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A method of determining the state of lowest energy of an Ising spin system under an 

external field is proposed. The energy of a spin arrangement is expressed in terms of the 

total number of negative spins and the numbers of interaction lines connecting either two 

negative spins or negative and positive spins. It is shown by use of topological relations 

among these numbers that the magnetization of an Ising spin antiferromagnet increases 

stepwise at absolute zero with increasing field strength. The spin arrangement at each step 

is determined of Oguchi and Takano's model of CoC12 ·2H20 and the simple, body

centered, face-centered cubic and MnF2 type lattices with nearest and next-nearest neighbor 

interactions. Experimental results of CoC12 • 2H20 are discussed as well. 

§ 1. Introduction 

The present study is motivated by Kobayashi~Haseda's 1 ) and Narath-Barham's2
) 

magnetization measurement of CoCl2 • 2H20, which is an antiferromagnet with 

TN= 17.2°K. The crystal structure of CoC12 • 2H20 is of monoclinic symmetry. 

It is inferred from a large anisotropy of the g factors (gb=7.3 and gc=2.92
)) 

that a spin of Co in this substance behaves, to good approximation, like an 

Ising spin bound to the b axis. As is shown schematically in Fig. 1, the mag-

M netization along the b axis measured at 4.2° K 

increases stepwise with increasing field 

strength; the discontinuities are located at 32 

and 46 koe. The spins are in the ferro

magnetic state with the magnetization of 

about 3f.LB per Co above 46 koe ; between 46 

and 32 koe they are in an intermediate state 
.._ ____________ H with the magnetization of about 1 f.LB per Co. 

Fig. 1. A sketch of the magnetization Similar phenomena are found in related sub-

vs. field curve of CoCl2 · 2H20. stances such as CoEr 2 • 2H20 .1
) '

2
) This paper 

proposes a general method of determining the spin structure of lowest energy 

of an Ising spin system under an external field. It is shown that the appearance 

of intermediate states in the magnetization process in an Ising spin antiferromag

net is ~losely related to the topology of a given lattice. The present method 

is applicable to three-dimensional lattices. 
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1vfagnetization Process in Ising Spin System 17 

In 1960 Domb pointed oue) that a ferrimagnetic state is of lowest energy 

in a range of field strength in the case of the triangular net with the antifer

romagnetic nearest neighbor interaction. The magnetization of this state is a 

third of that of the ferromagnetic state. Though Domb did not mention in 

detail his reasoning, it perhaps corresponds to a specialization of the present 

approach. The magnetization process in CoCl2 · 2H20 has been discussed by 

Oguchi and Takano4
) and Narath. 5

) A crystal of CoCl2 · 2H20 may be imagined 

as a bundle of linear chains of -CoCl2- running along the c axis. The interaction 

between two neighboring spins on a chain seems to be ferromagnetic and strong 

compared with inter-chain interactions.1
) Taking into account this fact, Oguchi 

and Takano4
) proposed a two dimensional model which corresponds to a section 

of the bundle of chains. They divide the lattice into four sublattices with the 

assumption that spins on a sublattice are kept parallel to each other throughout 

the magnetization process. With this approach one obtains an intermediate state 

whose magnetization is a half of that of the ferromagnetic state. Later Narath5
) 

adopted a six sublattice approach of the same model, concluding that a state 

with the magnetization of a third of that of the ferromagnetic state is lower in 

energy in a range of field strength than the ferromagnetic, antiferromagnetic 

and above-mentioned Oguchi-Takano states. Though the sublattice approach may 

yield a correct answer in some cases, it lacks the proof that the concluded state 

is really of lowest energy in a given field. Moreover it is difficult with this 

approach to gain an insight into the interrelation between the lattice topology 

and the magnetization process. 

An outline of the present method is as follows. We assume that all spins 

point in positive direction in the limit of extremely strong field. A general 

spin arrangement is represented by a distribution of negative spins on a given 

lattice.· A line connecting two interacting spins is called an interaction line. 

Interaction lines with different interaction constants are distinguished from each 

other. Furthermore interaction lines with the same interaction constant are 

divided into three categories : those connecting, 1) two negative spins, 2) neg

ative and positive spins and 3) two positive spins. It is shown in the next 

section that the energy of a general spin arrangement is expressed in terms of 

the total number of negative spins and the numbers of interaction lines belonging 

to either the first or the second category. With a given number of negative 

spins the smallest possible numbers of interaction lines belonging to the above

mentioned categories are limited by several topological inequalities, which can 

be derived by an elementary analysis. By use of these inequalities we can 

determine the lowest value of the energy of a given system under an external 

field. The corresponding spin arrangement of lowest energy should satisfy 

several topological conditions which are, conversely, useful for the construction 

of such an arrangement. 

We discuss the method in detail in the next section (§ 2), using the Oguchi-
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18 J. Kanamori 

Takano model as an illustrative example. In § 3 proofs are given of some 

topological inequalities used in the discussion of § 2. Section 4 deals with the 

application to three-dimensional lattices. Section 5 is devoted to, supplementary 

discussions including the discussion of the experimental data on CoCl2 · 2H20. 

The appendix deals with proofs of inequalities used in the discussion of § 4. 

§ 2. Principles of analyses 

We express the Hamiltonian of a general Ising spin system as 

(1) 

where O"'s represent Ising sping spins, being equal to either + 1 or -1; p's 

denote vectors connecting a spin to its interacting neighbors; the subscript k 

specifies a group of neighbors which interact with a given spin with an inter

action contant Jk ; H represents an external magnetic field measured in an ap

propriate unit. Jk is positive when the interaction is antiferromagnetic. 

The ferromagnetic state where all spins point in positive direction is of 

lowest energy in the limit of extremely strong field. If we reverse a spin In 

that state, the associate energy change amounts to 

(2) 

where zk is the number of the k-th interacting neighbors. When two spins 

connected by a Jt interaction line are reversed in the ferromagnetic state, the 

energy change is given by 

iJE' = 2L1E + 4J[. (3) 

Generalizing Eqs. (2) and (3), we obtain an energy expressiOn of a general 

spin arrangement given by 

(4) 

where EF is the energy of the ferromagnetic state, m is the total number of 

negative spins, and pk is the number of Jk interaction lines connecting two 

negative spins. 

We assume for a while that all interactions are antiferromagnetic, that is, 

Jk>O. With this assumption, the last term of the expression (4) cannot be 

negative. Thus the expression ( 4) leads to the conclusion that the ferromagnetic· 

stateis oflowestenergywhen H>~kzkJTG. At H=Hc 1 =~kzkJTG the states with 

m>O and pk=O (k=1, 2, ... ) are degenerate in energy with the ferromagnetic 

state. When H is slightly lower than Hch the state with the smallest magnet

ization, that is, the largest m under the conditions pk = 0 (k = 1, 2, · · ·) is of 

lowest energy. The situation is illustrated in Fig. 2. 

We denote by N the total number of lattice points of a given lattice. If 

the above-mentioned largest possible number of m is ·equal to N/2, the cor-
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Magnetization Process in an Ising Spin System 19 

responding state is antiferromagnetic. This state 

should be of lowest energy until H = 0, since 

its energy is independent of field strength. Thus 

the existence of intermediate steps in the mag~ 

netization vs. field relation of an Ising spin 

antiferromagnet is determined by the topological 

condition whether or not the largest possible 

number of m under the conditions pk= 0 (k= 1, 

2, · · ·) is smaller than N/2. 

Fig. 2. The field dependence of 

the energy of the ferromag

netic state and the type II spin 

structure. 

V'l e assume in the following discussion 

that the lattice is wrapped on a torus. If we 

denote by qk the number of Jk interaction lines 

connecting positive and negative spins, we can 

easily prove the following equation: 

(5) 

When some interactions are ferromagnetic, we rewrite the expression (4) by 

use of Eq. (5) as 

(6) 

where the sum 1 is taken over the antiferromagnetic interactions and the sum 

2 over the ferromagnetic interactions. Again the last two terms of the expres

sion (6) are positive or zero. In some cases, however, the conditions pk= 0 

and ql = 0 cannot be satisfied with m>O. Otherwise the discussion is similar 

to that of the preceding case where all interactions are antiferromagnetic. 

0 0 0 

o--*--0 
0 6 0 

Going back to the case where all Jk's are posi

tive, we denote by mi t~e largest possible number of 

m under the conditions pk= 0. With decreasing H a 

state with some pk's>O and m>mi may become lower 

in energy than the state with m=mi and pk=Owhen 

mi<N/2. In order to determine the range of H in 

which the state with m = mi and pk = 0 is of lowest 
Fig. 3. Oguchi-Takano's 

model. The full line energy, we . use several inequalities which yield the 

represents aJ1 interac- smallest possible numbers of pk's with a given m. 

tion line, the dotted Since these inequalities depend on the lattice tapa-
line a J 2 interaction 

logy, we assume in the following discussion Oguchi
line, and the broken 
line a J

3 
interaction Takano's model of CoCl2 · 2H20 as an illustrative 

line. example. The case when~ some interactions are ferro-

magnetic is discussed also on this example. 

Figure 3 illustrates Oguchi-Takano's model. The lattice is a face-centered 

rectangular net, in which a spin interacts, with four neighbors in the directions 

at" the face-diagonals with an interaction constant Jb with two neighbors along 
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20 J. Kanamori 

the a axis with J 2, and with two neighbors along the b axis with Js. 

In the next section we shall prove the following inequalities: 

P1+p2>3m-N, 

P1 +ps>3m-N, 

Zp1 +p2+ps>4m-N. 

(7) 

(8) 

(9) 

It is essential that the equality in the above inequalities yields the smallest 

possible values of p's with a given m. 

We discuss first that the case where all J's are positive. The ferromagnetic 

state is of lowest energy in the range, H> Hcl = 4Jl + ZJ2 + 2Js. The inequality 

(9) tells us that the largest possible value of m under the conditions P1 = P2 

= p 3 = 0 is equal to N/ 4; The corresponding spin arrangement is not unique 

in the present case. Examples of the spin arrangements which .are of lowest 

energy just below Hcl are given in Fig. 4. In these arrangements linear c.hains 

running in the direction of one of the face-diagonals are alternately ferromagnetic 

or. antiferromagnetic. The example shown .in Fig. 4a is the same as the state 

pointed out by Oguchi and Takano. 4
> Hereafter the spin arrangements with 

m = N/ 4 and p's = 0 are called type II structures. The type I stands for the 

ferromagnetic state. 

0 0 0 0 0 0 
0 X 0 0 X 0 

0 0 0 X 0 0 
(a) 

X 0 X (b) 
0 0 X 

0 0 0 0 X 0 
0 X 0 0 0 0 

Fig. 4. The type II structures in Oguchi-Takano's model (a and b). X re-

presents a .negative spin ; 0 a positive spin. 

In the following discussion .we assume J2> J3• Since J2 and Js are inter

changeable with each other, the discussion can be easily adapted to the case 

J2<J3 • The case J2 = Js is discussed separately. We rewrite the expression 

corresponding to the last term of Eq. ( 4) as 

4 (pl J1 + P2 J2 + P3 Ja) = 4pl (Jl- 2Js) + 4p2 (J2- Js) + 4 (2pl + P2 + Ps) Js (10) 

or 

4 (pl J1 + P2 J2 + Ps Js) = 2 (2pl + P2 + Pa) J1 + 2p2 (2J2- J1) + 2Ps (2Js- J1). (11) 

If J1>2Js, and J2>Js, the minimum value of the expression (10) can be easily 

calculated by assuming the equality in the inequality (9) and P1 =P2 = 0 as 

(12) 
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Magnetization Process in an Ising Spin System 21 

The expression (11) is useful in the case 2J;>J;., 2Js>J;.. We distinguish 

three cases in the following discussion. 

i) Case Al: JI>2Ja, J;.>J2+J3 , (J2>J3). We denote by E(II) the 

energy of the type II structures. By use of the inequality (12) we obtain 

E-E(II) >2[m- (N/4)] (H-4Jl-2J2+6Ja), (13) 

where the equality. holds when P1 = P2 = 0, and. p3 = 4m- N. The inequality (13) 

leads to the conclusion that the type II structures are of lowest energy in the 

range, Hcl> H> Hc2=4J;. + 2J2- 6J3• When His just below Hc2, the state whose 

m is maximum under the conditions P1 =P2 = 0, and p 3 = 4m- N is of lowest 

energy. This maximum value of m is equal to N/3 according to the inequality 

(7) . The corresponding spin structure, which will be called . type III, is shown 

in Fig. 5. The type III structure coincides with that pointed out by Narath.5
) 

Since Pa = 4 (N/3) - N = N/3 = m, a negative spin should share two Ja interaction 

lines with negative spins. By use of this fact we can prove the uniqueness of 

the type III structure. 

The expression (10) can be rewritten as 

4(pl J1 + P2 J2 + Pa Ja) = 4pl (Jl -J2- Ja) + 4(pl + P2) (J2 -Ja) + 4(2pl + P2 + Pa)Ja. 
(14) 

By use of the above expression and the inequalities (7) and (9) we obtain 

E- E(III) > 2 [m- (N/3)] (H- 4Jl + 4J2), (15) 

where E(III) is the energy of the type III structure. The inequality (15) in

dicates that the type III structure is of lowest energy in the range, Hc2> H> Hc3 

=4J1- 4J2. The state of lowest energy just below Hca should satisfy the con

ditions, P1=0, p 2=3m-N, and p2+Pa=4m-N, with m>N/3. Figure 6 shows 

the type IV structure, which satisfies these conditions with m = N/2. Since this 

X X 

0 0 0 
0 0 0 

0 0 
X X X X X 

0 0 0 0 0 

0 0 0 X X 

0 0 0 
X X 

Fig. 5. The type III structure In Fig. 6. The type IV structure lll 

Oguchi-Takano's model. Oguchi-Takano's model. 

state is antiferromagnetic, it is of lowest energy even at H = 0; 

ii) Case A2: J1>2J3 , J1<CJ2+J3), (J2>Ja). The type III structure is 

of lowest ene_rgy below the same Hc2 as in the case Al. We rewrite the ex

pression (10) as 
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22 J. Kanamori 

4(pl J1 +P2 J2 + Ps Js) = 4(pl + P2) (Jl -2J3) 

+ 4p2 ( J2 + J3 - Jl) 

+ 4 (2pl + P2 + p3) Js. (16) 

By use of the above expression and the inequalities (7) and (9) we obtain 

E- E(III) > 2 [m- (N/3)] (H + 2Jl- 2J2- 6J3), (17) 

where the equality holds whenp2=0, pl=3m-N, and 2pl+Pa=4m-N. Figure 7 

shows the type V structure which satisfies these conditions with m = N/2. The 

transition between the type III and type V structures occurs at Hca = - 2Jl + 2J2 

+6Ja. 

0 X 0 iii) Case AB: Jl<2Ja, (J2>J3). The ex-

X 0 pressiOn (11) is used in the analysis of the pre-

X 0 X sent case. The type II structures are of lowest 

0 X energy in the range, Hcl > H> Hc2==2J2 + 2J3. Below 

0 X 0 Hc2 the type V structure is of lowest energy. 

As an example of the case where ferromagnetic 
Fig. 7. The type V structure 

in Oguchi-Takano's mo- interactions are involved, we discuss the Case D2: 

del. J1 < 0, J2 > 0, Ja > 0, I J1l < (J2 + Ja), J2>Ja. The 

topological inequalities used in the analysis are given by 

q1 +2p2 >2m, 

ql+2p3>2m. 

'(18) 

(19) 

We rewrite the last two terms of the expression (6) as 

4(p2 J2 + Ps Ja) + 2q1IJ1I =2 (ql + 2pa) IJ1I + 4p2 J2 + 4pa(J3-1Jll) (20) 

or 

4 (p2 J2 + P3 Ja) + 2q1IJ1I = 2 (ql + 2pa) Ja + 2 (ql + 2p2) CIJ1I- Ja) 

+ 4p2 (J2 + Js -IJll), (21) 

where the expression (20) is used when Js> I J1l, and the expression (21) is 

used when I J1l >Ja. By use of tnese expressions and the inequalities (18) and 

(19) we obtain 

(22) 

and 

(23) 

where the equality holds when P2 = Pa = 0, and q1 =2m. The type V structure 

satisfies these conditions with m = N/2. The transition between the ferromagnetic 

(type I) state and the type V structure occurs at Hcl = 2J2 + 2Ja- 21 J1l. 

The states of lowest energy In other cases are ,Jisted in Table I. The 
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Magnetization Process in an Ising Spin System 23 

Table I. The magnetization process and the spin structure of lowest energy in Oguchi-Takano's 

model. Table IA deals witl; the definitions of various cases. The magnetization change with 

decreasing field and the spin structures of lowest energy are listed in Table IB I, II, etc., 

indicate the type of the spin structure. Table IC gives the expressions of the critical fields 

in terms of J's. 

IA IB 

Case (M) ~ Hct ~ (M/2) ~ Hc2~ (M/3) ~ Hca~ (0) 

AI Jl> J2, Ja>O, J1> (J2+Ja) Al I II III IV 

A2 II , Jt<CJ2+Ja),Jt>2Ja A2 I II III v 
A3 

Bl 

B2 

Cl 

Dl 

D2 

El 

E2 

Fl 

IC 

I; , J1 <2Ja 

Jh J2>0, Ja<O, J1>J2 

I; 'Jl <J2 

Jt>O, Jz, Ja<O 

Jt<O, J2, Ja>O, iJtl> CJ2+Ja) 

It , IJ1i < CJ2+Ja) 

Jl> Ja<O, J2>0, !J1!>Jz 

It '1Jti<J2 

Jb J2, Ja<O 

Al 

A2 

A3 

Bl 

B2 

X 

0 

X 

0 

Hcl 

4Jt +2J2+2Ja 

Hct 

4Jl +2J2+2Ja 

4Jl +2J2 

4Jl +2J2 

X 

0 0 
0 

X X 
X 

0 0 
0 

X 

0 

X 

0 
Fig. 8. The type VI structure in Oguchi

Takano's model. 

(M) ~Hct~ (M/2) ~Hc2~ (0) 

A3j I I II v 
I 

(M) ~Hct~ (M/3) ~Hc2~ (0) 

Bl I III IV 

B2 I III VI 

(M) ~Hct~ (0) 

Cl I IV 

D2 I v 
E2 I VI 

Dl, EI, El always I 

Hc2 He a 

4J1-4J2 

4Jl +2J2-6Ja 

2J2+6Ja-2J1 

Hc2 Hcl 

2J2+2Ja Cl 4Jl 

4Jl-4J2 D2 2J2+2Ja-21Jll 

4J2-4Jl E2 2J2-21Jti 

magnetization of the type I (ferromagnetic) 

IS denoted by M. The magnetization of 

other states are indicated by a fraction of M. 

The type _VI structure, which is listed in 

Table I, is shown in Fig. 8. 

When J2 = Js, the type III phase disap

pears in the cases Al and A2. In other 

cases, where J2 and Js are of the same sign, 

Table I is applicable to the case J2 = Js also. 
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24 J. Kanamori 

The magnetization process in other special cases such as J1 = J 2 + J3 in the 

cases A1 and A2 can be easily inferred from Table I. Spin arrangements in 

such cases are not unique. 

§ 3. Proofs of the inequalities (7), (8), (9), (18) and (19) 

We divide the lattice into rhombs, as is shown in Fig. 9. The sides of a 

rhomb are ~-interaction lines. The opposite vertices are connected by a J 2-

or Js-interaction line. A pair of vertices connected by a J 2-(J3-) interaction 

line is called J2-(Js-) vertices. We divide the rhombs into nine classes ac

cording to the numbers of the J2- and Js-vertices occupied by negative spins. 

Figure 10 shows the classification. We denote by ni the number of rhombs 

belonging to the i-th class. As was mentioned in the previous section, the 

lattice is assumed to be wrapped on a torus. vVe note that each vertex is 

shared by four rhombs, and that a Jrinteraction line is shared by two rhombs~ 

These facts lead to the following equations: 

4m = 4nl + 3n2 + 3ns + 2n4 + 2n5 + 2n6 + n7 + ns, 

2pl = 4nl + 2n2 + 2n3 + n4, 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

2ql = 2n2 + 2n3 + 2n4 + 4n5 + 4n6 + 2n7 + 2ns, 

Expressing the both sides of the inequalities In terms of n's, we can prove 

easily them. For example, we obtain 

Fig. 9. Division of the face-centered 

rectangular lattice into rhombs. 

06c() 
2 3 

4 5 6 

7 8 9 

Fig. 10. Spin configurations on a rhomb. 

0 represents a positive spin; a vertex 

without the open circle is occupied by 

a negative spins. 
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Magnetization Process i.n an Ising Spin System 

2pl + P2 + Pa = 6n1 + 3n2 + 3na + n4 + n5 + ns, 

4m - N = 3nl + 2n2 + 2na + n4 + n5 + n6- n9, 

(30) 

(31) 

25 

which lead to the. inequality (9) immediately .. The equality holds when nh n2, 

na, n9 are zero. 

§. 4. . Three-dimensional lattices 

The method developed in the previous sections is applicable to three-dimen

sional lattices. We describe below the results of the analysis of the simple, 

body-centered, face-centered cubic and MnF2 type lattices with the nearest and 

next nearest neighbor interactions. Detailed discussions are given on some 

representative cases only. Proofs of the inequalities are given in the Appendix. 

We denote by J1 the interaction constant of the nearest neighbor interaction, 

by J; that of the next nearest neighbor interaction. 

A. Simple cubic lattice 

The following inequalities exist among p's and q's: 

4pl + P2 > 12m- 3N, (32) 

P2 > 4m-N, (33) 

2ql + P2 > 6m, (34) 

q1 + P2 > 4m . (35) 

We discuss the case, J 1<0 and J2>0. We rewrite the last two terms of the 

expression (6) adapted to the present case as 

or 

4p2 J2+2q1IJ1! =2p2(2J2-!Jd) +2(ql + P2) !J1i 

4p2 J2 + 2ql!Jli = 2 (2ql + p2) (jJll- 2J2) 

+ 2 Cq1 + P2) (4J2 -JJ11) 

(36) 

(37) 

(38) 

i) 2J;>I.hl. Assuming P2=0 and the equality in the inequality (35), we 

obtain by use of the expression (36) 

E- EF >2m (H -12J2 + 4IJ11), (39) 

which determines Hcl as Hci=12J2-4IJII. The inequality (33) tells us that 

the largest possible value of m under the condition P2=0 is equal to N/4. 

Thus the spin structure with m = N/ 4, P2 = 0, and q1 = 4m = N becomes of lowest 

energy when the field H decreases through Hc1• This spin structure, which is 

called type V, is shown in Fig. 11. Subtracting E(V) from the energy of a 

general state with m> N/ 4 and· assuming the equality in the inequalities (33) 
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26 J.· Kanamori 

and (35), we obtain 

·E-E(V) >2[m- (N/4)] (H-4J2), (40) 

which determines the range of the type V phase as Hcl > H> Hc2 = 4J;. The 

type VI structure, which is explained in Table II, satisfies the equality condi

tions of the inequalities (33) and (35) with m = N/2. 

ii) 4J2>1JII>2J2. Assuming the equality in the inequalities (34) and (35) 

we obtain from the expression (37) 

E-EF>2m(H -8J2+21Jlj). (41) 

The type VI structure satisfies the equality conditions with m = N/2. Hc1 is 

given by Hc1=8J2-2IJI!. , 

iii) !Jll>4J2. The ferromagnetic state is always of lowest energy in this 

case. 

Table II and Fig. 11 summarize the results of the analysis of other cases. 

Table II. The magnetization process in the simple cubic lattice with the nearest and next 

nearest neighbor interactions. 

IIA liB 

Cas~s I 

Al 

A2 

Bl 

B2 

B3 

Cl 

Dl 

Definition 

J1>0, J2>0, J1>4J2 

Jl>o, J2>o, J1 <4J2 

J1 <O~ J2>o, IJ1l <2J2 

J1<0, J2>0, 2J2<IJ1l <4J2 

J1<0, Jz>O, IJII~4J2 

Jl>o, J2<o 

J1<0, J2<0 

Al 

A2 

Bl 

B2 

Cl 

I 

I 

I 

I 

I 

II 

II 

v 

III 

IV 

VI 

VI 

III 

The type III denotes the structure in which nearest neighboring spins are antiparallel to each 

other. The type VI is a layer structure in which (001) planes are occupied by negative 

and positive spins alternately. The type II, IV and V structures are shown in Fig. 11. 

The Cases B3 and Dl are ferromagnetic in the whole range of H. 

IIC 

He! He?. 

Al 6J1+12J2 6Jl-12J2 

A2 2J1 +4J2 

Bl 12J2-41Jli 4J2 

B2 8J2-21J1l 

Cl 6J1 
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()0()0 
0()0() 
()0()0 

Q 

eo eo 
oeoe 
eo eo 

b 

eo eo 
0000 

• o·• o ~ 
c 

Fig. 11. Spin structures in the simple cubic lattice. Figu'res a, b and c represent the projections 

of spin structures on a (001) plane ; black and open circles represent the sequence of nega

tive and positive spins in the direction [001], respectively. A half-open half-black circle 

corresponds to a linear chain in the direction [001] on which negative and positive spins 

alternate; the black (open) right half circle represents a negative (positive) spin on a (001) 

plane, and the left half a positive (negative) spin on its adjacent planes. Figure lla re

presents the type li' structure; Fig. llb the type IV structure; Fig. llc the type V structure. 

B. Body-centered cubic lattice 

The inequalities in the present case are giVen by 

3p1 + 2p2 > 12m-3N, 

3q1 + 4p2 > 12m . 

Table III summarizes the results of the analysis. 

(42) 

(43) 

Table III. The magnetization process in the body-centered cubic lattice with the nearest and 

next nearest neighbor interactions. 

IliA 

Cas~s J Definition 

A1 J 1>0, J2>0, 2J1>3J2 

A2 Jl>O, J2>0, 2J1<3J2 

B1 Jl<o, J2>o, 3J2>2IJ11 

B2 Jl<o, J2>0, 3J2<2IJ11 

Cl Jl>o, J2<0 

D1 J1<0, J2<o 

IIIC 

Al 

A2 

B1 

C1 

Hc1 

8J1 +6J2 

6J 2 '-4IJ11 

8J1 

A1 

A2 

B11 
C1 

IIIB 

I 

I 

I 

I 

II 

II 

(M) ~ Hcl ~ (0) 

IV 

III 

III 

'IV 
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28 J. Kanamori 

The body-centered cubic lattice can. be decomposed into two simple cubic sublattices. The type 

II structure is such that one sublattice is antiferromagnetic and the other is occupied by 

positive spins. In the type III one sublattice is occupied by negative spins and the other by 

positive spins. Each sublattice is antiferromagnetic in the type IV structure. The Cases B2 

and Dl are ferromagnetic in the whole range H. · ,. 

C. Face-centered cubic lattice 

The inequalities are given by 

2pl + P2 > 6m- N, 

2pl +p2> 12m-3N, 

p1>4m-N, 

q1 +2p2>6m, 

(44) 

(45) 

(46) 

(47) 

where the inequality (44) applies to the case nz<Nj3, the inequality (45) to 

the case m> N/3. We discuss the case Jl>O, J 2>0 as an example of the a

nalysis. From the general discussion given in § 2, we obtain Hc1 = 12Jl + 6J2. 

According to the inequality ( 44) the largest possible value of m under the 

conditions P1 = P2 = 0 is equal to N/6. . The corresponding spin structure, which 

will be called type II, is shown in Fig. 12. We rewrite the last term of the 

expression ( 4) adapted to the present case as 

(48) 

or 

(49) 

i) J1>2J2. Assuming p 1 = 0 and the equality in the inequality ( 44), we 

obtain by use of the expression ( 48) 

E-E(II) >2[m- (N/6)] (H-12J1+6J2), (50) 

which determines the range of the type II phase as Hcl> H> Hc2 = 12Jl- 6J2. 

It is seen from the inequality ( 46) that the largest possible value of m under 

the condition p1 = 0 is equal to Nj 4. The type III structure, which satisfies 

P1=0 and the equality condition of the inequality (44) with m=N/4, is shown 

in Fig. 12. 

In order to determine the range of the type III phase, we assume the 

equality in the inequalities (44) and (46). By use of the expression (48) and 

these equalities we obtain 

E- E(III) > 2 [m- (N/ 4)] (H- 4Jl -10J2), (51) 

which determines the range as Hc2> H> Hc3 = 4J1 + lOJ2. The largest possible 

value of m under the equality condition 2p1+P2=6m-N is equal to m=N/3, 

since the inequality (45) replaces (44) when m>N/3. The type IV structure, 

which satisfies the equality conditions of the inequalities (44) and (46), is shown 
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Magnetization Process in an Ising Spin System 29 

Ill Fig. 12. 

Assuming the equality in the inequalities ( 45) and ( 46) and using the 

expression ( 48) we obtain 

E- E(IV) > 2 [m- (N/3)] (H- 4Jl + 2J2), (52) 

which determines the lower limit of the type IV range as Hc4 = 4Jl- ZJ2. Below 
Hc4 the type V structure, which is shown also in Fig. 12, is of lowest energy. 
It satisfies the equality conditions of the inequalities (45) and (46) with m=N/2. 

ii) J1 <2J2• The analysis of this case is based on the expression ( 49). 
The results are listed in Table IV and Fig. 13. 

The results of the analysis of other cases are also .listed in Table IV. The 
spin arrangement on the face-centered cubic lattice in the absence of external 
field was discussed by Anderson. 6) The type V structure corresponds to the 
pattern of the third kind in his notation, the type VII to that of the second 
kind, and the type IX to that of the :first kind. There are two different spin 
structures belonging to the second kind of ordering. One is of trigonal sym-

Table IV. The magnetization process in the face-centered cubic lattice with the nearest and 
next nearest neighbor interactions. 

IVA 

Cases I Definition 

Al Jt>O, Jz>O, Jt>2Jz 

A2 Jl>o, Jz>O, J1 <2Jz 

Bl Jt<O, J2>0, Jz>IJtl 

B2 J1<0, Jz>O, Jz<IJtl 

Cl Jl>O,Jz<O 

Dl J1<0, Jz<O 

IVB 

Al I II III IV v 

A2 I II VI VII 

(M)-> Hc1-> (0) 

Bl I VII I Cl I VIII IX 

One of the four simple sublattices is occupied by negative spins in the type VIII structure. The 
type IX denotes the structure in which two simple cubic sublattices are occupied by negative 
spins. Other types are shown in Figs. 12 and 13. The Cases B2 and Dl are ferromagnetic in the 
whole range of H. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

5
/1

/1
6
/1

8
9
0
9
1
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



30 

IVC 

A1 

12J 1 +6J2 

A2 

'B1 6Jz-6!J1I 

C1 12Jl 

()oQctQo() 
o()oQt)Qo 
Qo()oQctQ 
vQo()oQv 
QctQo()oQ 
oQvQo()o 
()oQctQo() 

a 

J. Kanamori 

12Jl-6J2 

6Jl +6J2 
I 

I 
I 

4Jl 
I 

I 
I 

o()o()o 
()o()o() 
o()o()o 
()o()o() 
o()o()o 

b 

4Jl +10Jz 4Jl-2J2 

6J2 

ooeoO•O 
eooeoO• 
oeooeoo 
ooeooeo 
eooeooe 
oeooeoo 
ooeoO•O 

c 

Fig. 12. Spin structures in the face-centered cubic lattice (Case 

Al). A large circle represents a spin on a (001) plane ; a 

small circle a spin on an adjacent (00 1/2) plane. The de

finition of black, open, and half-open circles is the same as 

in Fig. 11. Figure 12a represents the type II structure ; Fig. 

12b the type III; Fig. 12c the type IV; Fig. 12d the type V. 

d 

0()(),0()()0 
ct()o()ctO() 
()0()()0<1() 
o' () ct 0 () () o 
()()Oct()o() 
<J0()()0()() 
Oct()o()ctO 

Q 

()()()()() 
()()()()() 
()()()()() 
()()()()() 
() ()_() () () 

b 

Fig. 13. Spin structures in the face-centered cubic lattice. Fig.13a. represents the 

type VI structure; Fig. 13b the type VII structure. 
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Magnetization Process in an Ising Spin System 31 

metry, being called the Neel structure. The other is of cubic symmetry. 

Figure 13 shows the former only. 

D. MnF2 (rutile) type lattice 

Mn in MnF2 is on a body-centered tetragonal lattice with the c axis shorter 

than the a axis. We assume two kinds of interactions : the body-center to corner 

interaction specified by J1 and the interaction between the nearest neighbors. on 

the c axis specified by J2. 

The inequalities are given by 

P1 +2p2>6m-2N, 

q~+4p2>4m. 

Table V. The magnetization process in the MnF 2 type lattice. 

VA 

Cases [ 

Al 

A2 

Bl 

B2 

Cl 

Dl 

Definition 

Jl>o, J2>0, 2J1>J2 

J~>o, J2>o, 2J1<J2 

J~<o, J2>o, J2>21J1I 

J1 <o, J2>o, J2<2IJ1I 

Jt>O, J2<0 

Jt<O, J2<0 

The types of structure are explained in the text. 

VB 

Al 

A2 

Bl 

Cl 

I 

I 

The Cases B2 and, Dl are ferromagnetic in the whole range of H. 

vc 

Hcl Hc2 

Al 8Jl +2J2 8Jl-4J2 

A2 8Jl +2J2 2J2-4Jl 

Bl 2J2-41Jll 

Cl 8Jl 

II 

II 

I IV 

I III 

(53) 

(54) 

III 

IV 

The results of the analysis are listed in Table V. Definitions of the spin 

structures are as follows. The type II structure is such that every three c plane 

is occupied by negative spins ; the type III, structure is an antiferromagnetic 

arrangement in which spins at the body-centered sites are antiparallel to those 

at the corner sites; the type V structure is a bundle of antiferromagnetic linear 

chains running along the c axis. 
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32 J. Kanamori 

§. 5. Discussions 

The gist of the present method is the use of the topological inequalities. 

It is essential that the equality holds in these ineq~alities for several special 

spin arrangements. The inequalities are derived byl) finding ari elementary 

figure formed by interaction .lines, 2) enumerating different spin configurations 

on the figure, and 3). expressing N, m, p's, and q's in terms ·of the .number of 

the figures of each class of a spin arrangement. With these inequalities the 

determination of the magnetization process at absolute zero can be carried out 

rigorously. 

One might question that inequalities other than those mentioned in the 

preceding sections would exist. The condition that the equality should be sat

isfied by at least several spin structu:res, however, excludes such a possibility. 

Of course less restrictive inequalities in which the equality is never satisfied 

by any spin structure are out of the question. For examplE), the equality in the 

.inequality (7) is satisfied by the type III structure with m = N/3 and P1 = p2 = 0, 
the type IV structure with m=N/2, P1=0 and P2=Nj2, and the type V or VI 

structure with m = N/2, P1 = N/2 and P2 = 0. It should be emphasized that the 

inequality (7) is derived and proved by an argument which does not presuppose 

these structures. The inequality (7) and the existence of th~ type IV, V and 

VI structures guarantee that the minimum value of P1 with m=N/2 and p 2 =0 
or the minimum value of P2 with m = N/2 and P1 = 0 is equal to N/2. Suppose 

we have an inequality 

(55) 

where m is assumed to be equal to N/2. If t~e equality in the inequality (55) 

is satisfied by the type IV and V structures, a's are concluded to be equal to 

one; in this case the inequality (55) coincides with the inequality (7). Suppose 

the equality is not satisfied by the type IV structure. Then a2 should be 

larger than one, since the minimum value of P2 with P1 = 0 is equal to N/2. 
In this case we can show that the equality in (55) is never satisfied by any 

spin structure with P2>0. ·Assuming the equality in (55) and replacing N/2 by 

a1p1 + a2p2 in the inequality (7), we obtain 

(56) 

The inequality can be right only when P2 = 0 and a1 = 1, since a2 is larger than 

one and a 1 cannot be smaller than one. Thus we can conclude that the ·in

equality (7) is the only one whose equality :is satisfied by at least two spin 

structures with m = N/2, and that the inequality (55) is essentially the same as 

the inequality (7) whenever the equality is satisfied. 

One might question further that there might be a more restrictive inequality 

in an intermediate range of m, for· example; between m = N/3 and 1n = N/2 in 

the case of the inequality (7). Such an inequality, however, is of no interest 
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11fagnetization Process in an Ising 5pin System 33 

in the present analysis, because we always look for a spin structure which 

satisfies the equality with the largest possible m. 

The spin structure of CoCb · 2H20 at H = 0 has been determined by Narath2) 

by use of proton resonance to be of type IV. It is seen from Table I that 

Case Bl fits in with the experimental results. Case Al, however, cannot be 

excluded completely, since the type II phase might be masked by experimental 

uncertainty. 

Recently Date and Motokawa7
) have measured the magnetization and mi

crowave absorption of this substance. They have found a large hysteresis at 

the transition between the type IV and III structures, while practically no 

hysteresis has been observed at the transition between the type III and I (fer

romagnetic) structures. This can be understood qualitatively if Ja is assumed 

to be small. Assuming J 3 = 0 (Case Bl), we note that the local effective field 

at negative spins in the type IV structure or that at positive spins in the type 

III structure does not vanish at the transition field. In other words, the structures 

are locally stable at Hc2· On the other hand, the corresponding field vanishes 

at H = Hcl· This discussion is based on the assumption that a spin in the two

dimensional model, that is, the total spin of a linear chain can change its di

rection in short time in the absence of local field. 

The microwave absorption is observed to occur at the transition fields only, 

irrespective of the microwave frequency. This is probably related to the ap

pearance of transient spin structures at the transitions. 

An approximate calculation of the magnetization vs. field relation at finite 

temperature will be reported in future. · 
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Appendix 

The inequalities in the three-dimensional cases can be derived by the same 

procedure as in the two-dimensional case. 

A. Simple cubic lattice 

We divide the lattice into squares whose sides and diagonals are J 1 and J
2 

interaction lines, respectively. The squares are classified in six categories ac

cording to the configurations of negative and positive spins at four vertices. 

Noting that a vertex is shared by twelve squares and a J 1 interaction line i~ 
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34 J. Kanamori 

shared by four squares, we can easily prove the inequalities (32) and (34). 

In order to prove the inequality (33) we adopt as a counting unit the te

trahedron shown in Fig. 14. The sides of the tetrahedron are J2 interaction 

Fig. 14. The tetrahedron formed by J 2-interac

tion lines in the simple cubic lattice. 

Fig. 15. The projection of the tetrahedron on 

a (001) plane in the body-centered cubic 

lattice. 

lines. A tetrahedron is topologically equivalent to a rhomb with two diagonals 

connecting opposite vertices. Since all interaction lines are eguivalent in the 

present case, we do not distinguish between the categories 2 and 3, 7 and 8, 

and among the categories 4, 5 and 6 in Fig. 10. Noting that a vertex is shared 

by eight tetrahedrons and a J2 interaction line is shared by two tetrahedrons, 

we can prove easily the inequality (33). The inequality (35) can be proved 

if the cubic unit cell is adopted as a unit. There are twenty-two different spin 

configurations on a unit cell. Though the enumeration is tedious, the expres

sions of p 2 , qr, and m in terms of the number of the cubes of each category 

lead to the inequality immediately. 

B. Body-centered cubic lattice 

The terahedron shown in Fig. 15 serves to prove the inequalities ( 42) and 

(43). One of the pairs of opposite sides of the tetrahedron is J2 interaction 

lines, and the other two pairs are J 1 interaction lines. Transformed into a 

rhomb, the sides correspond to J1 interaction lines, and the diagonals to J 2 in

teraction lines. Taking into the equivalence between the J2 and J3 vertices 

in Fig. 10, we do not distinguish between the categories 2 and 3, 5 and 6, and 

7 and 8. Expressing p's, qr, m and N in terms of n's, we can prove the in

equalities. 

C. Face-centered cubic lattice 

We divide the lattice into the octahedrons shown in Fig. 16. The sides 

of the octahedron are J1 interaction lines, and the diagonals J 2 interaction lines. 

According to the spin configurations the octahedrons are divided into ten classes. 
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Magnetization Process in an Ising Spin System 35 

The total number of the octahedrons is given by N Each vertex is shared by 

six octahedrons, and a J 1 interaction line is shared by two octahedrons. By 

use of these facts we can prove the inequalities ( 44), ( 45), and ( 47). 

The inequality (46) is proved by use of the tetrahedron which is shown 

also in Fig. 16. This inequality ·is of the same topological character as the 

• 

a b 

Fig. 16. The tetrahedron (Fig. 16a)' and the octahedron (Fig. 16b) in 
the face-centered cubic lattice. 

inequality (33) in the simple cubic lattice. 

D. MnF2 type lattice 

We divide the lattice into triangles whose sides are two J1 and a J 2 in

teraction lines. The inequalities (53) and (54) can be derived by the same 

procedure as in the previous cases. 
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