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The binding energy of the exciton in GaAs quantum wells confined within Ga-Al-As is determined by

the observation of the different behavior of the ground state and the excited states of excitonic transitions

of different subbands with excitation spectroscopy in magnetic fields. An increase in the binding energy

with decreasing well thickness is found with values higher than theoretically expected. This discrepancy is

explained by an experimentally determined higher reduced mass than that used in the theoretical calcula-

tions.

In recent years there has been considerable interest in the
properties of the quasi-two-dimensional nature of the exci-
tons in quantum wells of GaAs sandwiched between
Gai „Al„Aslayers. ' " This interest stems from the fact
that the well thickness can be made of the same order of
the exciton Bohr radius. This unique situation allo~s the
experimental study of excitonic states which in that case
bchavc like a quasi-two-dimensional hydI'ogcn atom; this
can be observed as an increase of the exciton binding ener-

gy for decreasing quantum-we11 widths. Several authors
have shown this effect theoretically with' variational calcu-
lations of the binding energy of a hydrogenic exciton in a
quantum well, The observation of the energy difference of
the excitonic ground state and the first excited state has
been published, 2 and the ground state has been inferred
from these data by comparison with variational calculations.
However, no direct observation of the exciton binding ener-

gy in quantum wells has been reported yet.
In this paper we report the results of excitation spectros-

copy experiments of several GaAs quantum wells with

thicknesses between 5 and 12.5 nm in high magnetic fields

(8 ( 23 T). Under these conditions the exciton continuum
splits into discrete excited excitonic states which are weakly

bound to the Landau levels and which can, therefore, be
described as free electron and hole states. The lowest
bound excitonic states on the other hand experience only a
comparatively weak diamagnetic shift. The simultaneous
observation of the magnetic field dependence of the bound
and the continuum states allows a direct determination of
the band edge and the exciton ground-state energies and

thereby of the binding energy in the quantum well. In addi-

tion, information about the masses of the different hole
subbands is obtained from field dependence of the inter-
band transitions.

Four samples have been studied with different GaAs layer
thicknesses and Al content (see Table I). The intensity of
the luminescence of the lowest-energy transition (heavy-
hole exciton ground state) is measured as a function of the
excitation intensity at different fixed values of the magnetic
field, Both the incident and the emitted radiation were at

TABLE I. Sample parameters and experimentally determined masses.

Sample
thickness (nm)

Reduced masses
e-HH e-LH

Hole masses
HH I.H

5
9

10
12.5

0.18
0.29
0.29
0.21

0.084
0.079
0.077
0.069

0.057
0.064

& 1) 1
&1

0.7+ 0.2
0.2+ 0.1
0.35 + 0.1
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FIG. 3. Exciton binding energy for the HH exciton (closed cir-

cles) and the LH exciton (triangles) as determined from magnetic
field dependence of the excitation spectra. The lines represent
theoretical calculations of the thickness dependence of the binding

energy for an infinite well by Miller, Kleinman, Tsang, and Gossard
(Ref. 2) (dashed lines) and for infinite and finite height wells by
Greene and co-workers (Ref. 3) (solid lines).

Also included in the figure are the results of theoretical cal-

culations by Greene and co-workers and by Miller, Klcin-
man, Tsang, and Gossard. 2 It can be seen that both experi-
n1entally and theoretically an increase in the binding energy
is found with decreasing layer thickness. However, the ex-
perimental values are much higher than the theoretical
ones. In addition, the so-called LH exciton is found to be
n1orc weakly boUnd than thc HH cxclton which ls contI'Rly

to the theoretical predictions. As can be seen from Fig. 2,
several Landau-level-like transitions are observed for both
subbands. %C have analyzed the slopes for the different
transitions by plotting them as a function of the Landau-
level quantum nun1ber and found within experimental error
that such a plot yielded a straight line. Prom the slope of
this line a reduced mass for the combined electron and hole
Landau-level splitting can be determined and the results are
given in Table I. It is clear from this table that the reduced
masses for the transitions involving the heavy-hole subband
are almost equal to the electron mass, taking nonparabolici-
ty into account, which implies that the heavy-hole mass is
much larger than the electron mass. Transitions involving

the next hole subband, which can only be observed clearly
in two samples, show a reduced mass which is definitely
lighter than the electron mass and, therefore, allo~ a deter-
mination of the hole mass of this subband. These experi-
nlcntally dctcrIYllncd reduced n1asscs RI'c stl'lklngly dlffcI'cnt
fron1 those used in the theories to calculate the exciton
binding energy, which were 0.04mo for the heavy-hole and
0.51mo for the light-hole exciton. %e find that not only the
masses are heavier than expected but also that the heavy-
hole-electron reduced mass is much heavier than the light-
hole-electron mass. It is interesting to note that the experi-
mental findings for the binding energies and the reduced
n1asses are consistent. In a hydrogenic model the binding

energy is proportional to the reduced mass. If we, there-
fore, scale the theoretical curves for the binding energies
with a factor which is the ratio of the experimental value of
the reduced mass to the theoretical value, both the LH and
the HH exciton ground-state energies can be made to agree
with the theory within experimental error.

The explanation for the difference in the experimentally
determined and theoretically derived hole masses, is be-
lieved to be that the theoretical n1asses are derived from a

highly simplified description of the valence band in a quan-
tum well. The bulk valence band in GaAs consists of a de-

generate set of J, = +~ and J, = +~ bands which are an-3 1

isotropic in the sense that the mass corresponding to the

J,= +~ state is light in one direction but a mixture of
heavy and light in the other two and similarly for the

J,= +~ state. In the theories an average of the light- and

heavy-hole mass is determined for the in-plane dispersion
relation, leading to a light mass in the heavy-hole subband
and a heavier mass in the light-hole subband. 5 6 In this
model the two subbands are considered decoupled for any
k II value and, therefore, the two bands can cross at a certain
value of k II. However, at finite k II both bands interact giv-

ing rise to strong nonparabolicities. This effect has been
shown theoretically by Nedorezov for the valence-band
structure of Ge and Si in an infinite potential well, by
Bangert, Klitzing, and Landwehr, for p-type silicon inver-
sion layers and recently by Fasolino and Altarelli9 for the
case of a finite well in the GaAs-GaAlAs hetcrojunction.
These morc accurate calculations show that the inclusion of
the coupling between light- and heavy-hole bands leads to
an anticrossing behavior between the bands in the plane of
the motion which gives rise to a flattening of the dispersion
relation of the hcavy-hole subband. In fact, this band is
found to be only a few meV wide in a region of k space of
order m/d which is the region of interest both for the exci-
ton binding energy and for the magnetic fields used. 9 The
nlasscs wc deduce fI'on1 oui cxpcriITlents arc ln qualltatlvc
agreement with this fact. %e, therefore, believe that our
rcsUlts pl ovldc cxpcl lnlcntal cvldcncc fol' this Rntlcl osslng
behavior and the complex nature of the valence band in

quantum wells.
In summary it may be stated that wc have measured the

cxclton blndlng cncI'glcs Rs R fUnctlon of thlckncss foI'

GaAs-GaAlAs quantum wells. The experimental binding
energies arc enhanced with respect to the bulk values and
increase with decreasing thickness. The experimental values
obtained, ho~ever, arc higher than theoretical predictions.
In addition, we have determined the reduced masses using
the magnetic field dependence of the excited states, and
have found that these masses are much heavier than those
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used in the theoretical calculations. Using the experimental
values for the reduced exciton masses, theory and experi-
mental results for the binding energies can be reconciled.
The observed higher masses are believed to be a direct

consequence of the coupling between light- and heavy-hole
subbands at finite k values, which has been neglected in the
calculations of the binding energies. As such, our results
provide experimental evidence for this effect.
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