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It is generally believed thnl: the heating of the solar eoronl
is caused by waves originating in the photosphere and propagating into
tha corona where their energy is dissipated, The medium through which
these waves propagate is in general permeated by magnetic fields complicating
the bchm*-cf this propegation conaiderably. m-iyad
the Whve motions in a plasma permeated by constant magmetic and gravitational

aet anely pade

fields, Ju general, three wave modes were found, wirtch-we-cellad the
{modey—aodo—and—the-Adéuen-made, &ach PP e
coupled to sach of the three kinds of motion; acoustic, gravity, and
hydromagnetic, However, the Alfvén mode was found to be separable from
the dispersion relation and therefore independent of compressibility
and gravity, The local dispersion relation {s derived and expressed
in nondimensional form independent of the cunstants that describe a
.particular atmosphere. From the dispersion relation oae can shov that
rising waves propagate either with a constant cr a growing wave amplitude
depending on the magnitudes and directious of the gravitational field,
magnetic field | and the wave vector, The variation of the density with
height is takeu into account by a generalized W.K.B. matiod., Equations

are found which give the height at which wave reflectiom occurs, giving

the upper bound for possible wave propagatiom,




MAGNETO-ORAVITY WAVES AND THE HEATING OF THE SOLAR COROEA

I, INTRODUCTIGH

The extremely high temperatures of the solar eorona are
generally believed to be due to the transfer of emergy from the
conveotion sone by waves. The waves that have been considerod are
acoustic waves, gravity waves and hydromagnetic waves. Ome very
speoial situation of magneto-gravity waves has been ireated by'ml).
However, in a magnetised plasma atmosphere, it is in m'!.noi:plo not
correct to consider either ome of these modes independently of the
others. All modes imteract with each other and must be comsidered
simultanecusly. Therefore, we have investigated plasma wave propagation
within a magnetised atmosphere o¢f infinite conductivity under the influenoce
of gravity in the magneto-hydrodynamic (M.H.D.) approximation, whioh
is valid for low-frequency waves. We only consider the propagation of
these waves and therefore neglect dissipative effecis arising from
visoosity, eleotrical resistivity and heat condustiviiy.

In the equilibrium state, we allow for the exponential dependaonoce
in height (z-direction) of the density and pressure, as is certainly
the case for an isothermal atmosihere. In {.ue second part of this paper,
this variation of density with height in the magnetic field term in the
equation of motion is taker into account by a generalised W.K.B. method.

The additiom of a magnetic field ocomplicates the probdlem, mot
only by the introduction of another wave mode, dut alao due to the faot
that the magnstio field is a veoctor, thereby oreating a third direotiom,
whioh can be aligned arbitrarily with respeoct to the gravity vector
and the wave vector . 3

2. FUEDAMENTAL EQUATIONS

The fundamental equations necessary to describe the wave moctioms
are (in Oaussian units)




Euler equation
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In this equation vy is the velocity veotor of a partiocle of the

oscillating medium, p is the pressure, P th. density, 2_“. gravity
veotor, and H the magnetic field veotor. For convenience we ohoose

g to be alomg the negative s-directiom (dewnward ), and we ohoose to
orient the dcoordinate system so that the arbitrarily directed unperturbed
magnetio field in the absence of wave motion has no y-oomponent.

Continuity egu.l.t-ion
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Secord law of thermodynamiocs (adisbatioc approximstion )

ds . 2!+X.Va-0, (2.3)

where s is the specifio entropy.

Equation of state (differential form)
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Ohm-¥axwell equntion
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For the equilibrium oconditions for an ideal gas st oonstant
temperature; the variation of density and pressure with height is
expnential, Thus, we have at equilibrium

and (2.6)

where h = a>/gy is the "soale height".

3. LINEARIZATION

By assuming that all deviations of the perturbed quantities
from their equilibrium values are small, we may put
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H = EO -I-n'(bt) ’

(3.1)

where % ’ ‘Po s and go are ocnatant. The quantities P', P'y 8' and
H', together with the velooity vy = v(x,t) are considered to be
perturbing quantities of firs: order.

By oonsidering the equilibrium oonditioms and the linearisation
of the basic equatioms, aqs. (2.1), (2.2), (2.3), (2.4), and (2.5),
and upon taking the time derivative of the Buler equatiom (2.1),
we have upon substitution
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vhere ¢ is the unit veotor in the g-direoction and a is the velooity
of sound. This veotor differential equation (3.2) is the lineavissd
equation of motion and it represents a get of three linear homogenecus

differential equations for the unknowns V, Vy and Va .

Using the assumption of a perfect gas, the expression given
above for the scale height, and well-known thermodynamio expressioms
relating the density, pressure, entropy anéd temperature, one finds

2 0p\ 4Sey
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where Y is the ratio of spesifio heats.

By the substitution of eq. (3.3) into (3.2), we have the
linearized equation of motion
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4. LOCAL DISPERSION RELATION

In the looal situation, we assume the wavelength to bs sm&ll
ooupared to the scale height. This assumption mllows us to consider
p% as a constant in the last term of eq. (3.4). Thus, this equation
is now & seocond-order differential oquation with ocustant ocefficients,
vhich yields to a plane-wave soluiion. For plane waves, we have




¥zyt) = .v.-i(s.s'-m) (4.1)

where v is now a constant veotor.

Upon substituting eq. (4.1) into eq. (3.4) and performing the
mathematical operstions, we have
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The vector equation (4.2) reprerents a set of three linear
homogeneous equations for the unkmnowns v, , \13 and vV, . The
ocondition for a non-tririal solution, the vanishing of the determinant
of the coefficients, is properly ocalled the loce”™ dispersion relation
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Eq. (4.3) oan be factorized into two parts, where one part
tume out to be the Gispersion relation for the Alfvéen mode and the

_other part is the dispersion relation for two distinot modes, whioch

involve the intimate coupling of magneto-hydrodynamio and gravity
wave motion., By factorization, we obtain

(E, * k)
7 V.. (the Alfvén mode)
4mp,
(4.4)
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From eq. (4.5),whioh is quadratio in w®, we cbtain two other modes
whioh we vall the + mode and the = mode.

(4.6)

Bq. (4.6) ia writven in a non-dimensional form by the use of a
characteristio frequency and a characteristio wave numbasr, defined by

Yo A% (4.7)
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The non-dimensional frequenoy snd wave number are




and furthermore

N S ———— is ibhe ratio of
¢ 2

nydrostatic pressure to magnetic pressure. & ia the angle between
k and X, ?!:I.s the angle between _1!0 and 3_, and ¥ is the angle
between k and go.

In genernl, the dispersion relation is ccmplex,which implies
the existence of wave, with either exponentially increasing or decreasing
wave amplitude, corresponding to rising or ialling waves, respectively,
This behaviourcan be easily understood. A rising wave propagates imnto
a medium of decreasing denmsity., As a result, a decreasing number of
fluid elements will participate in the wave motion, so that in order to
conserve wave erergy, the wave amplitude has to grow. By a similar
argument the wave amplitude for falling waves must decrease. In the
folloving analysis we will omit the falling waves with decreasing wave
amplitude, since they are of no relevance to the heating of the solar
corona, The rising waves with growing wave amplitudes will eventually
steepen into shock wavea accompanied by a large enmergy dissipation,
However, under ce~tain conditions the waves can propagate with comstant
amplitude, depending on the magnitude and direction of the wave number
vector, if the restoring forces of compressibility, gravity, and
magnetic field tend to interfere.

The peculiar depewdence of growing wave amplitudes npon the
angles 8, ” , and P 1is sbsent in treatments which neglect the

coupling of hydromagnetic and internal gravity wave motiom, For certain
angle configurations and ranges of the wave number there is no wave growth
and hence no shock waves, In these cases the wave propagates with
constant amplitude; therefors the imaginary part of the frequemcy must

be zero. This condition is xiv 21 in nondimensional form by

B = :[i(o’ +Iﬁ"’}i--‘2’-]i ; (4.8)

where the upper sign represents the + mode and and the lower sign
reprosents the - mode, and wk-re
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5 W.X.B., APPROXIMATION

We assumed above that [) in the magnetio term in the equatiom of
motion (3.4) oould be considered a constant in the lowsst approximation
if the wavelength was small compared with the scale height. 4 beiter
approximaticn is obtained by taking into acoount the slowly varying
change of the equilidrius deneity in the vertical directiiom by a
gereralized W.K.B. metihed,

Toward this end, we take a Fourisr transform of eq. (3.4) for
the X = y -~ t dependence and then introduce the s-dependence by means
of an unknown funotien f£(s). We put
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vhere Y is a ozastant veotur and

£(s) = 1(.)0&(‘) (5.2)

A(z) is a slowly varying funotion of s. We oollect the terms

(ia) @ 429

:l—- d A into one equation and the terms
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A; A i‘ﬁ_ and L(ﬂ) into a seoond squation., In the spirit
dz dz

of the W.K.B. approximation (short wavelength approximation), we

r
neglect terms multiplied by %-"‘; and j-“z . Both of these equations
=

are three-dimensional veotor equatioms for Y. and the oondition for

a non-trivial solution is determined by setting the determinant of

the occefficients cf eaoch system of equationsequal to sero, From the
first equation we obtain a firsi-order diffsrential equation with the
solution

i
A -omlt(ﬁ) * (5.3)

whioh is the expeoted relation between the amplitude and phase from
employing the W.XK.B. method, Pron the second ~nquation we obtain a first-
order differential equation of the sixth degree for the phase &(s).

This differential equation can de faotorised into two differential equatioms
of the seocond and fourth degree in a similar manner as the local dispersion
Telation was factorised into iwo algebraic equations of the second and
fourth order. These two differential equations are

o ¥ o




(‘é)z 3 i (B -k,) 43 (&, « £ )°
‘+ -
‘as (B, v2) 4% (& o)

(5.4)

€ x)f |, ¥ @o-w} tE [m*"i

=13




& KK 4w E(y-1)13
= Pog(®)
g e R, -8, |
(&, - k.t)z xi (8, * k)
. 2 — *tigy - 0
(&, - 2, g ey
(5.5)

where k) = k, €+ k,’g s and o, and g, ezre unit vectors in the

x- and y-direction, respectively. The solution of the differential

2q. (5.4) gi7es the phase for the ¥.K.B. solution for the Alfvén mode,
The solution of the differential eq. (5.5) gives ihe pkase for the

WX .B. solution of the two remaining modes, Both of these differential
equations >an be brought into a form that oan be solved by the separation
of variables, after first solving voth 'oqun.tioul slgebraic aquations
of the second and fourth degree in the unknown Ig e« This can always
be done in closed form for an algebraic equation up to the fourth degiee.
By putting 3% = 1 k_ in eq. (5.5), we obtain the seme dispersion Telsticn
28 oq. (4.5), whioh thexefore justifies calling eq. (4.5) the loeal
dispersion relatiom.




Y .
The oondition -;l% = 0 mpliea that the z-conpouent of the

wave nun'ber vector i is zero. “Phis gives the ‘oondition :tor the taminat:lon

of the wave propagaﬁon in the z-direotien, ‘that is, the vertioai " '

3 ;‘Fenetra%im depth. At this point KXok, J Se*ttine-a-é ="0'in ‘oq. (5'4)

and using the definition of p‘, (the ﬂ.:m oquation of’(e.ﬁ), g:lvn
upon -olvmg for ﬁa pfmotntim dopth, ’d , ’

R TTPC

. oo R
" ° &”“ - | (5.6)
. 2 ‘
: (Eo' . 51); o,

whkare h is the scale h; 2o 'I'his is the ponetration depth for the
Alfvén mode, Setting —= iz -0 in eq. (5.5) ‘glves upon solving for

the penetration depth |
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amplitudes. These growth rates may easily be determined from our
dispersion relation. One mode, identical with the Alfvén mode,; has
always oonstent amplitude and is independent of compressibility snd gravity.

From the dispersion relations fox the + and - modes, it can be
seen that there is a large anisoiropy with regard to oonstant amplitude
wave propagation. This behaviour does not ocour in a treatment
negleoting the wave mode ocoupling. Therefore, cur resultis suggest that
a search be made for this anistropy in gravity wave prcpngati.o’u in

the duter solar atmosphera,
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