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Magnetization reversal of individual nanowires with controlled defects
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of Physics, University of Nebraska, Lincoln, Nebraska 68588-0111
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Department of Physics and Astronomy and Center for Materials Research and Analysis, Behlen Laboratory
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Low temperature magnetization reversal measurements were performed on individual permalloy
nanowires of diameters between 30 and 60 nm. During the electrochemical growth of the wire, a
defect was induced by a short pulse in the deposition potential modifying locally the microstructure
and composition. Magnetic measurements performed with micro-superconducting quantum
interference devices were performed. The angular dependence of switching field revealed significant
deviations from classical predictions. For specific angles, magnetization curves indicate a reversal
occurring in two steps. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1452253#

Considerable progress in fabrication of nanoscale mag-
netic materials stimulates researchers to investigate the un-
derlying mechanisms for magnetization reversal, a crucial
point for technical applications. Although the magnetization
reversal of such particles had been described back to late
1940’s by Stoner and Wohlfarth1 and Néel,2 only recently
have experimental studies of individual particles become
possible with techniques employing magnetic force
microscopy,3 micro-Hall probes magnetometry,4,5 and planar
microscale superconducting quantum interference devices
~m-SQUID!.6 There are only a few reports in the literature
that clearly evidence magnetization reversal following the
predictions of Stoner–Wolfarth for lowest temperatures and
Néel–Brown theory2,7 for thermally activated switching.6,8,9

Very often, the magnetization reversal proceeds through
complicated process of curling and domain wall motion.10,11

Deviations from the classical simplest predictions are
commonly attributed to the presence of defects, shape, par-
ticle size and surface roughness. The defect can be charac-
terized by the change in exchange coupling strength, anisot-
ropy ~magnitude and direction! and lateral dimensions. For
example, Lorentz imaging12 revealed that the arrow end of a
NiFe 200 nm wide element suppresses the formation of do-
mains and increases the switching field. Injection of a mag-
netic wall from the modified end of submicron sized mag-
netic wires was demonstrated by magnetoresistance effects.13

The purpose of our work is to attempt to study systems
with an artificial defect and to show how the magnetization
reversal properties are affected. We study sub-100 nm wires,
ideal from the point of view of shape anisotropy. Permalloy
minimizes the influence of magnetocrystalline anisotropy
and magnetostriction. Wires of diameters of 30–60 nm were
prepared by electrochemical deposition inside nanoporous
membranes.14 We take advantage of the literature on permal-

loy electroplating15 to reproduce the recipes and successfully
make permalloy wires.16 Element analysis by electron mi-
croscopy techniques showed the Ni82Fe18 composition within
2%, except for the first 200 nm of deposition. During the
growth, a short pulse in the deposition potential induced a
defect, locally modifying the microstructure and composition
of NiFe. The position of the defect was chosen to be at the
end of the wires synthesis. Membranes were then dissolved,
and a low density of wires was deposited on them-SQUIDs
chips. Superconducting loops with a single magnetic wire of
lengths ranging from 2 to 6mm were investigated at a tem-
perature of 50 mK. The diameter of the wires was of 45
615 nm. This value was deduced from statistics of wire di-
ameters from the same batch of samples, observed by trans-
mission electron microscopy. More detailed descriptions and
pictures of similar samples can be found in our preceding
works.6,17 Here we notice, however, that measured wires re-
main in a thin polymer covering, which prevents them from
oxidation, but causes an embarrassing precise diameter
estimation.

Extensive angular measurements were performed. Figure
1 shows the angular dependence of normalized switching
field. Shapes of the asteroids indicate that a curling mode
appears when the applied field direction deviates from thez
axis of wires, as already shown for Ni wires.6 For wires of a
larger diameter, the polar plot of the switching field becomes
more elongated, as expected from a curling model. Figure 1
also shows that the astroid lacks axial symmetry. For a given
angle a between the wire axis and applied field, the mea-
sured switching field is larger whena exceedsp/2, conven-
tionally named ‘‘positive’’ angle in the following discussion.
The difference in the magnetization process between positive
and negative angles is clearly seen from the magnetization
curves of samplea., taken for the angles with small positive
and negative deviations from the direction normal to the wire
axis ~Fig. 2!. For negative directions, only one jump is ob-a!Electronic mail: asokol@unlserve.unl.edu
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served. However, a multiple-step reversal appears at small
positive angles. This difference gradually disappears with in-
creasing angle.

In the following, we use the simplest model for under-
standing the lack of axial symmetry and the occurrence of a
two-step reversal for a limited angular window. We use mi-
cromagnetic simulations, performed using the
Landau–Lifshitz18 equation

dM

dt
52gM3Heff2

ga

M
M3~M3Heff!,

whereM is the point-wise magnetization,Heff is the point-
wise effective field,g is the gyromagnetic ratio, anda is the
damping coefficient. The effective field is defined asHeff

52m0
21]E/]M. The energy densityE is a function ofM as

specified by Brown’s equations, and includes crystalline an-

isotropy, exchange, magnetostatic, and applied field~Zee-
man! terms.19 The OOMMF micromagnetic software devel-
oped at the National Institute for Standards and Technology
was used.20

We propose using a very thin wire, to simplify our cal-
culations, as well as geometrical considerations, by avoiding
the curling model. In the case of an ideal wire (2.5 nm
3400 nm! without induced defect, a nucleation-type process
of the magnetization reversal is found. If the wire is magne-
tized along thez direction and the applied field is growing in
the opposite direction, the magnetization reversal nucleates
at the ends of the wire, in agreement with experiment.12 Be-
cause both ends are equivalent, there is complete axial sym-
metry of the Stoner–Wohlfarth asteroid.

Let us consider the reversal of the wire when the top and
bottom ends are not equivalent. More precisely, the exchange
stiffness constant of the top end is reduced from 13 to 5
310212 J/m, and the anisotropy constant is reduced from
100 to250 J/m3, i.e., in-plane anisotropy. Furthermore, the
anisotropy of the top defect is directed along the~011! direc-
tion or 45° from the axis of the wire. A change of the param-
eters can originate from surface effects, or more probably
from a different composition of the alloy at one end of the
wire. Note that this parameter choice of is not critical for the
conclusions presented next.

The calculated astroid has lost the axial symmetry in
qualitative agreement with experiment~Fig. 3!. The differ-
ence with experiment is due to the diameter of the real wire,
which exceeds 20 nm. In this case, curling-type modes will
appear in the micromagnetic simulation. Nevertheless, the
main features can be seen in the thin wire model. The switch-
ing field for the positive and negative angles are different.
The discrepancy in the angular dependence of switching for
clockwise and counter-clockwise changes of the applied field

FIG. 1. Angular dependence of switching field for wires of two different
diameters (45615 nm). Both curves are normalized to the same maximum
value of applied magnetic field~0.41 T!.

FIG. 2. Magnetization curves for sample a, at two different angles. A single-
step process occurs when the angle is smaller than 90°, and a multiple-step
process occurs at angles larger than 90°.

FIG. 3. Calculated Stoner–Wohlfarth asteroid for a wire with a defect at its
end. Inset shows more clearly the difference between positive and negative
angles.
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is clearly seen in the inset in Fig. 3. This difference increases
with increasing angle between the applied field and the wire.
At positive angles, the nucleus is not formed at the top end
because it is hampered by its anisotropy and the reversal is
triggered at the bottom end.

Magnetization reversal occurring in a multiple-step pro-
cess is explained in terms of domain wall pinning at a defect
in the middle of the wire. The two sides of the wire switch at
different fields, as previously discussed. At positive angles
~lowest switching field values!, the magnetization reversal is
blocked at an impurity site, and a large applied field is nec-
essary to complete the reversal. Our experimental data do not
allow us to discriminate between a process of unpinning of a
domain wall and a nucleation originating from the other end
of the wire. In principle, comparing the second step value
with the step occurring at an equivalent negative angle
should give the answer. Micromagnetic calculations will al-
low us to retrieve both scenarios by choosing adequate an-
isotropy and exchange constants of the defect and end of the
sample. At negative angles, the magnetization reversal occur-
ring at a larger field is not blocked at an impurity site.

Our experiments confirm that the two main defects of
our permalloy wires are their ends. Furthermore, one end of
the wire has a modified composition, which was an intrinsic
characteristic of the synthesis method. This asymmetry is
reflected in a Stoner–Wohlfarth astroid. The occurrence of a
defect along the wire allows the reversal to be pinned, but for
a limited angular window. We used micromagnetic calcula-
tions, with the minimum hypothesis input, to explain quali-
tatively our results.

The support of the NSF-INT Program~Grant No. INT
9980705!, NSF CAREER Program~Grant No. DMR 98-
74657!, and the Office of Naval Research are gratefully
acknowledged.
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