < 1 5
E=— 'Zl m;; HE' — EJM ; (m;m;)  (70)
i,j= L]

where p is the cell magnetic moment. The exchange constant
J in (70) depends on the exchange stiffness A and the grid
cell parameters as

R Ly ! (71)
T MEAV \Ax? T Ay?

As usual, the total oscillation power for the given fre-
quency o in a thermal equilibrium is directly proportional
to the number of modes contributing to this frequency, that
is, to the magnon density of states p(w). For a typical lat-
tice. model described by the energy (70) this density of
states is well known. Namely, the quadratic expansion of
(70) over small magnetization deviations from the ground
state (small temperature or large external field limit) leads
to the eigenfrequencies wp, = y-(Hexy + uJ- fpq) depend-
ing on the eigenmodes wave vector indices p and ¢ via
the sum of cos functions as f,; = 2-(2 — cos(2m p/N,) —
cos(2mrg/N.)), which is common for all 2D lattice mod-
els with the nearest-neighbors harmonic interaction. If the
eigenfrequencies depend on the wave vectors in a cosine like
manner, then the density of states (Figure 3b) contains the
famous van Hove singularity in its middle, which is clearly
visible in both spectra in Figure 3(a) as a cusp. The spec-
trum shift toward higher frequencies when the discretization
is refined follows simply from the fact that the eigenfre-
quencies w,y = y-Hex + J - fpqy), being proportional to the
exchange constant J, increase according to (71) as an inverse
square of a cell size when a mesh is refined.

The actual excitation spectrum of a real system (which we
attempt to simulate) also contains such a cusp (a real system
is discrete at the atomic level) but for frequencies determined
by the interatomic distances and thus absolutely unavailable

for simulations. This means that the correct spectrum of the
continuous thin film model in the frequency region available
for micromagnetic simulations is nearly flat as shown by the
dashed rectangle in Figure 3(a). Hence, in order to obtain
adequate results for equilibrium system properties using such
simulations, one should either work in the frequency region
where the spectrum is still approximately flat (v < w.) or
use a colored noise to correct the excitation spectrum of the
corresponding lattice model.

S MAGNETIZATION RELAXATION OVER
HIGH ENERGY BARRIERS

For system with high energy barriers AE > kT direct
simulation of the magnetic moment trajectories using the
Langevin dynamics is fairly impossible. Such simulations
simply mimic the time-dependent system behavior so that
the simulation time necessary to overcome the barrier
exponentially growths with its height following the Arrhe-
nius—Van’t Hoff law (probability to overcome the barrier is
p ~ exp(—AE/T))—exactly as for real systems.

Nevertheless, methods for numerical simulations allowing
to study transitions over large barriers are highly desirable
from the practical point of view: they are the only way
to predict the long-time stability of the information storage
devices. To evaluate the transition probability p over such
barriers we must in the first place find the lowest saddle point
between the two metastable state of interest. Its height gives
us the corresponding energy barrier A E between these states,
allowing to estimate p from the Arrhenius—Van’t Hoff law.
Analytical methods for the saddle-point search exist only
for relatively simple magnetic systems (Braun, 1994, 2000;
Klik and Gunther, 1990). In principle, such a saddle point
can be found by solving a system of nonlinear equations
0E/dx; =0 (where x; denote the variables of a system
configuration space), because at a saddle point all energy
derivatives dE/dx; should be zero, but neither an energy
maximum nor a minimum should be achieved. However,
general methods for the solution of such systems are not
available, and there exist even arguments that there will never
be any (Press, Teukolsky, Vetterling and Flannery, 1992). For
this reasons numerical methods based on other principles are
required.

5.1 Time-temperature scaling method
The time-temperature scaling method (Xue and Victora,

2000) quantifies the rough idea that in some cases simu-
lations of the transition over high energy barriers involving
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macroscopically long waiting times at low temperatures can
be replaced by simulations over the same energy barrier,
but at a much higher temperature so that the transition time
(and hence — the simulation time) is much smaller and is
accessible for simulations.

To make this idea applicable in numerical simulations,
we need the quantitative relation between the time and
temperature scales. To establish such a relation, we start
from the simplest version of the Arrhenius—Van’t Hoff law
which states that the average transition time 7,, depends on
the energy barrier height AE and the system temperature 7'
mainly exponentially via their ratio as

1 AE
Ty = 1)—0 exp T (72)

where the prefactor is defined using the so-called ‘attempt
frequency’ vg. If the temperature dependence of this fre-
quency is weak compared to the exponent exp(—AE/kT)
then the product kT log(t 4yevo) remains constant for the tran-
sition over this barrier. This means that if a transition over
some barrier takes on average a long time Tiope at a (low)
temperature Tjong, then in order to observe the same transi-
tion during a desired short time T, We need to increase
the temperature up to the value 7, which is related to the
quantities introduce above via

Tsnlog(voTshort) = Tlong lOg(VOflong) (73)

To calculate from this equation, the scaled temperature 7/;
which we should use in simulations if we would like to
reduce our simulation time from the inaccessible value Tiong
down to Tghor, We need to determine the attempt frequency
vy for the system under study. Analytical formulae for vg
are available only for the simplest systems like a single-
domain particle (Brown, 1963b). For this reason Xue and
Victora (2000) have proposed the following trick. They have
introduced a new time t.f which is much larger than the
short time Tghox (Which we would like to use for final
simulations), but still small enough so that simulations during
this time are possible and the desired transition occurs during
the time 7. at some intermediate temperature T The
first step for the determination of the attempt frequency vg
(and hence — the temperature Ty;) is the simulation of a
system at the temperature Ti.¢ during the time 7.¢, whereby
some physical property of the system is determined or some
dynamical process in the system is recorded. Then one should
perform several simulation runs at different temperatures
during the short time T and find the temperature Ty
for which the process recorded at Tief during the time Trer
proceeds as similar as possible to the process observed during
the short time 7 po¢. This means, that the corresponding times

and temperatures are connected via the same relation as (73),
namely

Ty 1og(voTshort) = Trer log(VOT rer) (74)

This latter relation can be used to extract the attempt
frequency vg, because all other quantities here are known.
Determination of vy from (74) and its substitution into
(73) leads to the following expression for the required high
simulation temperature 7T5:

Tiong log(T1ong/ T short)

Tret)-
re Tref 10g (Tref/ T short)

Ty = Tlong + (T, — (75)

Simulations at this temperature during the time 7 g0 should
now reproduce the behavior of the system under study at
the low temperature Tione during the time Tjong Which is
exponentially larger than Tgho due to the relation (73).

Xue and Victora have applied their algorithm to the simu-
lations of the hysteresis loops at various field sweep rates R
(which served as inverse time scales Tgyore €tc.). A remark-
able agreement between the two numerically calculated loops
for the sweep rates 0.5 and 50 Oensec™! was obtained and
the loop measured experimentally at R = 50 Oesec™! (i.e.,
nine orders of magnitude slower) could be successfully pre-
dicted (Xue and Victora, 2000). They have also simulated the
process of a bit decay in magnetic recording media (Xue and
Victora, 2001) over a macroscopically long time scale, which
is highly interesting for the development of high-density
magnetic storage.

Concluding this subsection, we note that the method
outlined above probably is not able to reproduce correctly the
magnetization dynamics for a system with low dissipation,
when the precession term in the LLG equation is really
important (results of Xue and Victora were obtained on
systems with moderate damping). The reason is that actual
simulations in this method are performed at temperatures
much higher that the actual system temperature, so that
the relation between the random (fluctuation) field and
the deterministic field is wrong. Another limitation of this
formalism is the usage of the relation (72), which is
valid only when the entropic contribution to the transition
probability (curvature of the energy landscape in the vicinity
of a saddle point and energy minima) can be neglected.

5.2 Rigorous evaluation methods for the energy
barrier height

In this subsection, we describe general numerical methods
for the evaluation of the energy barrier height between the
two metastable states. All methods aim to evaluate some
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kind of an optimal trajectory between these states and the
required energy barrier can then be calculated as the barrier
along this trajectory. The transition probability between the
energy minima in question can then be evaluated using
the general transition-rate theory (Hoenggi, Talkner and
Borkovec, 1990), whereby the features of the energy surface
near critical points may be also taken into account.

5.2.1 Minimization of a thermodynamical action
(Onsager—Machlup functional)

General idea

This method is based on the search for the most probable
transition path between the two energy minima by mini-
mizing the corresponding thermodynamical action derived
from the path-integral formulation of the problem. The
underlying idea (Onsager and Machlup, 1953) can be
explained considering a system of N particles with coordi-

nates x;(i = 1,. .., N) and the interaction energy V (x)(x =
(x1,...,xy)) in a viscous fluid. Langevin equations for this
system are
aV(x
Xi = — 8):)~|—E,-(t), i=1,...,N (76)

where we have neglected the inertial term for simplicity and
absorbed the friction constant into the time scaling. Langevin
forces &; are again assumed to be independent Gaussian
S-correlated random variables: (éi(O)éj(t)) =2D4§;;6(1).

Due to these simple correlation properties the probability
of some particular noise realization {§;(t)},i=1,..., N
for the time period [0, #] is (Onsager and Machlup, 1953);
(Bray and McKane, 1989)

tf
1
PIEMD] = Aexp | =5 f PRHOL (77)
0 i

Rewriting the system (76) as &;(t) = dx;/dr + 9V (x)/dx;
and introducing the Jacobian J[x(#)] of the transformation
x — &, we immediately obtain that the probability to observe
a given trajectory x(t) for the transition A — B during the
time 7 (x4 (0) — xp(f)) is

(78)

PIxX(1)] ~ J[x] exp [_ Sx(), 1r) }

4D

where the thermodynamical action S(x(t)) is defined as

N dy, VX))
S(x(t),tt)_/o dIZ(E—i— T ) (79)

i

It is obvious that the trajectory which minimizes the action
S(x(¢)) provides the most probable (optimal) transition tra-
jectory Xopi (1), along which the energy barrier for this tran-
sition can be found: AE(A — B) = Enax(Xopt) — E4. The
minimization of the functional S(x(#)) can be performed
using various numerical methods which employ the dis-
cretization of the transition path x(¢) thus reducing the task
of minimizing (79) to the problem of the minimization of a
many-variable function (see Berkov, 1998 for detail).

Unfortunately, the minimization of the functional (79) by
itself, being technically quite complicate, does not represent
a main problem when searching for an optimal physical
transition path. The main problem is the presence of many
‘false’ local minima of the functional (79), that is, the
existence of many trajectories between the states A and B
which minimize (79) but do not provide any information about
the corresponding energy barriers.

To explain why this is almost always the case we note that
for any path for which the conditions dx; /dt = 9V (x)/0x;
are fulfilled (the plus/minus sign correspond to the down-
hill/uphill trajectory parts) provides an extremum to the
action (79) (Bray and McKane, 1989). This means that the
extremal trajectories for the action functional (79) go along
the gradient lines of the energy surface.

On a very simple 2D energy landscape shown in
Figure 4(a) both the solid line M; — M, and the dashed
line M; — P> — M, deliver local extrema to the action for
the transition M; — M,, because both paths proceed along
the gradient lines of the energy surface. Moreover, these
both extrema are local minima of the action; in fact, they
were obtained by minimizing (79) with the potential shown
in Figure 4 as a gray-scale map simply starting from dif-
ferent initial trajectories. However, the solid line trajectory
passes through the saddle point, giving the correct energy
barrier height (the ‘true’ optimal trajectory), whereas the
dashed line M| — P, — M, goes via the energy maximum
supplying no useful information whatsoever (‘false’ optimal
trajectory). The next example shown in Figure 4(b) demon-
strates that even the value of the action (given by the sum of
heights which an optimal trajectory has to climb over) along
the ‘false’ optimal path (M, — P, — M,) may be smaller
than the corresponding value along the ‘true’ optimal trajec-
tory. Hence without a reliable algorithm able to distinguish
between these two kinds of optimal paths the whole method
is absolutely useless, because the number of ‘false’ opti-
mal trajectories exponentially growth with the complexity
of system.

An apparently straightforward possibility to discriminate
between these two cases is the analysis of the curvature ten-
sor of the energy surface at the points where the energy along
the optimal trajectory has local maxima: if the correspond-
ing matrix of the second energy derivatives has exactly one
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Figure 4. (a) ‘True’ (solid line) and ‘false’ (dashed line) optimal trajectories for a simple energy landscape. (b) An example of an
energy landscape, where the action (79) along the ‘false’ optimal path M| — P, — M, may be even smaller than along the ‘true’ path
M, — M3 — M, (see text for details). (Reproduced from Berkov ef al., 1998, with permission from Elsevier. © 1998.)

negative eigenvalue, then this point indeed corresponds to a
transition saddle. This method, however, is not sufficiently
reliable due to a discrete representation of the continuous tra-
jectory and a finite accuracy by the determination of an ‘opti-
mal’ path. An alternative algorithm based on small ‘jumps’
away from the trajectory point with the highest energy in a
random direction and subsequent minimization of the system
energy starting from this new position, is described in detail
in (Berkov, 1998).

Another problem arises due to the presence of the tran-
sition time f in the action (79) as the upper integral limit,
which should be known in advance to set the time step and/or
the number of time slices in the discretized action version;
this transition time is of course not known. Fortunately, the
barrier height determined from the discretized action turned
out to depend on the f#-value only slightly. For this reason
sufficiently accurate results could be obtained by minimizing
the discretized action using the small constant time step and
simply doubling the number of time slices until the relative
difference between the two barriers heights obtained for the
subsequent action minimizations becomes less than a certain
small threshold.

Implementation for magnetic systems

To apply this method to systems of interacting magnetic
moments we have to start with the magnetic counterpart
to the Langevin equation (76), namely, with the stochastic
Landau-Lifshitz—Gilbert equation of motion for magnetic
moments (20). The precession term in this equation affects, of
course, the optimal transition trajectory, but does not change
the system energy and hence it is reasonable to assume that
it does not change the barrier height for this transition (see
also our discussion of the string method below). For this
reason we neglect the precession term in (20) and obtain the

equation of motion for the magnetization unit vectors m;

dmi
dr

= —[m,- X [mi X (h?et—i—h?)]]

= —m;-(m;-h*) + h;* (80)
where all constants are again absorbed in the time unit, the
total field is h*' = h%' + hf! and the normalization m; = 1
was used by the last transformation.

The conservation of the magnetic moment magnitude
enforces the transition to spherical coordinates (0, ¢) of m,
because only the random field components perpendicular to
m should be taken into account. Transforming all vectors
to the new coordinates with the z’-axis along m and the
x’-axis in the meridian plane of the initial spherical coor-
dinates (so that in the initial system m, = sinf cosp, m, =
sinfsing, m, = cosf), we obtain equations of motion for the
magnetization angles

90, IE{Q} 4
- _ nt .
ot 90, i
99, 1 QJE{Q
sin@; - i =——" &) +n, (81)
ot sinf;  J¢; Y

where hg, and hg, are Cartesian components of the fluctuation
field h in the new coordinate system. Deterministic effective
field h%' is already contained in corresponding angular
derivatives of the magnetic energy E{Q2} (where {Q2} denotes
the set of all angles (6;,¢;)), which may include also
the interaction energy of any kind (i.e., exchange, dipolar,
RKKY, etc.).

The system (81) is fully analogous to (76) so that
under the same assumptions (Langevin field components
are independent Gaussian §-correlated random variables) the
magnetization path in the € space which minimizes the
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thermodynamical action § for a magnetic system

It
de; 2
S[Q()] = /dtz [( < )
0 i

de; 1 JE(Q)
a T 99,

IE(Q)
30;

+

+ [ sin6;- -
( sin 0;

2
) :| (82)
provides the information about the energy barrier separating
the states Q4 and Qp.

Application for magnetic nanocomposites

With this method we have calculated the distribution of
the energy barriers in a system of single-domain magnetic
particles (embedded in a nonmagnetic matrix) with the
uniaxial anisotropy and magnetodipolar interaction between
the particles. The most intriguing question for this system
is the influence of the magnetodipolar interaction on the
distribution density of the energy barriers p(E) (Hansen and
Morup, 1998; Dormann, Fiorani and Tronc, 1999), which
controls both the reversible and irreversible thermodynamics
of the system. To solve this question, we have computed
p(E) for various volume concentrations of the magnetic
phase, thus varying the interaction strength.

Calculations were performed for systems with high (8 =
ZK/MS2 = 2.0), moderate (8 =0.5) and low (8 =0.2)
single-particle anisotropies. The energy barrier distributions
were accumulated from Ny = 8 realizations of the particle
disorder; for each configurations about Nians = 200 transi-
tions between metastable states were analyzed. Correspond-
ing results are shown in Figure 5 were the distribution of the
reduced energy barriers ¢ = E/ MS2 V are presented.

First of all, it can be seen that for low particle concen-
trations (< 1%)p(e) consists of the relatively narrow peak
positioned at the value corresponding to the energy barrier
esp = B/2 for a single particle moment flip, as it should be
for a weakly interacting system. The position of this single-
particle flip barrier is shown both in Figure 5 with the dashed
line. As expected, with increasing concentration the energy
barrier density broadens, but for the systems with the low
and high anisotropy this broadening occurs in a qualitatively
different ways. For the high-anisotropy case (Figure 5, right
column) the broadening of p(e) with increasing concentra-
tion is accompanied by its shift toward lower energy barriers,
so that already for moderate particle concentration (> 4%)
almost all barriers lie below the value for a single particle.

For the system of particles with the low anisotropy
(Figure 5, left column) barriers both higher and lower
than a single particle barrier arise. However, the overall
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Figure 5. Density of the energy barriers for transitions between randomly chosen energy minima in a disordered magnetic particle system
with the low (8 = 0.2, left column), moderate (8 = 0.5, middle column) and high (8 = 2.0, right column) single-particle anisotropies
for various particle volume fractions c. Dashed lines show positions of the energy barriers for a single particle with the corresponding

anisotropy.
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energy barrier spectrum clearly shifts toward higher energies
with increasing particle concentration. Detailed physical
explanation of this behavior can be found in Berkov (2002b).

It is also important to keep in mind that different transi-
tions cause different moment changes. The key question is
whether the magnitude of the moment changes is correlated
with the height of the corresponding energy barrier. If, for
example, the moment change tends to zero when the energy
barrier height for this particular transition decreases, small
energy barriers would not play any significant role in the
system thermodynamics, because corresponding magnetiza-
tion changes would be nearly undetectable. For this reason
we need a 2D mutual distribution of the energy barriers and
moment changes p(E,Am). Corresponding contour plots for
a system with the low anisotropy g = 0.2 and two different
concentrations are shown in Figure 6. For the low concen-
tration ¢ = 0.01 the density p(E, Am) consists of a single
sharp peak positioned near the point (¢ = 0.1, Am = 2.0),
which corresponds to a single-particle flip. From p(E, Am)
for the high concentration ¢ = 0.16 it can be seen that,
although the moment changes for the low barriers are con-
centrated at somewhat smaller values than Am for the higher
ones, they do not tend to zero. Hence all transitions pro-
vide approximately equivalent contributions to the system
thermodynamics.

5.2.2  The string method

General idea
To explain the main idea of the string method (Ren and
Vanden-Eijnden, 2002), we start with the same basic equation

X =-VVX) +E@), i=1,....N (83)

as for the action minimization method. It is intuitively clear,
that for a system which time evolution is described by this

c=0.01 c=0.16

0 0.05 0.1
e e

0.15 0.2 02 04 06 08 1

Figure 6. Mutual 2D distribution density p(E, Am) of the energy
barriers and moment changes for dilute (¢ = 0.01, left panel) and
concentrated (¢ = 0.16, right panel) system of magnetic particles
with 8 = 0.2. (Reproduced from D.V. Berkov et al., 2002. © 2002
with permission from IEEE.)

equation, the path ¢, (x) which connects the two given
metastable states A and B of the potential V (x) and goes
via a saddle point with the minimal energy barrier, satisfies
the condition

(VV)1L(@op) =0 (84)

In this notation (VV),(¢)denotes the component of
the energy gradient, which is perpendicular to a curve ¢.
The physical sense of the statement (84) is that at any point
of the optimal transition path the energy gradient is perpen-
dicular to this path, with other words, the transition path
proceeds along the energy gradient lines (see also our dis-
cussion of the action minimization method given above). A
rigorous proof of this statement can be found in (Freidlin and
Wentzell, 1998).

Although the equation (84) is only the necessary, but
by no means the sufficient condition that the path ¢ goes
through the lowest energy barrier between A and B (see,
e.g., Figure 4a, where for the dashed line curve the condition
(VV)1(¢) =0 is also fulfilled everywhere), this equation
provides a useful hint how to find ¢, starting from some
arbitrary path ¢: one can simply ‘move’ this path with the
‘velocity’u = (VV) 1 (¢)which is normal to the path curve,
until the stationary state of the system (given by the condition
u = 0) is reached.

To implement this idea, it is necessary to introduce some
parameterization of a path ¢, so that the coordinates of a
point along the curve ¢ (in the N-dimensional configuration
space of our system) are represented as functions of some
parameter «: x| = x((«),. .., xy = xy(a). Then, treating
the evolution of ¢ with the velocity u= (VV),(¢) as a
‘motion’ in a fictitious time ¢, so that the instantaneous
position of the path is given by the functions ¢(«,t) =
(x1(a,t),...,xny(x, 1)), we can write the corresponding
‘dynamical’ equation for ¢(«,7) as (Ren and Vanden-
Eijnden, 2002)

0p(a, t)
—ar —(VV)1(9) = —[VV(¢) = (VV. e )e:] (85)

where the vector e, is the unit tangent vector ¢ and thus its
components at the curve point characterized by the parameter
value « are

o 1 'ax”)(a, 1)

= lxall =
Tl g T

so that the expression in the square brackets on the right-
hand side of (85) is, as required, the component of the energy
gradient vector normal to ¢.
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Numerical solution of (85) requires the discretization of
the path ¢ using some concrete parametrization. A significant
advantage of the string method is that this parametrization
can be chosen arbitrarily basing on the considerations of
either simplicity, or stability of a numerical method used
to integrate (86), or required accuracy for the energy barrier
value etc. The simplest choice is the ‘natural’ parametrization
of a curve using the parameter « equal to its normalized
arclength. In this case for a path starting at the point
A with the coordinates (xgl), L xi‘N) ) and ending at
B(xY, ..., x) we have a(A) = 0 and «(B) = 1. Starting
from some smooth curve between A and B, we discretize it
into K+1 points equally spaced along the curve (for this
kind of parametrization!) where the k-th point along the
curve with coordinates x; is characterized by the parameter
value oy = k/K(k =0, . .., K). Calculating the derivatives
of the coordinates as functions of o by some finite-difference
approximation method, we compute the components of the
unit tangent vector (86) for the given position of a string
(at the given ‘time’ 7) and make a ‘time’ step integrating
numerically equations (85).

Application to micromagnetic systems
By implementation of this formalism for a micromagnetic
system we encounter the same question as in the action min-
imization method: the dissipation term in the stochastic LLG-
equation indeed represents the gradient of the micromagnetic
energy (or, to be more precise, projection of this gradient into
the hyperplane normal to all magnetic moment vectors), but
the precession term does not. In their paper (Ren and Vanden-
Eijnden, 2003) devoted to the usage of the string method in
micromagnetism E ef al. mention that they could prove that
the local minima and saddle points remain the same after
neglecting the precession term (unfortunately, this result is
cited in (Ren and Vanden-Eijnden, 2003) as ‘unpublished’).
E et al. have demonstrated the applicability of the string
method to micromagnetism in the papers (Ren and Vanden-
Eijnden, 2002, 2003), where they have studied the remagneti-
zation of a thin Permalloy nanoelement (200 x 200 x 10 nm?
nanoelement, discretized in-plane only) choosing the two
remanent S states with opposite magnetization orientations
as initial and final states of the transition over a barrier (an
external field was assumed to be absent). They could show
that there exist at least two possible paths for this transition.
The first path correspond to the magnetization switching via
the intermediate S states (rotated by 90° relative to the ini-
tial and final S states) flower state, flower states (which were
identified as saddle points) and the C state which was the
lowest energy minimum visited during the transition process.
The second transition path corresponded to the formation of
the two vortices, which propagation through the nanoele-
ment governed the switching process. The energy barriers

for this second path were found to be significantly higher
than for the first one. Another example briefly considered
in (Ren and Vanden-Eijnden, 2003) deals with the remagne-
tization of a rectangular prism with a square cross-section
(200 x 50 x 50 nm?, discretized in 3D), where also two pos-
sible transition paths for the switching between the two states
with the magnetization oriented (on average) along the two
opposite directions of the long prism axis have been found.

From the methodical point of view, the string method
has two significant advantages compared to the action
minimization. First, a thermodynamical action itself already
contains the first derivatives of the system energy (forces or
torques). Hence its minimization with any method employing
the derivatives of the function to be minimized (and only
such methods provide a reasonable convergence speed)
requires the evaluation of second derivatives of the system
energy, that is, its Hessian matrix. By the string method
which is based on the ‘equation of motion’ like (85), only
the first energy derivatives are required, so that computational
cost should be lower and the stability of the method higher
than for the action minimization. The second important issue
is the appearance of many undesired local maxima of the
action, as discussed in the previous subsection. In the string
method these maxima will probably play no significant role,
because each point of the string is moved according to the
equation (85) in the direction toward lower values of the
system energy, so that it is highly unlikely that the string
gets stuck at some ‘false’ metastable state like that shown in
Figure 4, because such a ‘false’ path always goes through at
least one energy maximum.

5.2.3 The elastic band method

Description of the method

The elastic band method, belonging to the so-called ‘chain-
of-states’ method for searching the saddle points in compli-
cate energy landscapes, is closely related to the string method
discussed above. The main initial idea (exactly as in the
discretized version of a string method) was to represent the
continuous path in the configuration space of a system under
study as a number of discrete states {S;}(kd =0, ..., K)
and to build up an ‘object function’ of a type

K K—1
Q=) ViSil+r Y (S—S 1)’ (87)
k=1 k=1

Keeping the initial (k = 0) and final (k = K) states fixed
and minimizing this function with respect to the set of states
{Sklk =1,..., K — 1} should, on the one hand, lead to the
decrease of the energies of the states involved (given by the
terms V{S; } in the first sum). On the other hand, the second
sum should prevent the neighboring states (along the path) to
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‘run away’ from each other (because the terms (S; — Sy— D?
give the distances between the states in the configuration
space), thus keeping the discretized path reasonably smooth.
Together these two tendencies should provide the sequence of
closely positioned states (second sum) with the energy being
as low as possible (first sum), which from the qualitative
point of view obviously corresponds to the path over a saddle
point between the fixed initial and final states. The method
was named an ‘elastic band’ method, because the second term
in (87) exactly corresponds to the energy of elastic bands
(springs) with zero natural length and elastic constant « ‘built
in between’ the neighboring states of the chain {S;}.

In practice, this idea does not work really well: if the
elastic constant « is chosen too large (elastic term dominates)
then the chain of states tends to ‘round the corners’ of the
energy landscape, trying to reduce the length of the chain
(distances between the neighboring states) on the cost of
increasing the potential energy of the chain states. If « is
too small, then the elastic term is not able to prevent the
states from sliding into the potential minima (initial and
final states), so that the saddle point can be located with
a reasonable accuracy. The region of intermediate x values
where the saddle point position of a continuous transition
path is reproduced by the chain (87) well enough, is usually
very narrow or may even not exist (see an excellent review
contained in Jénsson, Mills and Jacobsen, 1998). For this
reason the elastic band method, introduced in the middle of
the 1980th, was considered as unreliable a decade long.

The solution of both problems was suggested by Mills
and Jonsson (1994) (see Jonsson, Mills and Jacobsen, 1998
for a detailed explanation), who noted that both effects were
due to the ‘too physical’ understanding of the model (87).
Namely, by the minimization of the object function (87) both
the potential (due to the first sum) and elastic (second sum)
forces were fully taken into account using the straightforward
differentiation of the object function Q. By its constructed
Q fully mimics the energy of a set of ‘particles’ (states)
connected via springs with elastic constants ¥ and moving
in a potential landscape V. But the actual purpose of
this function is quite different from simply imitating the
behavior of the physical system just described: Q should be
constructed so that the chain of ‘particles’ (states) reproduces
as good as possible the optimal continuous path between the
two given energy minima, which goes from the starting to
the final state along the gradient lines of the potential V {x}.
Hence, Q fulfills its purpose well enough if (i) the first term
would move the states perpendicular to the gradient lines
(grad(V) is normal to the optimal path, see above) and (ii)
the second term would produce only the force parallel to
the path (to ensure that the states stay close to each other,
it is sufficient to apply a force along the line connecting the
states). For this reason we can separate the effects of the

first (potential) and the second (elastic) terms by taking into
account (i) only that projection of the potential force which
is perpendicular to the path and (if) only that projection of
the elastic force which is parallel to the path.

This leads to the ‘nudged elastic band’(NEB) model with
the ‘equation of motion’ for the state i in the form similar
to that of (85)

9Sk ol

o —[VV = (VV, er)ecls, + (F, er)e; (88)
where the first term in square brackets is fully analogous
to the corresponding term in equation (85) thus ‘moving’
each state in the direction normal to the transition path and
the second term represents the tangential projection of the
elastic force F®' (derivative of the second sum in (87)) which
takes care that the states remain close to each other in the
configuration space. During to the fact that the two terms on
the right-hand side of (88) are perpendicular to each other,
that is, fully decoupled, there exist now a wide range of the
elastic constants k where the position of the saddle point
along the transition path can be reproduced with a nearly
arbitrary accuracy just by increasing the number of states
used to discretize a path.

Finally, we note that the quality of decoupling of the
two force contributions in (88) and thus — the quality of the
saddle point determination and the stability of the method
as a whole — crucially depend on the calculation accuracy of
the tangent vector direction e;. For this reason large effort
has been devoted to the development of improved method
for the tangent determination for discretized curves (Jonsson
and Henkelmaan, 2000).

Micromagnetic simulations using the elastic band method
Up to our knowledge, first application of the NEB method
to micromagnetic simulations is due to Dittrich et al.,
(2002,2003a,b), Dittrich, 2003 and Dittrich, Thiaville, Mil-
tat and Schrefl (2003). In their first paper, Dietrich et al.
(Dittrich et al., 2002) describe their concrete implementation
of the general NEB algorithm for micromagnetics, which
involves a transition to the spherical coordinates of magnetic
moment (as really independent variables, see the discussion
above) and a proper finite-difference approximation of the
tangent vector for the discretized transition path.

In this first study Dittrich et al. (2002) noted that for
some simple systems the method works well even without
the spring force, that is, without the second term in (88).
This means that one can sometimes obtain a good approx-
imation to a saddle-point path simply by moving the states
of the discretized initial guess for the transition path along
the energy gradient projection perpendicular to the instan-
taneous trajectory configuration (we note in passing that
this simplified method has nothing to do anymore with the
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‘NEB’). In particular, in Dittrich et al. (2002) the energy
barriers calculated numerically for the system of two interact-
ing single-domain particles with uniaxial anisotropies were
found to agree well with the analytical results available for
this system. The ability of the method to find energy barriers
for (i) a coherent switching of a small (5 x 5 x 1 nm?) rect-
angular nanoelement, (ii) a switching of an elongated slab
(typical cross-section size 13 nm, length 70 nm) via the
domain wall motion, and (iii) magnetization reversal of a
piece of a granular magnetic media was also demonstrated.

Later Dittrich ef al. have implemented also a complete
elastic band method (Dittrich et al., 2003a), including the
second (elastic) term into their ‘equation of motion’ for the
states in the chain. As expected, they have observed that
for every concrete problem there exist a broad range of the
elastic constant values where the height and position of a
saddle point is reproduced with a sufficiently high accuracy,
although for each new problem this region must be found
afresh. With this improved algorithm Dittrich ef al. could
rigorously evaluate energy barriers arising due to the shape
anisotropy in triangular and square nanoplatelets, investigate
the increase of the energy barrier in a ferromagnetic grain
coupled to an antiferromagnet (a promising candidate for a
high-density recording media with improved thermal stabil-
ity) and identify several possible reversal modes in a MRAM
cell (Dittrich et al.,2003a,b; Dittrich, Thiaville, Miltat and
Schrefl, 2003).

More details about micromagnetic simulations performed
with this method can be found in the contribution Numerical
Methods in Micromagnetics (Finite Element Method),
Volume 2 of T. Schrefl to this volume.

An interesting topic which has been pursued by several
research groups in the last few years is the applicability of
the Monte-Carlo (MC) methods (Binder, 1986) for dynamic
micromagnetic simulations at finite temperatures. The major
advantage of modern MC schemes when applied to the
magnetization transition between various metastable states
is evident: The corresponding computation time does not
depend exponentially on the height of the energy barrier
separating these states, as it is the case for the Langevin
dynamics. However, there exist also several principal prob-
lems by the dynamical application of the MC methods. The
two most serious of them are: (i) the difficulty to establish
a relation between a MC step and a physical time and (ii)
proper inclusion of the magnetization precession, which is
also a highly nontrivial task, because the precession does not
lead to the change of the system energy and hence does not
affect the probability to accept a MC step. Recent methodi-
cal progress on this area can be found in Nowak, Chantrell
and Kennedy (2000), Chubykalo et al. (2003), and Cheng,
Jalil, Lee and Okabe (2005, 2006) and is reviewed in the
contribution of U. Nowak to this volume.

NOTES

[1] Note however, that the effective field itself Hef =
(1/V)-0E/OM is of course zero at equilibrium — up to
the component along the magnetization vector which
can be neglected because the magnetization magnitude
is assumed to be constant

[2] The deterministic Landau-Lifshitz—Gilbert equation
conserves the moment magnitude anyway. However this
is not automatically the case for its stochastic analogue.
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