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ABSTRACT

A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh
Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the
magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical
coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field
(NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector
magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics
Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF
successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level
block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a
coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the
run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions,
including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is
modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of
0 .06 pixel−1 in an area of 790Mm×604Mm. Local high spatial resolution and a large field of view in NLFFF

modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

Key words: methods: numerical – Sun: corona – Sun: magnetic fields

1. INTRODUCTION

The solar atmosphere is filled with magnetized plasma and
displays many activities, such as magnetic flux rope eruptions,
flares, coronal mass ejections, magnetohydrodynamic (MHD)

waves, and so on. All these activities depend crucially on the
density, temperature, and velocity of the plasma, and most
importantly on the three-dimensional (3D) distribution of the
magnetic field. Because of the conditions of high conductivity
and low plasma β (the ratio between gas and magnetic pressure)
in the solar corona, the magnetic field governs the structure and
dynamics of coronal plasma. However, the magnetic field can
only be routinely and relatively accurately observed in the
photosphere. Extrapolations of the magnetic field from the
bottom boundary have existed for a long time (Schmidt 1964).
Initially, a potential field without any electric current was
adopted due to the limited observational and computational
techniques. A potential field model does provide a crude
approximation for the large-scale solar magnetic structures, and
is appropriate when little electric current is present. Later on,
linear force-free field modeling was developed with a constant α,
the torsional parameter representing the global proportionality
between the electric current and the magnetic field (Nakagawa &
Raadu 1972; Chiu & Hilton 1977; Seehafer 1978; Alissandra-
kis 1981). However, observations show that α is usually not
constant for the solar magnetic field (Régnier et al. 2002;
Wiegelmann & Neukirch 2002; Schrijver et al. 2005). Therefore,
a more realistic force-free field model with non-constant α, the
nonlinear force-free field (NLFFF), is required at least to
compute the 3D magnetic field in the corona (Wiegelmann &
Sakurai 2012 and references therein).

NLFFF models have been widely adopted to study magnetic
field structures in the solar atmosphere, for instance, magnetic
flux ropes (Canou et al. 2009; Su et al. 2009; Canou &

Amari 2010; Cheng et al. 2010; Guo et al. 2010a, 2010b; Jing
et al. 2010), magnetic null points (Zhang et al. 2012; Sun
et al. 2013, 2014), and quasi-separatrix layers (Savcheva
et al. 2012, 2015; Guo et al. 2013; Zhao et al. 2014; Yang
et al. 2015). Most of them are modeled in Cartesian
coordinates, although some models are reconstructed in
spherical geometry (Su et al. 2009; Tadesse et al. 2011; Guo
et al. 2012) or with tetrahedral meshes (Amari et al. 2014b). In
particular, Amari et al. (2014a) has developed another code to
fulfill the need for reconstructions on the scale of local active
regions within a global extrapolation, using an iterative Grad–
Rubin scheme adapted to spherical coordinates. Such a state-of-
the-art code resolves an active region in a global model with

´ ´120 200 340 grid points. This contrasts to most earlier
modeling efforts, which were limited either to a small field of
view (for Cartesian coordinates) or to lower spatial resolution
(for spherical coordinates) due to limited computational
resources. The data volume and the computation time increase
for NLFFF modeling with a large field of view and high spatial
resolution simultaneously, which implies a big data problem.
On the other hand, we have to use data with high spatial
resolution to resolve the small-scale features of the magnetic
field, such as small flux tubes and electric current channels.
They are crucial for reconstructing the non-potential magnetic
field. We also have to consider a field of view as large as
possible to include remote magnetic field connections (DeRosa
et al. 2009). Since only the bottom boundary is available at
present for realistic NLFFF modeling, the magnetic field
concentration should be isolated to mitigate any effects of
lateral boundary conditions (Wiegelmann et al. 2006). An
isolated magnetic field region has magnetic field lines
originating from the bottom boundary and connecting back to
the bottom. A large field of view is required to fulfill this
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requirement of having an isolated magnetic domain. When the
field of view is large, the curvature of the Sun cannot be
neglected and spherical coordinates are recommended (e.g.,
Guo et al. 2012; Yeates 2014).

To deal with the aforementioned problems, we implemented a
magneto-frictional module in the Message Passing Interface
Adaptive Mesh Refinement Versatile Advection Code (MPI-
AMRVAC; Keppens et al. 2003, 2012; Porth et al. 2014), which
already offers a flexible framework that can perform parallel,
block-adaptive simulations for a variety of partial differential
equations. The magneto-frictional method is a versatile NLFFF
model that can in principle be applied in Cartesian and spherical
coordinates, on (domain-decomposed) uniform or adaptive mesh
refinement (AMR) grids. We inherit the parallelization with MPI,
which ensures a load-balanced computation by distributing the
(fixed-size) grid blocks across the available processors. In our first
paper (Guo et al. 2016), we tested the magneto-frictional module
with the analytic solution of Low & Lou (1990) and the model of
Titov & Démoulin (1999), which showed that it could recover
both classes of NLFFF models with the potential field computed
from the normal component at the bottom boundary as the initial
condition. When all boundaries including lateral and top ones are
known, as is the case in analytic models, the magneto-frictional
method could reconstruct the NLFFF from a potential field in the
whole computational domain. If only the bottom boundary is
provided, only the magnetic field in an inner region can be
relaxed to NLFFF. For the realistic cases studied in this paper,
only the vector magnetic field on the bottom boundary is
available from observations. It is always ascribed to the innermost
ghost layer. The tangential components of the unknown
boundaries are provided by a one-sided second-order zero-
gradient extrapolation except for the bottom boundary in the
Cartesian coordinate system, where a fourth-order zero-gradient
extrapolation is used. The normal component is determined by
 =B 0· with the second-order central difference scheme.

We first describe the observations of the vector magnetic
field and preprocessing of the boundary data in Section 2. The
NLFFF models in the Cartesian and spherical coordinate
systems with and without AMR are presented in Section 3.
Finally, the results are summarized and discussed in Section 4.

2. OBSERVATIONS AND PREPARATION OF
BOUNDARY CONDITIONS

For the vector magnetic field, we adopt data observed by the
Helioseismic and Magnetic Imager (HMI: Scherrer et al. 2012;
Schou et al. 2012) on board the Solar Dynamics Observatory
(SDO). Observing the full solar disk with two 4 K×4 K CCDs
in the 6173Å Fe I line, SDO/HMI provides full Stokes data
(I Q U, , , and V) over a large field of view and with high spatial
resolution. It also has a high cadence of 45 seconds for
observation of the line-of-sight magnetic field (12 full-disk
images at two polarization states, I V , and six wavelengths),
and 135 seconds, which could be shorter depending on the
modulation mode, for observation of the vector magnetic field
(36 full-disk images at six polarization states, I Q, I U ,
and I V , and six wavelengths). Then, the Stokes parameters
are derived from the observed data after calibration, and they
are averaged over 12 minutes to increase the signal-to-noise
ratio and to decrease the data volume. The vector magnetic
field together with some other thermodynamic parameters are
inverted by the Very Fast Inversion of the Stokes Vector
software (VFISV: Borrero et al. 2011; Centeno et al. 2014).

The transverse component of the vector magnetic field bears
an intrinsic 180 ambiguity, which is resolved by the use of an
improved version of the minimum energy method (Met-
calf 1994; Metcalf et al. 2006; Leka et al. 2009). Finally, the
vector magnetic field needs to be projected into an appropriate
coordinate system, which consists of two steps. The first step is
to remap physical positions from one coordinate system to
another. The second step is to transform the vector observables.
As described in the overview of the SDO/HMI vector magnetic
field pipeline (Hoeksema et al. 2014), the observations are
registered in the helioprojective coordinates of the CCD image
plane. To convert them to physical coordinates on the Sun, one
first remaps the positions to cylindrical equal-area heliographic
coordinates, then transforms the magnetic field vectors to the
heliographic spherical coordinates following the method
proposed by Gary & Hagyard (1990). When the field of view
is small, a local Cartesian coordinate system can be adopted as
an approximation. Then, we adopt a method proposed by Gary
& Hagyard (1990) to do the remapping. The physical positions
of the magnetic field vector are remapped on to a plane that is
tangent to the solar surface at the center of the region of
interest. The vector directions are approximated by their
heliographic components, which are the same as a spherical
projection, because the field of view is small.
Figures 1(a) and (b) display the vector magnetic field that is

projected in the Cartesian coordinate system for active region
11123 observed by SDO/HMI at 06:00 UT on 2010 November
11. The series name of the Joint Science Operations Center is
“hmi.ME_720s_fd10” for these data. They show a newly
emerging active region that produces a series of flares.
Mandrini et al. (2014) studied its magnetic field topology with
both the NLFFF model and the linear force-free field model.
The NLFFF model was constructed with the optimization
method (Wheatland et al. 2000; Wiegelmann 2004). It was
found that there is a magnetic flux rope lying under three
magnetic null points. The location and shape of the magnetic
flux rope coincide with those of the filament observed by the
Atmospheric Imaging Assembly (AIA: Lemen et al. 2012) on
board SDO. The spatial distribution of the quasi-separatrix
layers associated with the magnetic null points explains the
circular shape of the flare ribbons. Here, we apply the newly
implemented magneto-frictional method in MPI-AMRVAC to
the vector magnetic field of active region 11123 to demonstrate
that our implementation can reproduce all the critical magnetic
structures found by the optimization method.
The vector magnetic field observed in the photosphere is

known to be not force-free. The magnetic field in the upper
chromosphere, which is about 1Mm above the photosphere, is
close to the force-free state. Molodensky (1969) and Aly (1989)
derived that the surface integral of the magnetic flux, magnetic
force, and magnetic torque should vanish over a volume of force-
free field. In practice, only the bottom boundary data are
available. If the magnetic fluxes are concentrated on the bottom
and the magnetic field lines originating from the bottom connect
back to it, the force-free and torque-free conditions can be met
when they are satisfied on the bottom boundary. Wiegelmann
et al. (2006) developed a preprocessing method to remove the
magnetic force and torque in observed non-force-free vector
magnetic field. Additionally, this preprocessing procedure
smooths the boundary data, while modifying the vector magnetic
field only within the measurement errors. As demonstrated in
some benchmark papers, this preprocessing improves the NLFFF
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modeling when forced boundary data are used (e.g., Wiegelmann

et al. 2006; Metcalf et al. 2008; Guo et al. 2012).
We apply the preprocessing method developed in Wiegel-

mann et al. (2006) to the vector magnetic field observed by

SDO/HMI at 06:00 UT on 2010 November 11. Figures 1(c)
and (d) display the vector components after the preprocessing.
Compared with the magnetic field before the preprocessing
shown in Figures 1(a) and (b), the magnetic field is smoother

while the general configuration does not deviate far from the

original one. Wiegelmann et al. (2006) defined two dimension-

less parameters to quantify the conditions of force and torque

balance in the Cartesian coordinates, namely,

and

The formulae for force and torque in the spherical coordinates
are provided in Tadesse et al. (2009). In the following
computation of the conditions for force and torque balance,
the corresponding formulae are adopted in the Cartesian and

Figure 1. The vector magnetic field observed by SDO/HMI at 06:00 UT on 2010 November 11. The geometry and vector components have been projected to the
Cartesian coordinate system. The unit of the coordinates is helioprojective arcsec, where  »1 718 km. The origin (  0 , 0 ) of the coordinates is the local reference
position of the lower left corner, which is not necessarily at the center of the solar disk. (a) The vertical component Bz displayed in a grayscale image. All the four
panels use the same color scale as shown by the color bar. (b) A smaller field of view of all three components Bx, By, and Bz. The horizontal components Bx and By are
represented by the arrows. Blue and red colors are used to increase the image contrast. (c) The vertical component Bz after preprocessing. (d) A smaller field of view of
all three components Bx, By, and Bz after preprocessing.
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spherical coordinates. The bottom boundary is satisfied with
the magnetic force-free and torque-free conditions, if   1force

and   1torque . Here, we prepare two maps of vector magnetic
field with different spatial resolutions for the NLFFF modeling.
For the average lower resolution boundary of the 2×2 grid,
 = 0.40force and  = 0.32torque before the preprocessing (listed
as model 20101111-rbn-ori in Table 1), and they decrease to
 = ´ -3.0 10force

4 and  = ´ -5.8 10torque
4 after the prepro-

cessing (model 20101111-rbn-smh in Table 1). For the vector
magnetic field at higher spatial resolution (i.e., not averaged
and with twice the spatial resolution),  = 0.34force and
 = 0.24torque before the preprocessing (model 20101111-ori

in Table 1), and they decrease to  = ´ -3.0 10force
4 and

 = ´ -4.6 10torque
4 after the preprocessing (model 20101111-

smh in Table 1). Quantitative evaluation shows that the
parameters for balance of magnetic force and torque on the
bottom boundary decrease to negligible values.

Wiegelmann et al. (2006) introduced a smoothing term in the
preprocessing method. A discrete summation of the square of
the Laplacian of each magnetic field component is adopted to
quantify the smoothness of a vector magnetic field. The
smoother a vector magnetic field is, the smaller this summation
would be. The summation is defined as L4 with

å= D + D + DL B B B , 3
i

x y z4
2 2 2[( ) ( ) ( ) ] ( )

where i runs through all the grid points on the bottom vector

magnetic field, and Δ represents the two-dimensional

Laplace operator, which is implemented in a symmetric

five-point stencil numerical scheme. In the spherical coordi-

nates, the components Bx, By, and Bz are replaced with Br, Bθ,

and Bf as shown in Tadesse et al. (2009). The smoothness

factor L4 is listed in Table 1. To compute these values the

length and magnetic field are normalized by the cell size and

å Bi
2 , respectively, and = + +B B B Bx y z

2 2 2 . For the

2×2 binned cases with lower resolution and higher

resolution, L4 decreases from ´ -4.3 10 5 (20101111-

rbn-ori) and ´ -5.5 10 5 (20101111-ori) to ´ -5.1 10 7

(20101111-rbn-smh) and ´ -7.9 10 8 (20101111-smh).
We could use the absolute value of the difference between

the preprocessed magnetic field and the unpreprocessed one
( -B Bx

p
x∣ ∣, -B By

p
y∣ ∣, and -B Bz

p
z∣ ∣) to quantify how much the

preprocessing method changes the magnetic field vectors. The
observations of Stokes data and the inversion code VFISV also
provide uncertainties for the magnetic field strength B,
inclination angle i, and azimuth angle a for each pixel. To
compare the changes caused by the preprocessing and the
uncertainties, we make an error propagation analysis by a
Monte Carlo method. For each pixel and each variable (B, i, or
a), we generate 10 random numbers with a normal distribution.
The standard deviation of the 10 random numbers is the
uncertainty for that variable at the position. We add these
random numbers to B, i, and a and obtain 10 maps of the vector
magnetic field without removing the 180° ambiguity. The
ambiguity is removed by the minimum energy method and the
projection effect is corrected with the method proposed by
Gary & Hagyard (1990). The uncertainties are computed with
the standard deviation of the 10 noisy vector magnetic fields.
We find that the averages of the uncertainties for Bx, By, and Bz

are 56.3, 49.0, and 28.4 G, while the averages for -B Bx
p

x∣ ∣,
-B By

p
y∣ ∣, and -B Bz

p
z∣ ∣ are 42.2, 43.1, and 28.1 G for the

magnetic field with the original resolution, and 39.5, 38.6, and
33.3 G for the 2×2 binned magnetic field. Therefore, the
changes caused by the preprocessing are within the level of the
uncertainties related to the observation and inversion of the
magnetic field. Meanwhile, we also find that the largest
changes caused by the preprocessing exceed the uncertainty at
some positions and they are located inregions of stronger
magnetic field. The preprocessing method ofWiegelmann et al.
(2006) uses an integration of the magnetic force, torque,
changes, and smoothness over the vector magnetic field to

Table 1

Dimensionless Parameters to Quantify the Lorentz Force, Magnetic Torque, Smoothness of the Vector Magnetic Field, and the Divergence-free and Force-free
Conditions of the NLFFF Models

Model force  torque L4 á ñfi∣ ∣
a sJb

20101111-rbn-oric ´ -4.0 10 1 ´ -3.2 10 1 ´ -4.3 10 5
L L

20101111-rbn-smhd ´ -3.0 10 4 ´ -5.8 10 4 ´ -5.1 10 7 ´ -2.3 10 4 ´ -2.0 10 1

20101111-rbn-no-smhe ´ -3.6 10 4 ´ -4.3 10 4 ´ -5.5 10 5 ´ -2.7 10 4 ´ -2.6 10 1

20101111-orif ´ -3.4 10 1 ´ -2.4 10 1 ´ -1.2 10 5
L L

20101111-smhg ´ -3.0 10 4 ´ -4.6 10 4 ´ -7.9 10 8 ´ -3.1 10 4 ´ -3.9 10 1

20101111-no-smhh ´ -3.8 10 4 ´ -4.2 10 4 ´ -1.4 10 5 ´ -4.9 10 4 ´ -4.2 10 1

20120123-rbn-orii ´ -2.1 10 1 ´ -4.2 10 2 ´ -1.4 10 6
L L

20120123-rbn-smhj ´ -3.4 10 7 ´ -6.6 10 8 ´ -8.9 10 7 ´ -9.9 10 4 ´ -5.1 10 1

´ -8.0 10 4 ´ -5.2 10 1

Notes.
a
The divergence-free metric á ñfi∣ ∣ is computed in an inner volume excluding the outermost quarter length in the four sides and the top half length in the vertical

direction for Cartesian coordinates, and it is computed in a smaller region as defined in Section 3.3 for spherical coordinates.
b
The force-free metric sJ is computed in the same volume as above.

c
The 2×2 binned vector magnetic field observed at 06:00 UT on 2010 November 11 before preprocessing.

d
The same magnetic field as 20101111-rbn-ori after preprocessing with smoothing.

e
The same magnetic field as 20101111-rbn-ori after preprocessing without smoothing.

f
The vector magnetic field with the highest spatial resolution observed at 06:00 UT on 2010 November 11 before preprocessing.

g
The same magnetic field as 20101111-ori after preprocessing with smoothing.

h
The same magnetic field as 20101111-ori after preprocessing without smoothing.

i
The 2×2 binned vector magnetic field observed at 03:00 UT on 2012 January 23 before preprocessing.

j
The same magnetic field as 20120123-rbn-ori after preprocessing with smoothing; the first line is for the northern volume and the second line for the southern one as

defined in Section 3.3.
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optimize the final results. It does not guarantee explicitly that
the changes caused by the preprocessing are within the
uncertainties locally for each pixel, while changes can be
limited to the average level of the measurement and inversion
uncertainties.

To demonstrate the full ability of the magneto-frictional
module in MPI-AMRVAC, we prepare another vector magn-
etic field observed by SDO/HMI at 03:00 UT on 2012 January
23 as shown in Figures 2(a) and (b). The series name provided
by the Joint Science Operations Center for the data is “hmi.
b_720s_e15w1332_cea.” They contain four active regions:
NOAA 11401, 11402, 11405, and 11407. The field of view is
about  ´ 65 .3 49 .9, or, equivalently, ´790 Mm 604 Mm. It
is much larger than the field of view of the Cartesian case as
shown in Figure 1(a), which is about  ´ 200 199 , or,
equivalently, ´144 Mm 143 Mm. Therefore, the vector magn-
etic field is more appropriately projected to spherical
coordinates. It is remapped to cylindrical equal-area spherical
coordinates and the vector components are transformed to
spherical coordinates. This group of active regions has
previously been studied in Guo et al. (2012) using the spherical
version of the NLFFF solver with the optimization method.
Since only a uniform grid was available with the optimization
method, a lower spatial resolution of about 0 .5 pixel−1 was
adopted in Guo et al. (2012) to reduce computational
requirements. However, the spatial resolution of the observa-
tions provided by SDO/HMI is about 0 .03 pixel−1. Here, we

use the parallel and AMR ability of the magneto-frictional

module in MPI-AMRVAC to take full advantage of the high

spatial resolution of the data. In practice, a 2×2 pixel average
of the original data is used, which yields an effective spatial

resolution of 0 .06 pixel−1.
The vector magnetic field projected to spherical coordinates

must similarly be preprocessed. Tadesse et al. (2009) developed

such a preprocessing method in spherical geometry. Guo et al.

(2012) implemented and tested this method following the

formulae presented in Tadesse et al. (2009). Here, we apply this

preprocessing method to the vector magnetic field, Br, Bθ, and Bf.

We note that the vector components as shown in Figures 2(a) and

(b) are Br, Bf, and - qB , which are represented in the right-hand

orthogonal basis formed by the radius (er), longitude ( fe ), and

latitude (- qe ). This is then transformed to the conventional

spherical coordinate system with the basis formed by the radius

(er), colatitude ( qe ), and longitude ( fe ). The vector magnetic field

after the preprocessing is shown in Figures 2(c) and (d). Similarly

to the Cartesian case, the magnetic field is smoothed while the

general distribution of the magnetic field vectors is similar to that

before the preprocessing. The magnetic force-free parameter

 = 0.21force , the torque-free parameter  = 0.042torque , and

= ´ -L 1.4 104
6 before the preprocessing (model 20120123-

rbn-ori), and they are reduced to  = ´ -3.4 10force
7,

 = ´ -6.6 10torque
8, and = ´ -L 8.9 104

7. Therefore, the

magnetic force and torque of the vector magnetic field on the

Figure 2. The vector magnetic field observed by SDO/HMI at 03:00 UT on 2012 January 23. The geometry and vector components have been projected to the
spherical coordinate system. The unit of the coordinates is heliographic degree, where  »1 12.1Mm. The origin (  0 , 0 ) of the coordinates is located at the center of
the solar disk. The direction of the longitude f points to the west (rightward), while the direction of the latitude θ points to the south (downward). (a) The radial
component Br in the grayscale image. All four panels use the same color scale as shown by the color bar. (b) A smaller field of view of all three components Br, Bf,
and- qB . The horizontal components Bf and- qB are represented by the arrows. Blue and red colors are used to increase the image contrast. (c) The radial component
Br after preprocessing. (d) A smaller field of view of all three components Br, Bf, and - qB after preprocessing.
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bottom boundary become more balanced and the field becomes
smoother after the preprocessing.

The Joint Science Operations Center provides the uncertain-
ties for Br, Bθ, and Bf for these cylindrical equal-area projected
data. We find that the average uncertainties for them are 30.0,
38.6, and 38.4 G. The averages of the absolute changes caused
by the preprocessing are ´ -4.8 10 4, 12.6, and 12.0 G for

-B Br
p

r∣ ∣, -q qB Bp∣ ∣, and -f fB Bp∣ ∣, respectively, which are
below the average uncertainties provided by the measurement
and magnetic field inversion. Similar to the vector magnetic
field projected in the Cartesian coordinates, the largest changes
caused by the preprocessing method exceed the uncertainty at
some positions, which is due to the global nature of the
preprocessing method. We note that Fuhrmann et al. (2007)
implemented another preprocessing method. This method
guarantees the changes in magnetic field at each pixel to be
within a prescribed border, which could be provided by the
measurement uncertainties. Fuhrmann et al. (2011) compared
their method with the one proposed by Wiegelmann et al.
(2006). In the present study, we only use the method of
Wiegelmann et al. (2006), which has been developed in both
Cartesian and spherical coordinates.

3. NLFFF MODELING

The magneto-frictional method uses an approximate momen-
tum equation to solve the magnetic induction equation to relax
an initially non-force-free magnetic field to a force-free state. In
practice, the initial condition is provided by the potential field,
which can be computed from the normal component of the
vector magnetic field on the bottom boundary. The boundary
condition is provided by the observed but preprocessed vector
magnetic field on the innermost ghost layer of the bottom
boundary, and by appropriate numerical boundary conditions
for the other four sides, one top, and the outer bottom ghost
layer boundaries. Here, we always use the one-sided second-
order zero-gradient extrapolation to prescribe the tangential
components of the magnetic field on the unknown boundaries,
except that in the Cartesian coordinates, a fourth-order zero-
gradient extrapolation is used for the outer bottom ghost layer.
The normal component is always computed from the magnetic
divergence-free condition ( =B 0· ) with the second-order
central difference scheme.

By omitting the inertial term and the terms due to the
pressure gradient and gravity, and assuming that the dissipation
term is proportional to the velocity v, the momentum equation
is simplified as
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where we adopt the same numerical expression as that in Valori

et al. (2005, 2007). Equation (4) in essence prescribes the flow

to use in the induction equation. The free parameters cc and cy
control the magneto-frictional velocity, the function max()

evaluates the maximum value of v̂ over the full domain, andDx
and Dt are the spatial and time steps. The weight function

xfw ( ) introduces a buffer zone at the lateral and top sides,

where the velocity smoothly drops to zero to allow us to match

the initial potential field. The buffer zone occupies the

computational volume within a distance Lj toward the four

lateral and one top boundaries, which is 5% of the length of the

computational box in each direction j. To derive a steady state

and control the divergence-free condition, we omit the resistive

term but add a diffusive term in the magnetic induction

equation (Keppens et al. 2003) to iterate on
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where cd is a free parameter that satisfies  c0 2d to control

the speed of diffusion, and Dl2 is the harmonic mean of the

square of the spatial steps divided by the number of directions.
The fourth-order central difference scheme with a local Lax–

Friedrich dissipation (stabilization) term is used to discretize
Equation (5), as explained in the first paper of this series (Guo
et al. 2016). This local Lax–Friedrichs upwind-like term
contains a multiplicative factor  LF, which is in the range
 0 1LF . When it vanishes, we fall back on the fourth-

order central difference scheme, and we can also vary its
magnitude in the range 0, 1[ ] to control the amount of
numerical dissipation. In the tests of the magneto-frictional
method with analytic solutions, we reported that reducing this
factor did not improve the overall performance of the NLFFF
modeling. However, in the present application, we find that
reducing this factor is necessary to get a better convergence.
When keeping  = 1LF , the initial potential field with bottom
boundaries of the vector field cannot relax to a good force-free
state. The results shown in the following cases are all derived
by decreasing  LF in the iteration process. Specifically, the
dissipation coefficient is set to  = 1.0LF at the beginning of
the magneto-frictional iteration. It is reduced by 0.02% every
iteration step from step 10,000. Therefore, for an iteration of
60,000 steps,  = ´ -4.5 10LF 5 at the final iteration step, while
for an iteration of 30,000 steps,  = ´ -1.8 10LF 2 at the end.

3.1. Cartesian Coordinates and Uniform Grid

As the first example, we perform an NLFFF modeling in
Cartesian coordinates and with a uniform grid for AR 11123.
We adopt a 2×2 grid point average of the original SDO/HMI
data as the bottom boundary condition. The NLFFF computa-
tional box is resolved into ´ ´180 180 180 grid points that
are uniformly distributed. We use two layers of ghost cells in
each of the six boundaries to handle the boundary condition.
The observed vector magnetic field after prepocessing as
shown in Figures 1(c) and (d) fills the inner ghost layer at the
bottom boundary. The initial condition in the physical
domain is computed with the potential field derived from the
vertical components of the vector magnetic field. The boundary
conditions for all the other boundaries, other than the
bottom inner ghost layer, are provided by the zero-gradient
extrapolation.
In accordance with the stability requirements and after some

experiments, we select the following values for the free
parameters in the magneto-frictional iteration process. The
magneto-frictional velocity coefficients cc and cy should be in
the range [0, 1] to satisfy the Courant–Friedrichs–Lewy
condition as explained in Valori et al. (2005, 2007). They are
set to cc=0.5 and cy=0.2, where cc remains unchanged but
cy is increased by 0.01% every step until it reaches 1.0. In this
way, the numerical scheme will be kept stable throughout the
iteration, while it suppresses the magneto-frictional velocity at
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the beginning when the bottom boundary and the initial
condition differ drastically, and it speeds up the iteration at a
later time. The divergence cleaning coefficient is cd=0.1 and
remains unchanged, which conforms with the requirement that
 c0 2d . With different choices of cd, we find that the

divergence cleaning term and the advection term in Equation (5)
have competing effects. We keep this term small to derive a
good force-free field. The dissipation coefficient is  = 1.0LF

initially and is reduced by 0.02% every step after step 10,000.
In this way, it keeps the numerical scheme stable at the
beginning when the bottom boundary and the initial condition
do not match, but it also allows the solution to be steady at a
later time.

To evaluate the goodness of an NLFFF model, Wheatland
et al. (2000) proposed two metrics. The volume-weighted
average of the absolute value of the fractional magnetic flux
change, á ñfi∣ ∣ , evaluates the divergence-free condition:
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where = BBi i∣ ∣ , andDVi and Ai are the cell volume and the cell

surface area at position i. The current- and volume-weighted

average of the sine of the angle between the magnetic field B

and the current density J determines the force-free condition:
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and = JJi ∣ ∣ at position i. The magnetic divergence  B· and

current density J are evaluated numerically with the second-

order central difference scheme. We note that the cell volume

DVi changes with position i in spherical coordinates or AMR

grids. Equations (6) and (8) reproduce the expressions in

Wheatland et al. (2000) in the Cartesian coordinates with

uniform grids.
Figure 3(a) displays the evolution of á ñfi∣ ∣ and sJ for the

NLFFF modeling with the vector magnetic field observed at
06:00 UT on 2011 November 11 in Cartesian coordinates and
on the uniform grid of 1803 cells. These two metrics are
computed in the volume excluding a buffer region, which is
within a distance of 5% of the lengths of the computational box
toward the four side and one top boundaries (this corresponds
to the weighting function xfw ( )). The divergence-free metric

á ñfi∣ ∣ finally decreases to a value of about ´ -1.2 10 4. The
force-free metric sJ reaches a value of about 0.22, which is
equivalent to about 12 .7 for the average angle between the
electric current and magnetic field (which should vanish for a
perfect force-free magnetic field). We also computed these two
metrics in an inner region, which excludes 25% of the length
toward the four side boundaries and 50% of the length toward
the top one. In this smaller region, á ñfi∣ ∣ is found to be

´ -2.3 10 4, while sJ is about 0.20 (listed in Table 1 as model
20101111-rbn-smh), which corresponds to an angle of about

11 .5. As a reference, we computed the divergence-free and
force-free metrics for the NLFFF field derived from the
optimization method as studied in Mandrini et al. (2014).
Computed in the same inner region, á ñfi∣ ∣ is about ´ -9.9 10 4,
and sJ is about 0.34, which corresponds to an angle of about
19 .9. We note that the optimization code used in Mandrini

et al. (2014) was the version reported in Wiegelmann (2004),
and further developments such as mentioned in Wiegelmann
et al. (2012) could provide better force-free metrics by taking
into account the measurement errors in the observed vector
magnetic field.
Some selected magnetic field lines for the NLFFF model

20101111-rbn-smh derived in the Cartesian coordinates and on
a uniform grid are plotted in Figure 4. There are two key
features appearing in the NLFFF model. One is the twisted and
sheared magnetic field lines (yellow lines as shown in Figure 4)
lying along the polarity inversion line. The other is that three
magnetic null points are found above the sheared magnetic

Figure 3. The evolution of the average of the absolute value of the fractional
magnetic flux change, á ñfi∣ ∣ , and the current- and volume-weighted average of
the sine of the angle between the magnetic field and the current, sJ , during the
iteration process of (a) the NLFFF modeling for the vector magnetic field
observed at 06:00 UT on 2010 November 11 in Cartesian coordinates and on a
uniform grid; (b) the same data as in panel (a) with the NLFFF modeling in
Cartesian coordinates and on an AMR grid; (c) the NLFFF modeling for the
vector magnetic field observed at 03:00 UT on 2012 January 23 in spherical
coordinates and on an AMR grid.
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field lines. The magnetic field lines in the vicinity of the
magnetic null points are plotted as the green lines in Figure 4.
These key features of the magnetic field are the same as those
derived from the optimization method as studied in Mandrini
et al. (2014). They found that the filament at the location of the
magnetic flux rope (shown with yellow field lines in Figure 4)
later erupted and possibly drove magnetic reconnection at the
magnetic null points as observed in the SDO/AIA
304Å channel. Since the structure of the magnetic null points
is highly asymmetric, multiple flare ribbons appeared, which
were generated at the footpoints of the spine and fan magnetic
field lines.

The extrapolated magnetic field lines are overlaid on two
SDO/AIA images to compare the NLFFF model and observed
coronal loops (or filament material). The two images are
observed in the 171 and 304Åwavebands, which are typically
sensitive to the temperatures of the quiet corona and chromo-
sphere, respectively. They are both chosen at the same time as
the vector magnetic field is observed. Since the vector magnetic

field has been transformed to the local Cartesian coordinates
(whose x, y, and z axes represent the western, northern, and
vertical directions at the tangent point of the magnetic field to
the solar surface), we converted the positions and magnetic
field vectors of the NLFFF model back to the heliocentric
coordinates (whose ¢x , ¢y , and ¢z axes represent the directions
toward the observer, west, and north). Then, the NLFFF model
is overlaid on the 171Å and 304Å images. The parallel
projection in ParaView is used to simulate the small angular
breadth of the solar disk. The position of the active region
(NOAA 11123) is shown in the full solar disk view in
Figure 5(a). A filament is found in the center of the active
region in Figure 5(b). We find that the extrapolated magnetic
field lines coincide with the 171Å coronal loops as shown by
the upper left green lines in Figure 5(c). And the blue lines
indicate that some sheared magnetic field lines coincide with
and resemble the shape of the dark filament (Figures 5(c)
and 5(d)).
To test the result with a boundary condition that is not

smoothed but with the rest of the preprocessing, we make
another extrapolation with the boundary condition (model
20101111-rbn-no-smh as listed in Table 1). It is found that the
divergence-free metric is á ñ = ´ -f 2.7 10i

4∣ ∣ and the force-free
metric is s = 0.26J . They are both larger, and therefore worse,
than the metrics of the extrapolation with a smoothed boundary
condition. We also check the magnetic field lines derived from
model 20101111-rbn-no-smh. The sheared field lines inte-
grated from the same position (as that in model 20101111-rbn-
smh) are less sheared than the same field lines of model
20101111-rbn-smh. We will discuss why the smoothing of the
boundary condition is necessary to derive a better NLFFF
extrapolation in Section 3.2.

3.2. Cartesian Coordinates and AMR

As a second application of the magneto-frictional method in
MPI-AMRVAC, we model the same active region 11123 as in
Section 3.1 in Cartesian coordinates but now with a three-level
AMR grid. The basic level is resolved into ´ ´90 90 90 cells.
Each higher level doubles the spatial resolution of the lower
one. With three levels, the highest spatial resolution is
equivalent to ´ ´360 360 360 cells for the whole computa-
tional box. The AMR grid is block-based where the spatial
resolution is the same within one block, and in this case the
block size is ´ ´10 10 10 cells. The level for each block can
be determined by a Löhner-type estimator (Keppens
et al. 2012). In addition, here we prescribe more constraints
for automatically determining the mesh level locally: we
require that any cell above the height of half the length of the
computational box in the z direction is preferentially coarsened
to the lowest level. At the same time, if the magnetic field
strength in any cell is above 50 G, the block is refined to the
highest level. The actual grid distribution must also obey the
proper nesting condition, allowing only one change in grid
level between neighboring blocks at a time, so the actual grid
must compromise on all requirements. The resulting mesh
distribution in one slice of the computational box can be found
in Figure 6(b). The three AMR levels, from lower to higher,
contain 506, 924, and 6880 blocks each. Since each block has
103 cells, the data volume contains about 2033 cells.
The boundary and initial conditions are prescribed consis-

tently with the AMR levels. We note that in this case the
bottom boundary has a spatial resolution everywhere that is

Figure 4. The NLFFF model computed using the magneto-frictional method
and the vector magnetic field observed by SDO/HMI at 06:00 UT on 2010
November 11 in the Cartesian coordinates and on a uniform grid of 1803 cells.
The image on the bottom plane shows the vertical component of the magnetic
field. White arrows represent the horizontal component of the magnetic field.
Yellow and green lines are selected magnetic field lines of the extrapolated
NLFFF model. (a) Top view. (b) Side view.
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twice that of the uniform grid case, and level 3 grids cover the
entire bottom area. In that case, the bottom boundary (model
20101111-smh as listed in Table 1) is handled as before on the
uniform grid, but now positioned in the first ghost layer of the
mesh of 3603 cells. Still, the data volume for the AMR case is

only slightly larger than that in the uniform grid case.
Figure 3(b) displays the evolution of á ñfi∣ ∣ and sJ in the
magneto-frictional iteration process for the AMR grid case with
Cartesian coordinates. The force-free metric, sJ , decreases to
0.37 (corresponding to about 21 .7) after 30,000 iteration steps

Figure 5. Selected magnetic field lines overplotted on the SDO/AIA 171 and 304 Å images observed at 06:00 UT on 2010 November 11. (a) Full solar disk view of

the uniform grid model (20101111-rbn-smh) on the 171 Å waveband image. (b) The 304 Å waveband image with the dark filament indicated by an arrow. (c) Similar

to panel (a) with a zoomed-in view of active region NOAA 11123. (d) The uniform grid model (20101111-rbn-smh) on the 304 Å waveband image with a zoomed-in

view to active region NOAA 11123. (e) The AMR model 20101111-smh on the 171 Å waveband image with a zoomed-in view. (f) The AMR model 20101111-smh

on the 304 Å waveband image with a zoomed-in view.
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in the physical domain excluding the buffer region (this buffer
is the same as in the uniform grid case). We conducted more
experiments and found that sJ does not decrease further with
more iterations. The divergence-free metric, á ñfi∣ ∣ , is ´ -1.7 10 4

in the same region and iteration step. If the two metrics are
evaluated in an inner region that excludes 25% of the length
toward the four side boundaries and 50% of the length toward
the top one, á ñfi∣ ∣ is ´ -3.1 10 4 and sJ is 0.39.

The magnetic field as shown in Figure 6 has a similar
configuration to the uniform grid case with Cartesian
coordinates. There are some sheared and twisted magnetic
field lines lying below the three magnetic null points. Since the
spatial resolutions for the bottom boundaries of the uniform and
AMR grid cases are different, and their meshes also differ, the
positions of the three null points are not exactly the same. We
could compute the distance between each pair of magnetic null
points as computed on the uniform and AMR grids. The
distances are 1.2±0.4, 0.2±0.4, and 4.3±0.4 Mm for the

three pairs of magnetic null points from north to south. Note
that the error of 0.4 Mm is estimated from the highest spatial
resolution of the AMR grid. However, the general properties
are consistent for the two cases as shown in Figures 4 and 6.
For example, both cases find three null points and the
connections of the spine and fan field lines are very similar.
We also overlay some selected magnetic field lines of the
NLFFF model in the AMR grid on two SDO/AIA images as
shown in Figures 5(e) and (f). The comparison shows similar
results to the uniform grid case, namely, the extrapolated
magnetic field lines coincide with the coronal loops and
resemble the filament closely.
The execution time of the AMR grid case is 2.3 hr for 2033

cells and 30,000 iteration steps with 128 Intel® Xeon® E5-
2670 processors with 2.60 GHz central processing unit (CPU).
As a comparison, the execution time of the uniform grid case is
2.6 hr for 1803 cells and 60,000 iteration steps with the same
processors. Using AMR grids increases by about 20% the
time for processing each cell and each step. However, AMR
decreases the data volume dramatically and therefore the
computation time. If the uniform grid of 3603 cells were
computed, the computation time would be much longer
than 2.3 hr.
We also compute another NLFFF model with the boundary

condition (model 20101111-no-smh as listed in Table 1) that is
not smoothed but with the rest of the preprocessing. The
divergence-free metric is á ñ = ´ -f 4.9 10i

4∣ ∣ and the force-free
metric is s = 0.42J . Similar to the uniform grid models, the
NLFFF model 20101111-no-smh is worse than 20101111-smh.
The smoothing is necessary both because of the numerical
schemes and for its observational implications. The fourth-
order central difference scheme uses four cells to compute the
variables at one position. It prefers a smooth variation within
this length scale. Any noisy fluctuations within this length
scale, such as those present in the observations, would worsen
the numerical accuracy. To resolve the fluctuations between
two adjacent pixels, one would need a much higher spatial
resolution. Meanwhile, observations suggest that magnetic field
in the photosphere is not force-free, but it tends to be more
force-free toward the middle chromosphere. A comparison
between the preprocessed (with smoothing) vector magnetic
field in the photosphere and the magnetic field measurements in
the chromosphere shows that the preprocessed field could
serve as an approximation of the chromospheric one (Jing
et al. 2010).

3.3. Spherical Coordinates and AMR

As a third example, we apply the magneto-frictional method
in MPI-AMRVAC to a group of active regions observed by
SDO/HMI at 03:00 UT on 2012 January 23 as shown in
Figure 2. Since the field of view is large (  ´ 65 .3 49 .9) and the
spatial resolution is high (1088× 832 cells after 2× 2 cell
averaging with a spatial resolution of 0 .06 per cell), we have to
take full advantage of the magneto-frictional module in MPI-
AMRVAC, that is, combining spherical coordinates with the
AMR technique. Five levels of AMR grids are used. The
distribution of the mesh on a slice of the computational box is
displayed in Figures 7 and 8. The five AMR levels, from lower
to higher, contain 311, 350, 1120, 4044, and 15,776 blocks
each. Since each block consists of 83 cells in this AMR grid
case with spherical coordinates, the data volume is approxi-
mately equivalent to 2233 cells. However, the highest spatial

Figure 6. The NLFFF model computed using the magneto-frictional method
and the vector magnetic field observed by SDO/HMI at 06:00 UT on 2010
November 11 in the Cartesian coordinates and on a three-level AMR grid. The
image on the bottom plane shows the vertical component of the magnetic field.
White arrows represent the horizontal component of the magnetic field. Yellow
and green lines are selected magnetic field lines of the extrapolated NLFFF
model. The meshes display the distribution of the three-level AMR grid on a
slice of the computational volume. (a) Top view. (b) Side view.
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resolution close to the bottom boundary, which is 0 .06 per cell
with 1088×832 cells, is much higher than a uniform grid
would achieve with 2233 cells.

The initial condition for the NLFFF modeling is provided by
the potential field source surface model (PFSS: Altschuler &
Newkirk 1969; Schatten et al. 1969; Schrijver & De
Rosa 2003). Here, we compute the PFSS model as implemen-
ted in MPI-AMRVAC (Porth et al. 2014). The source surface is
specified at 2.5R☉ and the principal order of the spherical
harmonic series, lmax, is set to be 720. The PFSS model asks for
a radial magnetic field on the full surface of the Sun. However,
this has limitations for the following two reasons. One is that
the magnetic field on the far side of the Sun cannot be observed
with present instruments. The other is that the magnetic field in
the polar regions is blocked periodically due to the tilt angle
between the Sun’s equatorial plane and the ecliptic plane.
Therefore, the global radial magnetic field is constructed from
the synoptic map, which is available from SDO/HMI data
series. The polar magnetic field is derived using an interpola-
tion method proposed by Sun et al. (2011). The radial magnetic
field in the synoptic map is not exactly the same as that in the
SDO/HMI snapshot. The correlation coefficient of the two
radial magnetic fields in the field of view as shown in Figure 2
is about 0.49. We compute the PFSS model only in the region
where NLFFF is going to be computed and use the AMR grids
as shown in Figure 7. However, we note that the spherical

harmonics for computing this model are derived from the
global radial magnetic field.
The observed vector magnetic field is now prescribed on the

inner ghost layer of the level with the highest spatial resolution
as part of the bottom boundary conditions. Unlike the case of
Cartesian coordinates above, the grid level is not the highest
one for every block on the bottom boundary. Some blocks are
on the second level with a spatial resolution that is half that of
the highest level. For the highest grid level, the tangential
components on the bottom outer ghost layer are prescribed by
the one-sided second-order zero-gradient extrapolation. The
normal components are computed using the magnetic diver-
gence-free condition with the second-order central difference
scheme. For the second grid level, the vector magnetic field on
the bottom inner ghost layer of the coarser boundary is derived
using a constant-value extrapolation and average. That is, the
vector magnetic field with the highest spatial resolution on the
inner ghost layer is copied to the second ghost layer. Then, the
magnetic fields in the finer cells within the coarser cell are
averaged and prescribed as the bottom inner ghost layer with
the spatial resolution of the second level. The tangential
components of the magnetic field on the bottom outer (second)
ghost layer are further computed using the one-sided second-
order zero-gradient extrapolation, and the normal component is
computed from the divergence-free condition with the second-
order central difference scheme. On the four lateral and one

Figure 7. The PFSS model computed using the PFSS module in MPI-AMRVAC and the synoptic radial magnetic field map constructed for the data observed by
SDO/HMI for Carrington rotation 2119. Five AMR levels are used to incorporate as large a field of view and as high a spatial resolution as possible at the same time.
Different panels show different enlargements to highlight all the AMR levels. The image on the surface of the sphere shows the radial magnetic field. Green lines
represent some selected magnetic field lines of the PFSS model. The meshes display the distribution of the five-level AMR grid on a slice of the computational
volume.

11

The Astrophysical Journal, 828:83 (15pp), 2016 September 10 Guo, Xia, & Keppens



top boundaries, and for all the AMR levels, the tangential
components are derived using the second-order zero-gradient
extrapolation, and the normal component is computed from
the divergence-free condition with the second-order central
difference scheme.

With the aforementioned initial and boundary conditions, the
magneto-frictional method could relax to an NLFFF state. The
free parameters to control the magneto-frictional velocity, the
magnitude of divergence cleaning, and the amount of
dissipation (cc, cy, cd, and  LF) are the same as for the previous
two cases. The best relaxation curve is displayed in Figure 3(c).
The force-free metric sJ decreases to 0.41 after 30,000 iteration
steps. And the divergence-free metric á ñfi∣ ∣ is about ´ -2.3 10 3.
The latter metric is not kept at a relatively low level, an aspect
that we hope to improve upon by, e.g., handling the boundary
condition and the divergence constraint in the diffusion
approach with higher-order accuracy, or developing a better
numerical scheme to compute the electric current and
magnetic divergence between different AMR levels. We also
evaluate the divergence-free and force-free metrics in two
smaller volumes as shown in Figure 8(b), which are located
in Îr R R1.0 , 1.1[ ]☉ ☉ , q Î  55 , 63[ ], f Î  17 , 27[ ] and
Îr R R1.0 , 1.1[ ]☉ ☉ , q Î  71 , 77[ ], f Î  24 , 31[ ] for the

northern and southern regions, respectively. For the northern
volume, the divergence-free metric á ñfi∣ ∣ is about ´ -9.9 10 4

and the force-free metric sJ is about 0.51. For the southern one,
they are ´ -8.0 10 4 and 0.52. The divergence-free metrics in
these smaller volumes are better than those in the whole
volume excluding the buffer region. However, the Lorentz
forces are larger for the smaller regions. Some spurious electric
currents and magnetic divergence errors are created in the
sunspot regions. Therefore, we need a higher spatial resolution
to resolve regions of strong magnetic field. And further
developments are needed to ensure the preservation of curl and
divergence when handling the boundaries between different
AMR levels. At present, the prolongation and restriction
formulae are applied for each field component independently.
The execution time is 4.6 hr for 2233 cells and 30,000
iteration steps with 128 Intel® Xeon® E5-2670 processors
with 2.60 GHz CPU.
The NLFFF model is shown in Figure 8. The most

prominent feature is a magnetic flux rope with twisted field
lines in the northern active region. Note that two earlier studies
gave conflicting results for the obtained NLFFF topology: the
low-resolution result from optimization with a spherical grid in
Guo et al. (2012) did not report any flux ropes. However, this
same group of active regions has also been studied by Cheng
et al. (2013), who used the optimization method in Cartesian
coordinates for the entire large-scale region. They found that
there are two magnetic flux ropes—one in the northern active

Figure 8. The NLFF model computed using the magneto-frictional module in MPI-AMRVAC and the vector magnetic field observed by SDO/HMI at 03:00 UT on
2012 January 23. The five AMR levels are the same as those for the PFSS model. Different panels show different enlargements and view angles to highlight all the
AMR levels. The meshes display the distribution of the five-level AMR grid on a slice of the computational volume. The image on the surface of the sphere shows the
radial magnetic field, whose color bar is shown in panel (a). Some solid lines colored by the magnetic field strength, B∣ ∣, represent selected magnetic field lines of the
NLFFF model, whose color bar is shown in panel (b). The two boxes in panel (b) indicate the volume that is used to evaluate the divergence-free and force-free
metrics. (c) A focus on the northern active region. (d) A focus on the southern active region.
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region and the other in the southern active region. The
304Å channel in SDO/AIA reveals two filaments sitting at the
locations of these two active regions. In contrast to the NLFFF
modeling performed by optimization in Cartesian coordinates,
our model in spherical geometry and on an AMR grid finds a
magnetic flux rope only in the northern active region where the
northern filament is located. For the southern active region, we
rather find magnetic arcades as shown in Figure 8. We note that
the observation time in Cheng et al. (2013) is 00:00 UT on

2012 January 23, while the time in Guo et al. (2012) and this
study is 03:00 UT on 2012 January 23. Some selected field
lines are overlaid on the SDO/AIA 171Å and 304Å images
(Figure 9). It is found that the flux rope coincides with part of
the filament as shown in Figures 9(b)–(d). This does not
conflict with the presence of a longer filament in the northern
active region, because magnetic arcades rather than flux ropes
for supporting a longer filament are a distinct possibility. This
is also found in Guo et al. (2010b). Comparing Figures 9(b)

Figure 9. Selected magnetic field lines overplotted on the SDO/AIA 171 and 304 Å images observed at 03:00 UT on 2012 January 23. (a) Full solar disk view of the

AMR model in spherical coordinates (20120123-rbn-smh) on the 171 Å waveband image. Green (blue) lines mark the magnetic field derived using the PFSS (NLFFF)

model. (b) The 304 Å waveband image with the dark filament indicated by an arrow. (c) Similar to panel (a) with a zoomed-in view of the group of active regions

including NOAA 11401, 11402, 11405, and 11407. (d) The field lines are overlaid on the 304 Å waveband image with a zoomed-in view.
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and (d), the southern filament is not present at 03:00 UT. In
Figure 9, the NLFFF model in the spherical coordinates and on
an AMR grid is shown as the blue lines only in the centers of
the active regions. The PFSS model is shown as the green lines
to compare with the 171Å coronal loops (Figure 9(c)). For the
aforementioned reasons, the NLFFF model is not well
converged in the full computational box and some overlying
magnetic field lines are unrealistic at interfaces of different
AMR levels. This will need further improvements to the
algorithm (or the use of a domain-decomposed grid).

4. SUMMARY AND DISCUSSION

The magneto-frictional method in MPI-AMRVAC has been
thoroughly tested with analytic solutions in the first paper of
this series (Guo et al. 2016). It is found that this method could
relax an initially non-force-free field to the NLFFF state with
good accuracy when the boundary and initial conditions are
appropriately provided. Our implementation works in both
Cartesian and spherical coordinates, in uniform and AMR
grids, and is parallelized with MPI. These distinctive features
of the magneto-frictional module in MPI-AMRVAC allow it to
deal with a big data problem, namely data observed in a large
field of view and with high spatial resolution, such as the vector
magnetic field observed by SDO/HMI. In this paper, we apply
the magneto-frictional method to SDO/HMI observations to
demonstrate both its strength and its limitations with the
present techniques.

We first construct an NLFFF in Cartesian coordinates and on
a uniform grid, where the bottom boundary is provided by the
vector magnetic field observed by SDO/HMI at 06:00 UT on
2010 November 11. The method derives a good divergence-
free and force-free NLFFF model with á ñ = ´ -f 2.3 10i

4∣ ∣

and s = 0.20J in an inner volume of the computational box.
The key magnetic structures are similar to those computed
using the optimization method as studied in Mandrini et al.
(2014). There are three magnetic null points and a sheared and
twisted magnetic flux rope lying along the polarity inversion
line. The divergence-free and force-free metrics are better than
those derived using the (early version of the) optimization
method (Wiegelmann 2004).

Second, we construct another NLFFF model in Cartesian
coordinates but with AMR grids. The bottom boundary is
provided by the same data as used in the case with Cartesian
coordinates and a uniform grid, while the spatial resolution is
twice as high as in the uniform grid case. The divergence-free
metric á ñ = ´ -f 3.1 10i

4∣ ∣ and the force-free metric
s = 0.39J remain of acceptable magnitude, despite the coarser
representation of a significant portion of the computational
volume. The derived magnetic structures are similar to the
uniform case. With the AMR grids, we can combine higher
spatial resolution in areas where it is needed, although we could
still improve the accuracy in divergence-free and force-free
metrics. To achieve the effective spatial resolution of 3603, the
AMR grid uses a data volume of 2033, which occupies only
about 18% of the memory required by the uniform grid. The
execution time is 2.3 hr for 30,000 iteration steps with 128
Intel® Xeon® E5-2670 processors with 2.60 GHz CPU. This
time would be much longer if we adopted the uniform grid for a
similar computation.

Third, to test its applicability in spherical geometry and on
an AMR grid, we apply the magneto-frictional module in MPI-
AMRVAC to a vector magnetic field observed by SDO/HMI at

03:00 UT on 2012 January 23. The field of view is so large
(  ´ 65 .3 49 .9, which is equivalent to ´790 Mm 604 Mm)

that we have to use the spherical geometry to take care of the
curvature of the solar surface. Meanwhile, the spatial resolution
is so high ( 0 .06 per cell with 1088×832 cells) that we have to
use AMR grids to reduce the data volume. It takes about 4.6 hr
to iterate 30,000 steps with 128 Intel® Xeon® E5-2670
processors with 2.60 GHz CPU.
The NLFFF model in the spherical coordinates and on an

AMR grid reconstructs both the small-scale magnetic flux rope
and large-scale magnetic arcades, although our present
discretizations in spherical geometry with AMR need to be
improved to handle global NLFFF with observed data. This
issue was not a problem for the tests demonstrated in the first
paper of this series (Guo et al. 2016). The northern magnetic
flux rope coincides with part of a filament observed in the
304Å channel in SDO/AIA. The divergence-free (á ñfi∣ ∣ ) and
force-free (sJ) metrics in the full computational box excluding
the buffer zone are ´ -2.3 10 3 and 0.41, respectively. The
divergence-free metrics are smaller in inner regions concentrat-
ing on active regions, but the force-free metrics are larger there.
Although these metrics could be further improved, they show
the necessary decrease in especially the force-free metric
(convergence) as shown in Figure 3(c). A magneto-frictional
relaxation in spherical coordinates and with an AMR grid is
thereby demonstrated, which has seldom been done before. It is
still worthwhile to seek better convergence by handling the
boundaries with higher-order representations, a more consistent
treatment of the diffusive term at a similar order of accuracy, or
a better numerical scheme to handle the discrete curl and
divergence properties between different AMR levels. However,
this will still require some fine-tuning of the parameters in the
magneto-frictional method and may depend on the goodness of
the mentioned preprocessing of observational data.
Our implementation paves the way for full dynamical

modeling of specific events, where both global and local
magnetic field structures are of relevance in the dynamics, and
where grid-adaptive, shock-capturing capabilities are a pre-
requisite. Since we implemented the magneto-frictional module
in the open-source MPI-AMRVAC, we can use the recon-
structed field directly in full MHD simulations without any
further remapping or interpolations. This will be the focus of
future work.
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