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Abstract

In the paper, a novel magneto electro elastic ( model of bi-directional (2 D) functionally graded material s
(FGM s ) beam s is developed for investigating the nonlinear dynamics It is shown that the asymmetric
modes induced by the 2D FGM s may significantly affect the nonlinear dynamic responses which is
tremendously different from previous studies Taking into account the geometric nonlinearity, the
nonlinear equation of motion and associated boundary conditions for the beam s are derived according
to the Hamilton’s principle The linear frequencies and modes of the beam s are numerically calculated by
the generalized differential quadrature method (GDQM) GDQM). The frequency responses of the
nonlinear forced vibration are constructed based on the Galerkin technique incorporating with the
incremental harmonic balance (I HB) approach. The influences of the material distributions, length
thickness ratio, electric voltage, magnetic potential as well as boundary condition on the nonlinear
resonant frequency and response amplitude are discussed in details. It is notable that increasing in the
axial and thickness FG indexes, negative electric potential and positive magnetic potential can lead to
decline the nonlinear resonance frequency and amplitude peak which is usually applied to accurately
design the multiferroic composite structures.
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Figures

Figure 1

Schematic diagram of a 2D FGMEE beam
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(a) The first order mode (H-H)
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(c) The first order mode (C-C) (d) The second order mode (C-C)
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Figure 2

The first two order modes of 2D FGMEE beams against the initial electric potential for different types of
boundary condition
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(b) The second order mode (H-H)
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(e) The first order mode (C-H) (f) The second order mode (C-H)

Figure 3

The first two order modes of 2D FGMEE beams against the initial magnetic potential for different types of
boundary condition
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(b) Details for super-harmonic response curve ( f=0.n=0)
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(c) Frequency response curve (f=1.n=1)

Figure 4

Comparison of frequency-responses of 2D FGMEE H-H beams as determined from analytical and
numerical solutions (L h= 20, c= 0.01, P=0.03)
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Figure 5

Comparison of frequency responses of 2D FGMEE H-H beams predicted by original model and the model
of neglecting quadratic nonlinearity for different values of axial and thickness FG indexes ( L h= 20, c=
0.01,P=0.03)
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Comparison of frequency responses of 2D FGMEE H-H beams used by analytical mode and those
obtained by numerical mode for different values of axial and thickness FG indexes (L h= 20, c= 0.01, P=

0.03)
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Figure 7

Influence of the axial FG index on frequency responses of 2D FGMEE beams for various boundary
conditions (L h=20, c= 0.01, P=0.03,n =1)
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Figure 8

Influence of the thickness FG index on frequency responses of 2D FGMEE beams for various boundary
conditions (L h=20, c= 0.01, P=0.03,8 =1)
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Figure 9

Influence of the length-thickness ratio on frequency responses of 2D FGMEE beams for various boundary
conditions (¢=0.01, P=0.03,n =1, B =1)
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Figure 10

Influence of the damping coefficient on frequency responses of 2D FGMEE beams for various boundary
conditions (L h=20,P=0.03,n=1,B =1)
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Figure 11

Influence of the forcing amplitude on frequency responses of 2D FGMEE nbeams for various boundary
conditions (L h=20,¢c=0.01,n=1,B =
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Figure 12

Influence of the initial electric potential on frequency responses of 2D FGMEE beams for various
boundary conditions (L h=20,¢c=0.01,P=0.03,n =1, =1)
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Figure 13

Influence of the initial magnetic potential on frequency responses of 2D FGMEE beams for various
boundary conditions (L h=20,¢c=0.01,P=0.03,n =1, =1)
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