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Abstract

Purpose — The aim of this paper is to develop network models of an electromagnetic field containing
both eddy and displacement currents. The proposed network models provide good physical insight,
help understanding of complicated electromagnetic phenomena and aid explanation of methods of
analysis of electromagnetic systems.

Design/methodology/approach — The models consist of magnetic and electric networks coupled
via sources. The analogy between the finite element method and the loop and nodal formulations of
electric circuits is emphasised. The models include networks containing branches associated with
element edges (edge networks) or facets (facet networks).

Findings — Methods of determining mmf sources of magnetic networks from loop and branch
currents in electric circuits, as well as emf sources in electric networks on the basis of the rate of
change of loop and branch fluxes in electric networks, have been carefully considered. The models are
general and allow creation of networks of electromagnetic systems containing non-homogenous
materials and multiply-connected conducting regions.

Originality/value — The presented analogies between the finite element formulation and the
equivalent network models not only facilitate understanding of the methods of field analysis but also
help to formulate efficient computational algorithms.
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1. Introduction

One of the oldest techniques for electromagnetic field analysis and computation relies
on magnetic and/or electric field equivalent circuits. Historically such circuits tended to
be simple with few degrees of freedom due to limitations of available computing power;
notwithstanding, these methods are still helpful in providing efficient estimates of
global parameters and are used for teaching purposes as they are well-based physically
and avoid complicated mathematical descriptions. Dramatic increases in computer
speed and available memory have removed many restrictions and contemporary
network equivalents are often based on finite element formulations and are very
detailed and accurate. It has been shown before (Demenko and Sykulski, 2002;
Davidson and Balchin, 1983; Demenko et al., 1998) that finite element equations are
equivalent to loop or nodal descriptions of appropriate magnetic or electric networks.
Thus models stemming from the finite element approach may be viewed as network  oyper. the iterational journal
models. The number of branches in such networks is consistent with the number of for Computation and Mathematics in
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Figure 1.
Models of hexahedron

Figure 2.
Models of region with
9-edge prisms (4 prisms)

multi-branch, which explains why they are called the networks. This contribution
builds on previous publications and, in particular, addresses the coupling between
magnetic and electric networks when both conduction and displacement currents may
exist.

2. Edge and facet models

It has been shown (Demenko and Sykulski, 2002) that it is helpful to introduce two
types of models: “edge networks” (EN) where branches are associated with edges of the
elements, and “facet networks” (FN) with branches connecting the centres of the
relevant facets with the centre of the element volume. Figure 1 shows both types of
networks for a hexahedron. Fragments of networks divided into prisms with a
triangular base are shown in Figure 2 and refer to four elements. The facet model
shows one loop around the edge P;Ps, whereas the edge model includes one complete
branch associated with that edge. Table I summarises the branch equations for both
models. The parameters of the edge model (permeance A, conductance G, capacitance
C) may be established from the interpolation functions of the edge element, while the
parameters of the facet model (reluctance R,, and impedance Z) result from the
interpolation functions of the facet element (Demenko and Sykulski, 2002). It should be
noted that in models established using edge or facet elements there exist inter-branch
couplings. For example, the flux in the ith branch of the edge (permeance) element
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Type of network Branch equation Substitution Comments

Edge-magnetic &y = A(ug + Oy) ug =k, Q Q, Vare the vectors of nodal potentials;
A, G, C are the matrices of branch
permeances, conductances, capacitances;
0, g, are the vectors of branch mmfs and
emfs; K, is the transposed nodal incidence
matrix for EN, see Figures 1(a) and 2(a)

Edge-electric i, = (G + pO)(uy +ep) uy =k,V

Facet-magnetic  ugs = Rydr — O b =Kkede o, i are the vectors of loop fluxes and
currents; R,,, Z are the matrices of branch
reluctances and impedances, e; @, are the
vectors of branch mmfs and emfs; k. is the
loop (mesh) matrix for EN and the
transposed loop matrix for FN, see also
Figures 1(b) and 2(b)

Facet-electric uys = Zis — e ir = ke,
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Table 1.

Branch equations and
substitutions for edge
and facet models

model depends on the voltage across the permeance of the jth branch, whereas the
magnetic voltage of the branch ¢ in the facet (reluctance) model is linked to the flux in
the branch p. Thus when considering equations of Table I, care must be taken as the
matrices of branch parameters are not diagonal and matrix inversion may be very
cumbersome. Such matrix inversion is normally avoided by applying a nodal method
to the edge models and a loop method to the facet models. From the equations in
Table I, the nodal equations for the edge network follow:

K'Ak,Q = —-k'AO,, k1 (G+pOk,V = -k (G + pCey,. (1a,b)
The loop equations, on the other hand, may be written as:
k'R kb, =k! 0O, k!Zk.i, =k e;. (2a,b)

The nodal equation (1) is equivalent to the nodal finite element formulation using
scalar potentials £ and V, whereas equation (2) refers to the edge element formulation
based on vector potentials A and T. The vector ¢, of loop fluxes of a facet network
equals the vector of edge values of potential A, while the vector of loop currents i. is the
same as the vector of edge values of potential T.

The parameters of the edge and facet models may also be obtained in an
approximate way (Demenko, 2000; Sykulski, 1995; Hammond and Sykulski, 1994), in
which case no coupling between branches can be established, thus no mutual
reluctances, permeances, conductances or capacitances are available. Only
magneto-electric couplings are preserved, resulting from the dependence of mmf on
current and emf on time derivative of magnetic flux.

3. Magnetomotive and electromotive forces

Branch sources in FN are established from loop quantities in EN, and — by
symmetry — branch sources in EN are found from loop quantities in FN. Branch
mmfs 6, in EN correspond to loop currents, i, in FN, e.g. the mmf in branch P,Ps of
the magnetic network of Figure 2(a) is equal to the loop current of the electric
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network of Figure 2(b) in the loop around the edge P;Ps. Branch emfs ¢, in EN are
found as time derivatives of loop fluxes ¢, in FN, hence the sources in equation (1)
may be expressed as:

_ dde
dr -

The branch mmfs @ in FN are represented by the loop currents i, of the edge network,

e.g. themmf in branch @, Q- of the facet network of Figure 2(b) is equal to the loop current

i, of the edge network shown in Figure 2(a). The time derivative of the flux ¢, in the loop

shown in Figure 2(a) is equal (with the negative sign) to the emf in the branch ;@ of the

electric FN (Figure 2(b)), thus the sources in equation (2) may be described as:

dd,

T (4a,b)
When using the loop method it is not necessary to know the branch sources, instead the
loop sources are needed. For example, when dealing with equation (2), the branch values
of ®;and e; are not required and we can concentrate on deriving the loop sources ®,, and
e, where O, = keT(Df and e, = k;ref. The loop mmf is equivalent to the current
passing through the loop of the magnetic network, thus loop mmfs @,, in the facet
network correspond to the branch currents i, in the edge network, e.g. the mmf in the
loop shown in Figure 2(b) (the loop embracing the edge P;P,) is equal to the current of the
branch P, P; of the electric network of Figure 2(a). The loop emfs may be found by taking
time derivatives of branch fluxes in the magnetic network passing through the loops of
the electric network, e.g. loop emfs e, in the electric facet network may be established
from the fluxes associated with branches of the magnetic edge network, e, =
—ddy,/dt. Thus, when solving equation (2), we are allowed to use the following
identities:

O, =i, e,= (3a,b)

O =i,, e;=

. d

keT(Df =0, =i, kgef =ey=— %. (5a,b)
In order to determine fluxes dx,, ¢, and currents i, i, associated with edge networks, it is
not essential to solve the network equations; instead we may use the solutions for
the facet network and apply a transposition matrix N. The elements of this matrix are
given by the product of the interpolating functions of the relevant facet and edge

elements (Demenko and Sykulski, 2002). Employing the matrix N yields:
¢0 = Nd)e? iO = Nie7 (63., b)
¢, =NTd¢, i, =NTis. (7a,b)

The matrix N may also be used do establish currents, i. and fluxes ¢, related to the loops
of the facet network, from currents i, and fluxes ¢, in the loops of the edge network:

(be = NT(bo: i = NTio~ (8a, b)

These relationships are shown in Figure 3, where hexahedron elements are considered
for which all entries in the matrix N are equal to 1/8.

From the above discussion it may be concluded that — due to a better representation
of sources — the field description using loop quantities is more universal.
This deduction is consistent with an observation that the loop approach establishes
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correspondence with vector potentials, and it is generally agreed that formulations in
terms of vector potentials are more powerful than those using scalar potentials.

4. Coupled electro-magnetic networks
Models of the electromagnetic field are provided by the coupled, via sources, magnetic
and electric networks. It has already been noted that — due to the couplings between
branches (mutual permeances, conductances and capacitances in EN, and mutual
reluctances and impedances in FN) — it is more convenient to analyse edge networks
using nodal approach, whereas facet networks are better handled using loop methods.
Thus it follows (refer also to our previous comments about establishing mmfs and
emfs) that a system containing an electromagnetic field may be described using the
following coupled network models:

+ magnetic and electric facet network (FM-FE) — Figure 4;
+ magnetic facet network and electric edge network (FM-EE) — Figure 5(a); or
+ magnetic edge network and electric facet network (EM-FE) — Figure 5(b).
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Figure 3.
Transformation of
currents
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Figure 4.

Coupled facet networks
(FM-FE), a network
representation of the A-T
method

Figure 5.
Coupled facet and edge
networks

Figure 6.

Network model of a
region with a plane wave,
E=1E.(2), H=1,H,(2)

The loop equations of the network model FM-FE correspond to the edge formulation
using A-T. The loop sources are established directly from the branch quantities. In the
FM-EE and EM-FE models, the branches of the magnetic network pass through the
loops of the electric network, while the branches of the electric network pass through
the loops of the magnetic network, as shown in Figure 6. The equations of the FM-EE,
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EM-FE models correspond to the A-V, -T formulations of the finite element method, Vagneto-electric

respectively. The loop sources in the facet networks are obtained from the branch
quantities in the in the edge networks, whereas branch sources in the edge networks
from the loop quantities in the facet networks. From the loop equations applied to the
facet networks of the FM-EE and EM-FE models, it is possible to derive edge
formulation arising from the field description. It should be assumed that the nodes of
the edge networks are equipotential, thus E = —dA/d¢, H = T and loop currents in
the electric network represent edge values of vector H, while time derivatives of the
loop fluxes in the magnetic network correspond to the edge values of vector E.

5. Conclusions

The proposed network models provide good physical insight, help understanding
of complicated electromagnetic phenomena and aid explanation of methods of
analysis of electromagnetic systems. The models are general and allow creation of
networks of electromagnetic systems containing non-homogenous materials and
multiply-connected conducting regions. It is possible, for example, to represent
windings containing filament or thin conductors, as well as rod conductors (e.g. in cage
rotors). For thin conductors the best suited model is the facet electric network, which is
a circuit representation of the method using electric vector potential T, but care must
be taken to replace “large” loops of the windings with “small” loops around the edge of
the elements (Demenko, 2002). The facet model can also be used to model cage
windings of an induction machine — despite a common opinion that vector T is not
appropriate for such systems — as well as conductors with holes all way through, i.e.
multiply-connected regions. The classical T formulation leads to loop equations
around the element edges. Although the number of such loops is usually higher than
the number of independent loops, in the multiply-connected region it is not possible to
set-up a complete system of independent loops. It is, therefore, necessary to
complement these equations by introducing additional loops embracing the “holes”
which provide the required extra equations. This conclusion — which may be
considered obvious from the circuit theory point of view — is not easy to arrive at using
the classical finite element formulation. It may be argued, therefore, that the presented
analogies between the finite element formulation and the equivalent network models
not only facilitate understanding of the methods of field analysis but also help to
formulate efficient computational algorithms.
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