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Magneto-active elastic shells with tunable
buckling strength
Dong Yan1, Matteo Pezzulla1, Lilian Cruveiller1,2, Arefeh Abbasi1 & Pedro M. Reis 1✉

Shell buckling is central in many biological structures and advanced functional materials, even

if, traditionally, this elastic instability has been regarded as a catastrophic phenomenon to be

avoided for engineering structures. Either way, predicting critical buckling conditions remains

a long-standing challenge. The subcritical nature of shell buckling imparts extreme sensitivity

to material and geometric imperfections. Consequently, measured critical loads are inevitably

lower than classic theoretical predictions. Here, we present a robust mechanism to dyna-

mically tune the buckling strength of shells, exploiting the coupling between mechanics and

magnetism. Our experiments on pressurized spherical shells made of a hard-magnetic

elastomer demonstrate the tunability of their buckling pressure via magnetic actuation. We

develop a theoretical model for thin magnetic elastic shells, which rationalizes the underlying

mechanism, in excellent agreement with experiments. A dimensionless magneto-elastic

buckling number is recognized as the key governing parameter, combining the geometric,

mechanical, and magnetic properties of the system.
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S
hells are curved thin structures that can withstand extreme
loading conditions due to the interplay between bending
and stretching deformation1,2 through the so-called shell

effect3. Thin shells are a ubiquitous structural element in
engineering4 and also widely observed in nature across length
scales, from viruses5, and capsules6–8, to pollen grains9, and
plants10. While curvature is the key ingredient underlying the
excellent mechanical performance of shells, it is also responsible
for the catastrophic (subcritical) nature of their elastic
instabilities11. Consequently, shells are high sensitivity to
imperfections1,12–14. For over a century, the pressure buckling of
a spherical shell has been a long-standing canonical problem of
elastic (in)stability1,2. When the in-out pressure differential across
a shell exceeds a threshold value, the shell loses its load-carrying
capacity1. The ensuing collapse is unpredictable, occurring at
loads that are significantly lower than classic theoretical
predictions14. Consequently, measuring and predicting the cri-
tical buckling pressure has proven to be nontrivial due to the high
imperfection sensitivity.

In 1915, Zoelly15 derived the theoretical prediction for the
critical buckling pressure of a perfect spherical shell, of radius R
and thickness h, loaded under a uniform pressure p:

pc ¼
2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� ν
2Þ

p

R

h

� ��2

; ð1Þ

where E and ν are the Young’s modulus and Poisson’s ratio of the
material, respectively. Notwithstanding this classic result, given
the high imperfection sensitivity, buckling pressures measured in
experiments, pmax, have long been found1,12–14 to be much lower
than the prediction from Eq. (1). This discrepancy generated a
long debate in the shell mechanics community that lasted for
nearly four decades until the disagreement between theory and
experiments was finally attributed to imperfections16. Given this
intrinsic mismatch, it became standard to define an empirical
quantity, the so-called knockdown factor,

κd ¼
pmax

pc
; ð2Þ

which is always smaller than unity, spreading a wide range14,17:
0.05 ≤ κd ≤ 0.9.

In engineering, significant efforts have focused on improving
predictions for the knockdown factor and understanding how it is
affected by imperfections1,12–14. A breakthrough came only
recently, from experiments, when the combination of a rapid
prototyping technique for spherical shells18 and its adaptation to
seed precisely designed defects led to a quantitative relationship
between the knockdown factor and defect geometry17. This study
demonstrated that if imperfections can be measured precisely,
then the knockdown factor can be precisely predicted using an
appropriate shell theory19–25, thus opening the door for less
conservative designs of shell structures. In parallel, nondestructive
probing methods have recently been proposed to experimentally
access the stability landscape of shells26–28, while accepting the
inevitable presence of multiple imperfections to set the knock-
down factor. Furthermore, bilayer shells undergoing differential
swelling were recently shown to have a varying knockdown factor
during a transient, demonstrating how the knockdown factor can
be modified post-fabrication, albeit not reversibly on-demand29.
Still, to date, the knockdown factor is regarded as an intrinsic
structural property dictated by imperfections imparted during
fabrication or encoded at the design stage.

To liberate the predestination of imperfections, a shell struc-
ture requires a mechanism that can provide active control over
buckling; the magneto-elastic coupling offers an opportunity to
achieve this. In the literature, mechanical systems built

comprising magneto-active materials, due to their active response
to external magnetic fields, have been used in various applications
for sensing30, actuation31,32, and control32,33. Past pioneering
studies also addressed the deformation and buckling of magneto-
elastic structures made of superparamagnetic34–40 or soft-
ferromagnetic41–47 materials under an external magnetic field.
More recent advances have tended to focus on hard-magnetic soft
materials48–51, which are magnetorheological elastomers (MREs)
embedded with hard-ferromagnetic particles. This class of
materials is magnetically hard with programmable remanent
magnetization and high coercivity upon saturation, but
mechanically compliant due to the soft elastomeric matrix. These
characteristics enable fast, reversible, and complex shape-
morphing through remote magnetic actuation, as has been
exploited for functional devices in a variety of applications,
including shape-programmable materials48,49, biomedical
devices33, and soft robots52–54.

Here, we propose a robust mechanism to dynamically tune the
buckling strength of shells (i.e., their knockdown factor), by
coupling elastic deformation and magnetic actuation. Our fra-
mework leverages the unique features of hard-magnetic soft
materials in the context of shell mechanics. Specifically, we
manufacture spherical shells made of a hard-magnetic elastomer
(hereon referred to as magnetic shells) and characterize their
critical buckling pressure under an applied magnetic field. We
demonstrate that the knockdown factor can be modified exter-
nally by adjusting the magnitude and polarity of the field. To
rationalize our results, we develop an axisymmetric magnetic
shell theory, providing a physical interpretation of the interplay
between shell mechanics and magnetic fields. Furthermore, we
uncover the magneto-elastic buckling number (a dimensionless
quantity that combines the magnetic, elastic, and geometric
properties), which acts as the single governing parameter of the
system. Finally, we provide evidence through experiments and
finite element simulations that our tunable mechanism is general
and extends to non-axisymmetric conditions when the magneti-
zation and/or the applied field are not aligned with the defect.

Results
Tuning the knockdown factor of pressurized magnetic shells.
In our experiments, we position a hemispherical shell of radius,
R= 25.4 mm, and thickness, h= 321.2 μm, in between a set of
Helmholtz coils (Fig. 1a, b). These two coils impose a steady,
uniaxial, and uniform magnetic field (flux density vector Ba

=

Bae3) on the shell, perpendicularly to its equatorial plane (see
Methods section and Supplementary Notes 1 and 2 for details).
The shell is made of a hard-magnetic MRE, a composite of
NdPrFeB particles (volume fraction 7%) and vinylpolysiloxane
(VPS) polymer (see Methods). The full 3D configuration and the
corresponding cross-section profile of the shell are visualized
through X-ray micro-computed tomography (μCT, 100 Scanco
Medical AG), a representative example of which is presented in
Fig. 1c. To measure the buckling strength, we depressurize the
shell using a pneumatic-loading system under imposed-volume
conditions and measure the associated pressure sustained by the
shell (Methods section and Supplementary Note 2). Figure 1d
presents the load-carrying behavior of the shell, characterized by
the pressure (p) as a function of the volume change (ΔV), both of
which are normalized, respectively, by the classic buckling pre-
diction, pc, and the corresponding volume change immediately

prior to buckling19,20, ΔVc ¼ 2πð1� νÞR2h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� ν
2Þ

p

. The
onset of buckling corresponds to the maximum of each curve,
pmax ¼ pmax=pc, and the accompanying pressure drop indicates
the loss of load-carrying capacity of the shell.
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In the absence of magnetic field (Ba= 0mT), the representative
shell shown in Fig. 1c buckles at the dimensionless pressure level of
pmax ¼ 0:44. This value is far below the classical prediction of 1
(pmax ¼ pc), the reason being that we intentionally seed a precisely
engineered dimple-like defect at the pole during manufacturing
(Methods section and Supplementary Note 1), so as to consider the
influence of imperfections in a controllable manner. Hence, the
geometry of the shell deviates slightly from a perfect hemisphere by
an amplitude of δ over the region of polar angle 0 ≤ φ ≤ φ�. The
half angular width of the defect is then measured by φ�, usually

rescaled as φ� ¼ φ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12ð1� ν
2Þ

p

R=hÞ
1
217,19,21,25. For this test shell,

the defect geometry is characterized as δ ¼ δ=h ¼ 0:39 and φ� ¼
11:7� ðφ� ¼ 3:2Þ using an optical profilometer (Methods section
and Supplementary Note 1). Although the introduced defect is too
small to be seen with the naked eye, the buckling strength of the
shell is dramatically reduced, by more than a half due to the high
sensitivity to imperfections1,17,19.

We proceed by focusing on the effect of the magnetic field on
the buckling instability. The magnetized shell possesses a residual
flux density of Br

= Bre3 (Br= 63 mT, see Methods section and

Supplementary Note 1), and is responsive to an external magnetic
field, with a significant modification of the buckling pressure
(Fig. 1d) compared to the no-field case. When the field vector is
parallel to the axis of magnetization (i.e., Ba and Br are in the
same direction), we observe an increase of the critical load by 12%
and 24% under the flux densities Ba= 33 mT and Ba= 66 mT,
respectively. Meanwhile, the accompanying pressure drop at the
onset of buckling is gradually reduced, eventually disappearing
for Ba= 66 mT. Therefore, the shell is strengthened by the
applied field, and the buckling event becomes less catastrophic.
By contrast, for the opposite field polarity (i.e., Ba and Br are in
opposite directions), the shell is weakened; the critical load
decreases with a consequent more abrupt pressure drop past the
buckling event (Ba= {−33,−66} mT in Fig. 1d). These findings
demonstrate that the intrinsic buckling strength of a magnetically
active shell can be modified (increased or decreased), under an
external magnetic field, on-demand.

To further explore the effect of magnetism on the buckling
strength of pressurized spherical shells, we test shells with
different defect geometries, over a range of external flux densities.
As shown in the photographs of the specimens in Fig. 2a, the
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Fig. 1 Buckling of a magnetic shell under combined pressure and magnetic loading. a Photograph of the experimental apparatus: (1) a magnetic shell is

positioned in between (2) a set of Helmholtz coils and depressurized using a pneumatic-loading system, comprising (3) a syringe pump and (4) a pressure

sensor. The Helmholtz coils are driven by the current I in the direction shown in b, output from (5) a DC power supply . b Computed field of the vector

(arrow) and magnitude (contour line) of the magnetic flux density B̂
a
generated by the coils, under current ||I||= 1 A (Supplementary Note 2). The field is

uniaxial and uniform in the central region with a flux density of Ba= Bae3. Given axisymmetry, the field is represented in the x–z plane (y= 0). Coordinates

x and z are normalized by the coil radius Rc= 46.5mm. c Photograph of the representative imperfect shell specimen (top left). Image of its cross-section

(top right) scanned through x-ray μCT and the reconstructed 3D view (bottom, one quarter was artificially hidden to aid with visualization). Scale bars are

5mm. d Loading curves of pressure, p ¼ p=pc, versus volume change, ΔV ¼ ΔV=ΔVc, for the shell shown in c. The peak value represented by the open

circle on each curve is the critical buckling pressure. The buckling test is performed at different levels of external flux density Ba. Inset: schematic of a shell

subjected to a magnetic field Ba, which is opposite (left) or parallel (right) to the shell magnetization Br.
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defect amplitudes are varied as δ ¼ f0:21; 0:27; 0:39; 1:26; 2:61g
during manufacturing (Methods section and Supplementary
Note 1). The axisymmetric defect profiles, w, are presented in
Fig. 2b, defined as the radial deviation of the measured shell
profile from a perfect hemisphere. Figure 2c presents the
corresponding knockdown factor measurements, κd ¼ pmax, as a
function of the external flux density, Ba. Naturally, due to
imperfection sensitivity, the shells exhibit distinct knockdown

factors for different values of δ. However, in the presence of the
magnetic field, we consistently observe an increasing or

decreasing knockdown factor over the explored range of δ.
Within the range of Ba accessible in our experiments, κd can be
changed up to ≈±30%, with respect to the no-field case. These
experimental results demonstrate that the knockdown factor of a
shell can be dynamically tuned, as an extrinsic quantity, by
adjusting the polarity and strength of the applied magnetic field,
via a robust mechanism that is insensitive to imperfections.

Theory of axisymmetric hard-magnetic shells. To rationalize the
experimental results presented above, we develop a theoretical
model that predicts the response of hard-magnetic axisymmetric
thin shells under a combination of mechanical and magnetic
loading. We consider the Helmholtz free energy of ideal hard-
magnetic soft materials49,50, comprising an elastic energy term
(related to material deformation) and a magnetic energy term
(describing the work to align the residual magnetic vector along
the external magnetic field). The shell model is developed by
reducing this three-dimensional energy to the 1D profile curve of
the middle surface of the shell (detailed derivation provided in
Supplementary Note 3). The dimensional reduction of the
Kirchhoff-Saint Venant elastic energy55, valid for small strains
and large displacements, with the potential of live pressure was
reported recently56. In the present study, we focus on the mag-
netic energy term, which, for 3D scale-free materials, is written
as49,50,57 Um ¼ �μ0

�1
R

FBr � Ba dV , where F is the deformation

gradient55. We note that, in the magnetic energy of hard-
magnetic materials, Br is the remanent magnetization retained in
the material (through the saturated hard-ferromagnetic particles),
which is independent of the external field Ba. This independence
between Br and Ba in hard-magnetic materials contrasts with
superparamagnetic and soft-ferromagnetic systems35–37,40,46,47,
where the material magnetization is induced by the field applied
for actuation, thereby relating to Ba. In this model, the magnetic
interaction between particles embedded in the MRE is not taken
into account due to its negligible influence on the results, which
has been validated through experiments (evidence provided in
Supplementary Note 3). We describe the axisymmetric shell

profile by the coordinates ðρ
�
; z
�
Þ, ρ

�
being the radial coordinate in

the x-y plane perpendicular to the axis of axisymmetry (z).
Accented quantities (e.g., å) refer to the undeformed configura-
tion of the shell. The reduced 1D magnetic energy, normalized by
πEhR2/(4(1− ν2)), can be derived as (Supplementary Note 3)

Um ¼ �
8ð1� ν

2Þ

R2

BrBa

μ0E

Z π=2

0

F ðρ
�
;φ; z

�
;φ; ρ;φ; z;φÞ a

�
dφ ; ð3Þ

where a
�
is the area measure, and F is a dimensionless function

that depends on the initial and deformed configurations of the
shell. From Eq. (3), we identify a magneto-elastic parameter

λm ¼
BrBa

μ0E
; ð4Þ

which represents the intrinsic magneto-elastic coupling of the
system. Equilibrium equations can be generated by minimizing
the total energy for all the possible displacements of the shell,
which were solved via the Newton-Raphson method (see Meth-
ods section and Supplementary Note 3)56.

It is important to highlight that, in our simulations of the 1D
model presented above, we use the geometric and physical
parameters of the system measured in experiments (see
Methods section), without any fitting parameters. The defect
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Fig. 2 Tuning the knockdown factor of magnetic shells with different defect geometries. a Photographs of a series of magnetic shells with different

defect amplitudes, δ ¼ f0:21;0:27;0:39; 1:26; 2:61g, but the same defect width, φ� ¼ 3:2. Scale bars are 5 mm. The schematic illustrates the geometric

parameters of the shell. b Axisymmetric 2D defect profiles normalized by shell thickness, w/h, for the shells presented in a. Symbols are the latitude-wise

average of the corresponding 3D profiles measured through profilometry, and lines are profiles described by w=h ¼ �δ 1� φ2=φ2
�

� �2
ð0 � φ � φ�Þ (see

Supplementary Note 1 for details). Inset: measured 3D defect profile of the shell with δ ¼ 1:26 and φ� ¼ 3:2. c Knockdown factor, κd, versus flux density of

the applied field, Ba, for shells containing the defects shown in b. Symbols and lines represent experimental results and theoretical predictions from the

axisymmetric shell model, respectively. The error bars in the experimental data correspond to the accuracy of pressure measurements and the standard

deviations of the measurements of shell thickness and Young’s modulus; the error bands of theoretical predictions correspond to the standard deviations of

the measurements of defect amplitude and shell thickness. Insets: schematics of directions of the shell rotation vector, q, and the magnetic torque vector,

τ=− kq, near the pole, for the cases of Ba opposite (left) or parallel (right) to Br.
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profile in the region 0 ≤ φ ≤ φ� is described analytically by

w=h ¼ �δ 1� φ2=φ2
�

� �2
(Fig. 2b), derived based on a simple

plate model (Supplementary Note 1). Excellent agreement is
found between theory and experiments (Fig. 2c). The variation
of the knockdown factor for shells with different defect
geometries under the magnetic field is accurately predicted by
our shell model, which is, therefore, able to describe the
intricate coupling between elasticity, magnetism, and the
nonlinear mechanics of thin shells.

Physical interpretation of the reduced magnetic energy. Even
though our theoretical model can predict the buckling strength of
shells, the reduced magnetic energy is highly nonlinear, and the
mechanism underlying the change of knockdown factors still
needs to be clarified. Therefore, we proceed to expand the inte-
grand of the reduced magnetic energy in Eq. (3),

F ðρ
�
;φ; z

�
;φ; ρ;φ; z;φÞ, up to second order in the displacement field

(Supplementary Note 3). By examining the role of each term in
the buckling instability, we conclude that only the following
second-order term dominates the buckling of the shell,

U
ð2ÞA

m ¼ �
8ð1� ν

2Þ

R2

Z π=2

0

1

2
τ � q a

�
dφ ; ð5Þ

where q is the rotation vector of a material fiber of the shell2,58,
and τ=− k(φ)q can be interpreted as a distributed (dimen-
sionless) torque applied by the external magnetic field. This
torque is a linear function of the shell rotation with a

deformation-independent pre-factor k ¼ λm χ
�
ðφÞ, which we can

interpret as the (dimensionless) stiffness of distributed rotational

springs, where χ
�
ðφÞ ¼ ρ

�
;2φ=ðρ

�
;2φ þ z

�
;2φÞ.

Under pressure loading, material fibers tend to rotate prior to
buckling, thereby increasing the magnetic torque (Supplementary
Note 3). Whether the torque reacts to restore the undeformed
orientation of the material fibers or to rotate them further away
from the initial orientation, depends on the sign of the equivalent
stiffness k (insets in Fig. 2c). When Ba and Br are in the same
direction (Ba ⋅ Br > 0), the stiffness k is positive, thus ensuring that
τ is opposite to q, thereby counteracting buckling. As a result, we
observe the strengthening of shells with increasing critical loads
(cases with Ba > 0 in Fig. 2c). Conversely, when Ba and Br are in
opposite directions (Ba ⋅ Br < 0), the negative stiffness (k < 0) leads
to a torque τ that acts to increase the rotation q. Indeed, in this

regime, buckling occurs at lower pressure levels (cases with Ba < 0
in Fig. 2c).

Scaling analysis of the change of knockdown factor. With a
physical interpretation of the magnetic energy for shells at hand,
we now employ scaling arguments to more clearly rationalize how
the knockdown factor is modified by the magnetic field for dif-
ferent radius-to-thickness ratios. Since the magnetic energy
interacts with the live pressure potential to alter the knockdown
factor, we balance the two energy terms. The dimensionless

magnetic energy can be shown to scale as Um � λmh=R, while the
change of knockdown factor with respect to the non-magnetic
case, Δκd ¼ κd � κdjBa¼0, scales as Δκd ~ (Δp/E)(R/h)2 (Supple-
mentary Note 3). By balancing the scalings for the potential of Δp,

that is UΔp ¼ Δp=E, and the magnetic energy Um, we find Δp/E ~

λmh/R, translating into

Δκd �
Δp

E

R

h

� �2

� λm
R

h
: ð6Þ

From Eq. (6), we define the magneto-elastic buckling number,

Λm ¼ λm
R

h
; ð7Þ

which governs the knockdown factor under combined pressure
and magnetic loading of magnetic shells. The scaling Δκd ~Λm

provides a scale-invariant description of how the magnetic field
modifies the buckling pressure for shells with different radius-to-
thickness ratios.

Robustness of the mechanism to geometric imperfections. We
set out to investigate the role of imperfections in the buckling of
magnetic shells, which we now address with a more systematic
parametric exploration. We fabricate shells over a wide range of

the defect amplitude (0:1 ≤ δ ≤ 3:4) and measure the corre-
sponding knockdown factors, κd, from buckling tests. In parallel,
we run 1D simulations for the same material and geometric

properties. Figure 3a illustrates the relationship between κd and δ
at different levels of external flux density, included in the
magneto-elastic buckling number, Λm, of Eq. (7). The signature of
imperfection sensitivity is still observed in the presence of the
magnetic field: κd decreases dramatically when the defect ampli-

tude increases in the regime of relatively small defects (0< δ < 1).
Surprisingly, the results of the change in knockdown factor under
the applied magnetic field (Δκd) presented in Fig. 3b are
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Fig. 3 Imperfection sensitivity of the pressure buckling of magnetic shells. a Knockdown factor, κd, and, b its change under the magnetic field,

Δκd ¼ κd � κdjBa¼0 are plotted versus normalized defect amplitude δ. The tested shell specimens are made of MRE-22 or MRE-32 (E= 1.15MPa, R/h=

79.1 for MRE-22 and E= 1.69MPa, R/h= 91.3 for MRE-32; see Methods section). The magneto-elastic buckling number Λm= {0.18, 0.09, 0,−0.09,

−0.18} is varied by adjusting the external flux density Ba= {−53,−26, 0, 26, 53} mT for the MRE-22 shells and Ba= {−66,−33, 0, 33, 66}mT for the

MRE-32 shells. Experimental results are represented by open symbols, and lines are predictions by the axisymmetric shell model. The closed symbols on

each line in b represent the onset of the plateau of Δκd, determined as the first point when the derivative of Δκd with respect to δ is <1%.
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significantly less sensitive to defects; Δκd becomes approximately

constant for δ>1. This finding suggests that the magnetic inter-
action between the shell and the external field is nearly unaffected
by the intrinsic imperfection sensitivity, ensuring a robust tuning
of the knockdown factor.

Moreover, the results in Fig. 3a, b include data for two sets of
shells with different combinations of material and geometric
properties (E= 1.15 MPa, R/h= 79.1 for MRE-22 shells and E=
1.69MPa, R/h= 91.3 for MRE-32 shells; see Methods section).
Still, the κd and Δκd data collapse for these two sets, given that the
value of Λm is the same for both. This collapse supports Λm as the
governing parameter, combining the mechanical, magnetic, and
geometric properties of the system. Throughout the analysis, the
theory is in excellent agreement with experiments.

A robust way to quantify the effect of the magnetic field on the
change in knockdown factor is to focus on the plateau in Fig. 3b,
Δκp, defined as the average of Δκd over the extent of the plateau-
like region. Figure 4a (open symbols) shows predictions from our
shell model for Δκp versus the external flux density, Ba, for shells
with different radius-to-thickness ratios and defect widths. While
the radius-to-thickness ratio strongly influences the change of
knockdown factor, the defect width has little effect on it
(Supplementary Note 4). In Fig. 4b, we plot the raw data of
Fig. 4a as a function of the magneto-elastic buckling number Λm,
finding that the different results for shells with different
geometries fall onto a master curve. This collapse demonstrates
that the plateau change of knockdown factor is governed by the
single parameter Λm, independent of the geometry of the defect.
The superposition of experimental results on the theoretical
predictions further validates this collapse. Moreover, consistently
with the scaling in Eq. (6), a linear relationship is found between
Δκp and Λm, with a slope of 1.26 ± 0.01 obtained via linear fitting.
This master curve serves as a concrete design guideline for
magnetic shells, summarizing the effect of the magnetic field on
tuning the buckling strength of pressurized spherical shells with
different material and geometric properties.

Discussion
Thus far, we have demonstrated the possibility of tuning the
knockdown factor of axisymmetric shells via magnetic actuation.
This change of knockdown factor is dictated by the magnetic
torque generated due to the shell rotation, which breaks the
alignment between the magnetization (Br) and the applied field
(Ba). Consequently, this mechanism is expected to be preserved
for asymmetric loading conditions, provided Br and Ba are
aligned in the initial configuration. To attest this statement, we

first magnetize our shell specimens asymmetrically, at an angle φr

with respect to the shell’s axis of symmetry (see schematic dia-
gram in Fig. 5a). The defect is still maintained at the pole. Then,
during the buckling test, a magnetic field at the same angle (φa=
φr) is applied, either parallel (Br ⋅ Ba > 0) or antiparallel (Br ⋅ Ba <
0) to the initial shell magnetization. In Fig. 5a, we plot the
measured change of knockdown factor, Δκd, versus φr and φa, at
Λm= ± 0.22. We consistently observe finite values of Δκd for both
the axisymmetric and asymmetric cases, even when Br and Ba are
perpendicular to the axis of the defect. In the latter, the most
unfavorable case, the range of ≈±0.1 in the tuning of κd is still
significant. These results indicate that, even when the defect
information might be unknown in an application setting, the
tunable mechanism that we have uncovered can always be rea-
lized by aligning the applied field with the magnetization. Still, at
the same level of Λm, the capacity of tuning decreases with
increasing φr and φa, and the axisymmetric configuration is the
most efficient at maximizing Δκd.

To further probe the robustness of the proposed mechanism,
we consider asymmetric cases, where Br and Ba are misaligned.
We focus on shell specimens with a fixed magnetization set at φr

= 0∘, while the direction of the applied field is varied by
increasing φa from 0∘ (axisymmetric, Ba∥Br) to 90∘ (Ba⊥Br). The
corresponding change of knockdown factor is plotted in Fig. 5b,
which (the absolute value) decreases from the maximum at φa=
0∘ to Δκd= 0 at φa= 90∘. Thus, in settings where the alignment
between the shell magnetization and the external field cannot be
ensured, tuning the knockdown factor is always possible (unless
Ba⊥Br, which leads to Δκd= 0). This relaxation in loading con-
ditions broadens the applicability of the mechanism in real
applications involving complex magnetization profiles and mag-
netic fields. In parallel to the experiments, we perform full 3D
finite element simulations (see Methods section for details) using
a user-defined element proposed in Zhao et al.50 for hard-
magnetic soft materials. Good agreement between simulations
and experiments is found in Fig. 5a, b, which further corroborates
our findings. To establish quantitative understanding on the
magneto-elastic interaction in the asymmetric cases, a general
magnetic shell model would be required, which is beyond the
scope of the present study. We also note that, since the generation
of magnetic torque is not constrained to a specific defect geo-
metry, we anticipate our mechanism would also work for
imperfections with other geometric profiles or arrangements. The
localized nature of buckling in spherical shells19,20 is also
underlined in our system by the localized distribution of shell
rotation and the associated magnetic torque in the vicinity of the
defect (see Supplementary Fig. 6 in Supplementary Note 3). This
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localization ensures that the tunability would not be affected by
the shell opening angle and boundary conditions (except for
extremely shallow shells).

In closing, we have shown that the buckling strength of shells
can be dynamically tuned by exploiting the interplay between
mechanics and magnetism. The proposed mechanism represents
a robust way to gain control on a property of thin shells that has
long been regarded as intrinsic, the knockdown factor. By per-
forming precision experiments on hard-magnetic elastomeric
shells and developing a theoretical model, we unveiled the
essential feature at the base of the mechanism, a distributed
torque induced by the magnetic field due to the shell rotation.
Moreover, we showed that a dimensionless quantity, the
magneto-elastic buckling number, emerges as the key governing
parameter, summarizing the geometric, mechanical, and mag-
netic properties of the system. We envision that our tunable
mechanism can be used to gain control on the structural life of a
shell, by applying a magnetic field as critical conditions approach.
More generally, we believe that the approach of coupling
mechanical deformation and magnetic actuation, already suc-
cessfully applied for beams33,48,51 and films47, and employed here
to tune the knockdown factor of shells, can be extended to modify
the instabilities of other structures such as rods, plates, and non-
axisymmetric shells45,46, for which research efforts are currently
ongoing. We hope that the principle that we have uncovered will
open an axis of tunability in the design of mechanical systems
where shell buckling is harnessed as a functional mechanism59–61,
to offer devices with tunable mechanical properties or behavior.

Methods
Preparation of the MRE material. Our experimental samples were fabricated
using a MRE material composed of a mixture of hard-magnetic NdPrFeB particles
(average size of 5 μm, MQFP-15-7-20065-089, Magnequench) and Vinylpolysi-
loxane (VPS, Elite Double, Zhermack), a silicone-based polymer. MREs made of
VPS Elite Double 22 or VPS Elite Double 32 are referenced throughout the text as
MRE-22 or MRE-32, respectively. We prepared the MRE with the following steps.
First, the initially non-magnetized NdPrFeB particles were mixed with the liquid
VPS base (1:1 mass ratio) using a centrifugal mixer (ARE-250, Thinky Corpora-
tion); for 40 s at 2000 r.p.m. (mixing mode), and another 20 s at 2200 r.p.m.
(defoaming mode). Secondly, the solution was degassed in a vacuum chamber

(absolute pressure below 8 mbar), and then cooled down to room temperature (22
± 0. 4 ∘C) to avoid any changes of viscosity due to thermal disturbances from the
previous steps. Thirdly, VPS catalyst was added to the mixture, with a ratio of 1:1 in
weight to the VPS base. After another mixing step for 20 s at 2000 r.p.m. (mixing
mode) followed by 10 s at 2200 r.p.m. (defoaming mode), the final mixture was
ready for sample fabrication. The final mass concentrations of NdPrFeB particles
and VPS polymer were 33.3 wt% and 66.7 wt%, respectively. Pouring of the liquid
MRE mixture onto the mold during shell fabrication (see below) was done after a
set waiting time (100 s for MRE-22 and 20 s for MRE-32), so as to increase the
viscosity to the desired value. After the above preparation steps, the curing of the
polymer mixture occurred in ~20 min at room temperature.

Physical properties of the MRE. The densities of MRE-22 and MRE-32 were
measured using a pycnometer to be ρMRE�22 ¼ 1:61 ± 0:05 g=cm3 and

ρMRE�32 ¼ 1:63 ± 0:03 g=cm3 , respectively. The density of the NdPrFeB particles
was 7.61 g/cm3 (provided by the supplier). Under the concentrations of the pre-
pared mixture, the volume fraction of NdPrFeB particles was calculated to be 7.05%
for MRE-22 and 7.14% for MRE-32. When saturated, the effective residual flux
density of our MRE, Br, was assumed to be the volume-average of the total residual
flux density of individual NdPrFeB particles (0.90 T, as reported by the supplier).
Given the chosen volume fraction, Br= 63.2 mT for MRE-22 and Br= 64.0 mT for
MRE-32. The Young’s moduli of MRE-22 and MRE-32 were measured to be E=
1.15 ± 0.04MPa and E= 1.69 ± 0.06MPa, respectively, using a combination of
cantilever and tensile tests.

Fabrication of the magneto-active shell specimens. Our shells were fabricated
by coating the underside of a flexible negative spherical mold (radius 25.4 mm)
with liquid MRE; see the schematic in Supplementary Fig. 1 and Supplementary
Note 1 for details. Whereas our technique was inspired by previous work17,18, our
molds also contained a soft spot (thin circular region) at the pole to produce a
precisely engineered defect. With the negative spherical surface of the mold facing
down, the gravity-driven viscous flow of the polymer yielded a thin layer of MRE
on the mold. Before the MRE fully cured (≈13 min after pouring), the mold was
depressurized from within using a syringe pump. As a result, the soft spot of the
mold deformed to produce an axisymmetric geometric imperfection at the pole of
the shell. This defect became frozen in the shell upon curing. The amplitude of the
defect was systematically varied by adjusting the pressure imposed on the mold
during curing (Supplementary Fig. 2). The width of the defect can be varied by
changing the pillar used in mold manufacture with a different radius (Supple-
mentary Note 1). The amplitude and width of the defect were set independently. To
make the shell magnetically active, we saturated the NdPrFeB particles, already in
the solidified MRE, using an applied uniaxial magnetic field (4.4T, perpendicular to
the equatorial plane) generated by an impulse magnetizer (IM-K-010020-A,
Magnet-Physik Dr. Steingroever GmbH).
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Geometry of the shells. The radius of the shells (R= 25.4 mm) was set by the
mold used during fabrication. Their thickness was characterized using a micro-
scope (VHX-5000, Keyence Corporation) after cutting off narrow strips (≈2 ×
6mm2) near the pole. The average measured thickness was h= 321.2 ± 5.1 μm and
h= 278.2 ± 2.8 μm for the MRE-22 and the MRE-32 shells, respectively. Hence, the
corresponding radius-to-thickness ratios were R/h= 79.1 and R/h= 91.3. The 3D
profile of the outer surface of each fabricated imperfect shell was characterized
using an optical profilometer (VR-3200, Keyence Corporation). The geometry of
the defect was computed as the radial distance between the measured profile and
the corresponding best-fit spherical surface. Specifically, the amplitude, δ, and half
angular width, φ� , of the defect were determined by fitting the analytical

description, w=h ¼ �δ 1� φ2=φ2
�

� �2
ð0≤φ ≤φ�Þ, to the experimental measure-

ments (additional details provided in Supplementary Note 1). The ranges of geo-

metric parameters for our specimens were as follows: 0:14≤ δ ≤ 3:2 and

φ� ¼ 11:7 ± 0:1� ðφ� ¼ 3:2Þ for the MRE-22 shells; and 0:17≤ δ ≤ 3:4 and φ� ¼

11:6 ± 0:1� ðφ� ¼ 3:4Þ for the MRE-32 shells.

Generation of the magnetic field. A uniaxial uniform magnetic field was gen-
erated in the central region of two identical customized multi-turn circular coils
(square cross-section, inner diameter 72 mm, outer diameter 114 mm, and height
21 mm), configured in the Helmholtz configuration. The coils were set con-
centrically, with a center-to-center axial distance of 46.5 mm, and connected in
series, powered by a DC power supply providing a maximum current/power of 25
A/1.5 kW (EA-PSI 9200-25 T, EA-Elektro-Automatik GmbH). The flux density of
the magnetic field was varied in the range−66 mT ≤ Ba ≤ 66 mT by adjusting the
current output of the power supply, from− 10 A to 10 A. The flux density was
measured using a Teslameter (FH 55, Magnet-Physik Dr. Steingroever GmbH),
along both the axial and radial directions. In parallel to the experimental mea-
surements, we simulated the generated field using the Magnetic Fields interface
embedded in the commercial package COMSOL Multiphysics (v. 5.2, COMSOL
Inc.), based on Ampère’s Law (see Supplementary Note 2 for details). Excellent
agreement was found between experiments and simulations (Supplementary
Fig. 3).

Buckling tests. To quantify the critical buckling conditions of our magnetic shells,
we positioned each shell in between the Helmholtz coils under a steady magnetic
field, and then depressurized it under prescribed volume conditions by a
pneumatic-loading system (see Supplementary Note 2 for details). The applied
pressure was monitored by a pressure sensor (785-HSCDRRN002NDAA5, Hon-
eywell International Inc.). The level of depressurization was increased, under a
steady magnetic field, until the shell buckled. The critical buckling pressure was
defined as the maximum value of the loading curve (pressure vs. imposed volume
change).

Theory and numerics. The reduced 1D energy U , representing the sum of the
elastic and magnetic energies of the system, together with the potential of the live
pressure, was obtained by means of dimensional reduction (see Supplementary
Note 3 for details). Equilibrium equations were generated by minimizing the total
energy for all possible displacements of the shell, and solved via the Newton-
Raphson method using the commercial package COMSOL Multiphysics (v. 5.2,
COMSOL Inc.). Details of the implementation of our numerical procedure are
provided in Pezzulla and Reis56.

Finite element modeling. Finite element simulations were performed using the
software package Abaqus/Standard, with no fitting parameters; all the geometric,
mechanical, and magnetic parameters required in the simulations were measured
independently from the experiments. Geometric nonlinearities were taken into
account. Due to the symmetry of the system, only half of the hemispherical shell
(i.e., one quarter of a full spherical shell) was modeled, applying symmetric
boundary conditions on the x−z plane. The geometric defect described by the
theoretical profile (see Supplementary Note 1 for details) was introduced into the
shell. The shell was discretized by the user-defined 3D 8-node isoparametric solid
elements proposed in Zhao et al.50, for modeling hard-magnetic materials. The
mechanical response of the material was described by the incompressible neo-
Hookean model with a bulk modulus of 100E to realize the incompressibility. A
convergence study was performed to select the level of discretization of the mesh
with eight elements in the thickness direction, 200 elements along the half equator,
and 200 elements along the half meridians. During loading, the shell was clamped
at the equator with the magnetic field applied in a first step. In a second step, the
shell was pressurized by imposing a uniform live pressure on a duplicate dummy
mesh of C3D8RH solid elements, congruent (sharing the same nodes) to the mesh
of the user elements. The elastic modulus of this dummy material was set to 10−20

Pa, ensuring nearly vanishing element stiffness and elastic energy of this dummy
shell with respect to the physical shell. This second step was conducted using the
Riks method to capture the critical load of subcritical bifurcation.

Data availability
Data supporting the findings of this study are available within the paper and its

Supplementary Information files. All other relevant data are available from the

corresponding author upon reasonable request. Source data are provided with this paper

as a Source Data file. Source data are provided with this paper.
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