# Magneto-Optical Effect due to Eu $^{2+}$ Ion 

Akira Yanase* ${ }^{*}$ and Tadao Kasuya<br>Department of Physics, Tohoku University, Sendai

(Received November 30, 1970)


#### Abstract

The photo absorption and the magneto-optic properties of $\mathrm{Eu}^{2+}$ in $\mathrm{EuF}_{2}$ have been calculated and compared with experiments. Various calculations so far done are not complete because all of them neglected some important interactions to make the calculations performable. Here the amounts of all the important interactions have been checked carefully and the calculations have been performed in various ratios of these parameters. It has been shown from the best fit with the experiments that the multipole-multipole Coulomb interaction and the anisotropic exchange interaction between the $5 d$ and $4 f$ electrons cancel out each other which leaves nearly isotropic exchange interaction. The absorption structure in such a case has been shown to be similar to that of Freiser's model in which all the $5 d-4 f$ interactions were completely neglected.


## §1. Introduction

The divalent europium ion $\left(\mathrm{Eu}^{2+}\right)$ in $\mathrm{EuF}_{2}$ and alkaline earth fluorides produce two broad optical absorption bands separated from each other about 2 eV . These two bands have been considered to be due to transitions from the $4 f^{7}\left({ }^{8} S\right)$ ground state of $\mathrm{Eu}^{2+}$ to states in the $4 f^{6} 5 d$ configuration. The band of longer wave length has an unusual asymmetric shape, ${ }^{1,2,3)}$ and a large Faraday rotation is also observed. ${ }^{4)}$

It was assumed by Shen ${ }^{5}$ that the Hund rule is applicable for the optically active excited levels of the $4 f^{6} 5 d$ configuration, that is, ${ }^{8} P_{J}$, in which $J$ runs from $5 / 2$ to $9 / 2$. This implies that the cubic crystal field has no effect because the orbital state is of $P$-character. However, this is true only when the cubic crystal field is much smaller than the energy separation of the different $L$ terms, which is now due to the multipole Coulomb interaction and the multipole type exchange interaction between $5 d$ and $4 f^{6}$ electrons. This is, however, very questionable because the crystal field splitting of $5 d$ states, that is, $10 D q$, is usually larger than 1 eV , while the energy separation of the different $L$ terms in the octet state is several tenths eV or less.

Recently the other limit of model was proposed by Freiser et al. ${ }^{2)}$ Within the first peak corresponding to $e_{g}$ state, they found seven small peaks which correspond very well to the seven multiplet of ${ }^{7} F_{J}\left(4 f^{6}\right)$, which is the ground $4 f^{6}$ configuration and $J$ runs from 0 to $6 .^{2)}$ Based on these facts, they con-

[^0]sidered that the interactions between $5 d$ and $4 f$ electrons may be very small and so neglected them completely, and showed that the experiment is fairly well explained. However, there remains the question why the $5 d-4 f$ interaction, particularly the exchange interactions, are negligible, because they are expected to be about 1 eV and thus are at least comparable with the $l$-s coupling in $4 f$ states. In this paper, we examine the values of various interactions and what happens when these interactions are included.

The Hamiltonian is given in $\S 2$, the eigen values and the eigen states are given in $\S 3$, and the results of numerical calculation are shown and discussed in §4. By using these results, the magneto-optical effects are also discussed in §4.

## §2. Hamiltonian

Here we assume that the absorption process is purely of intra-atomic properties. This seems to be a fairly good approximation because the spectra of $\mathrm{Eu}^{2+}$ ions in various materials, for example, $\mathrm{EuF}_{2}, \mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and $\mathrm{BaF}_{2}$, are very similar to each other. ${ }^{1,2)}$ Then the important interactions are as follows.

$$
\begin{equation*}
H=V_{c d}+V_{c f}+\lambda_{d} \boldsymbol{l}_{d} \boldsymbol{S}_{d}+\zeta_{f} \sum_{i} \boldsymbol{l}_{f i} \boldsymbol{S}_{f i}+H_{d f}+H_{f f} \tag{1}
\end{equation*}
$$

where, $V_{c d}$ and $V_{c f}$ are the cubic crystal fields for $5 d$ and $4 f$ electrons respectively and $V_{c f}$ is neglected hereafter because of its smaller effect, $\lambda_{d}$ and $\zeta_{f}$ the spin-orbit coupling constants for $5 d$ and $4 f$ respectively, $H_{d f}$ the Coulomb and exchange interactions between $5 d$ and $4 f$ electrons, and $H_{f f}$ the Coulomb and exchange interaction between $4 f$ electrons.

It is natural to put $10 D q=-16000 \mathrm{~cm}^{-1}$ which corresponds to the separation of two absorption peaks. The following values are obtained from the atomic spectra data for $\mathrm{Eu}^{3+},{ }^{6)}$

$$
\begin{equation*}
\zeta_{f}=1415 \mathrm{~cm}^{-1}, \tag{2}
\end{equation*}
$$

on the basis that the spin-orbit parameter for a $4 f$ electron changes very little with the degree of ionization. This value will be supported in the following discussions. The values for $\lambda_{d}$ increases gradually from La to $\mathrm{Yb}^{77,8,10), 12)}$ as shown in Fig. 1. From the figure, a reasonable value for $\mathrm{Eu}^{2+}$ is concluded to be $1020 \mathrm{~cm}^{-1}$. The overall splitting due to the third term of Eq. (1) is estimated to be $2550 \mathrm{~cm}^{-1}$. The fourth term in Eq. (1) may be written as

$$
\begin{equation*}
\Lambda_{f} \boldsymbol{L}_{f} \boldsymbol{S}_{f} \tag{3}
\end{equation*}
$$

for ${ }^{7} F_{J}\left(4 f^{6}\right)$ configurations in which

$$
\begin{equation*}
\Lambda_{f}=\frac{1}{6} \zeta_{f}=235.8 \mathrm{~cm}^{-1}, \tag{4}
\end{equation*}
$$



Fig. 1. The spectroscopic data for the spin-orbit interaction of the $5 d$-electron of divalent rare earth ions in the configuration of $4 f^{n} 5 d ; \lambda_{d} l_{d} s_{d}$. The solid circle marks show the experimental results and the square mark shows the interpolated value for $\mathrm{Eu}^{2+}$. The numbers beside the marks give the precise values in $\mathrm{cm}^{-1}$.
and then overall splitting is $4952.5 \mathrm{~cm}^{-1}$. Note that the nearest excited states ${ }^{5} D_{6}\left(4 f^{6}\right)$ sit at 2.1 eV higher.

The Coulomb and exchange energy between a $5 d$ electron and $4 f$ electrons with the configuration ${ }^{7} F$ are expressed as a function of the total spin $S$ and the total orbital angular momentum $L$ by

$$
\begin{equation*}
H_{d f}=f_{0} F_{0}+f_{2} F_{2}+f_{4} F_{4}+g_{1} G_{1}+g_{3} G_{3}+g_{5} G_{5} \tag{5}
\end{equation*}
$$

Table I. The coefficients of the Slater integrals in the term energy expressions of the $4 f^{6}\left({ }^{7} F\right) 5 d$ configuration.

| $S$ | $L$ | $f_{2}$ | $f_{4}$ | $g_{1}$ | $g_{3}$ | $g_{5}$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $7 / 2$ | 1 | -24 | -66 | 14 | -84 | -462 |
|  | 2 | -6 | 99 | -21 | -84 | -462 |
|  | 3 | 11 | -66 | -21 | -24 | -462 |
|  | 4 | 15 | 22 | -21 | -84 | -462 |
|  | 5 | -10 | -3 | -21 | -84 | -252 |
| $5 / 2$ | 1 | -24 | -66 | $-7 / 3$ | 14 | 77 |
|  | 2 | -6 | 99 | $7 / 2$ | 14 | 77 |
|  | 3 | 11 | -66 | $7 / 2$ | 4 | 77 |
|  | 4 | 15 | 22 | $7 / 2$ | 14 | 77 |
|  | 5 | -10 | -3 | $7 / 2$ | 14 | 42 |

Tabe II. The spectroscopic data for the Slater integrals in the $d-f$ interactions of the divalent rare earth ions. The values for $\mathrm{Eu}^{2+}$ are obtained by interpolations.

| Ions | $F_{2}$ | $F_{4}$ | $G_{1}$ | $G_{3}$ | $G_{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Yb}^{2+}$ | 186.8 | 14.2 | 193.2 | 24.62 | 4.11 |
| $\mathrm{Ce}^{2+}$ | 175. | 21. | 296. | 40. | 5. |
| $\mathrm{Eu}^{2+} \mathrm{a}$ | 137.2 | 13.26 | 184.2 | 24.31 | 3.441 |
| b | 51.0 | 13.91 | 91.84 | 23.81 | 7.730 |

where $F_{k}$ and $G_{k}$ are the Slater integrals and the coefficient $f_{k}$ and $g_{k}$ were computed by use of the diagonal sum rule. The results are summarized in Table I. Hereafter, we will omit the term of $F_{0}$ common to every value of $L$ and $S$. There are simple relations of

$$
\begin{equation*}
f_{k}(L, S=7 / 2)=f_{k}(L, S=5 / 2) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k}(L, S=7 / 2)=-6 g_{k}(L, S=5 / 2) \tag{7}
\end{equation*}
$$

in these coefficients. The values of the Slater integrals are not known from atomic spectrum data for $\mathrm{Eu}^{2+}$ ion. Therefore we should estimate them. Available atomic spectrum data for divalent rare-earth ions are shown in Table II. ${ }^{8), 10)}$ In $\mathrm{Gd}^{2+}$, the exchange splitting between the states $S=4$ and $S=3$


Fig. 2. The values of $21 G_{1}+84 G_{3}+462 G_{5}$ are shown, which gives isotropic exchange interaction between $5 d$ and $4 f^{n}$ electrons in divalent rare earth ions. The black circles show the spectroscopic data and the square and the white circles show the interpolated values for $E u^{2+}$ and the other ions respectively. The numbers beside the marks give the precise values in $\mathrm{cm}^{-1}$.
in $5 d 4 f^{7}$ configuration is given in the spectroscopic data ${ }^{7)}$ which gives the value for $21 G_{1}+84 G_{3}+462 G_{5}$. As shown in Fig. 2, a reasonable value for $\mathrm{Eu}^{2+}$ is given as $7500 \mathrm{~cm}^{-1}$. The relative ratios between $F_{k}$ and $G_{k}$ are estimated by linear interpolation between $\mathrm{Ce}^{2+}$ and $\mathrm{Yb}^{2+}$ and final results are shown as the third row in Table II. In Table III, the term energies which were computed

Table III. The term energies for the free $\mathrm{Eu}^{2 t}$ ion in the configuration of $4 f^{6}\left({ }^{7} F\right) 5 d$ are shown. These values are calculated from the values of the third row in Table II, and the unit is $\mathrm{cm}^{-1}$.

| $S$ | $L$ | Coulomb energy <br> $\left(F_{2}, F_{4}\right)$ | Exchange energy <br> $\left(G_{1}, G_{3}, G_{5}\right)$ | Total |
| :---: | :---: | :---: | :---: | :---: |
| $7 / 2$ | 1 | -4167.96 | -1052.98 | -5220.94 |
|  | 2 | 489.54 | -7499.98 | -7010.44 |
|  | 3 | 634.04 | -6041.38 | -5407.44 |
|  | 4 | 2349.72 | -7499.98 | -5150.26 |
|  | 5 | -1411.78 | -6777.37 | -8189.15 |
| $5 / 2$ | 1 | -4167.96 | 175.50 | -3992.46 |
|  | 2 | 489.54 | 1250.00 | 1739.54 |
|  | 3 | 634.04 | 1006.90 | 1640.94 |
|  | 4 | 2349.72 | 1250.00 | 3599.72 |
|  | 5 | -1411.78 | 1129.56 | -282.22 |

using these values are shown as an example. Note that differences between the term energies for different $L$ in $S=7 / 2$ become smaller by a partial cancellation between the Coulomb $\left(F_{k}\right)$ and the exchange $\left(G_{k}\right)$ energies. This cancellation becomes complete, if we choose the parameters as follows,

$$
\begin{equation*}
F_{2} / G_{1} ; F_{4} / G_{1} ; G_{2} / G_{1} ; G_{3} / G_{1}=5 / 9 ; 5 / 33 ; 7 / 27 ; 25 / 297 . \tag{8}
\end{equation*}
$$

The values given in the fourth row of Table II were calculated by using these ratios. In this particular ratio, the $d-f$ interaction is given simply by the isotropic exchange type, $2 \boldsymbol{I} \boldsymbol{S}_{d} \mathbf{S}_{f}$, the same as the case of $\mathrm{Gd}^{2+}$ in the octet state. The actual calculation for the $d$ - $f$ interaction is very difficult because of strong shielding effect of $5 s$ and $5 p$ states which situate in between $4 f$ and $5 d$ states. The exchange type interaction may not be affected very much by this shielding effect but the Coulomb type may be affected very strongly. In such a situation the isotropic exchange type interaction may be a good approximation for the $5 d-4 f$ interaction. It is one of the main purposes of this paper to check this point.

## §3. Eigen values, eigen states and spectral intensity

The Hamiltonian (1) is expressed in a basis system of

$$
\begin{equation*}
\left|\left(J_{F} J_{d}\right) J, \Gamma \alpha \nu\right\rangle=\sum_{J_{z}} A^{\alpha}\left(J J_{z}, \Gamma \nu\right)\left|\left(S_{F} L_{F}\right) J_{F},\left(S_{d} l_{d}\right) J_{d} ; J J_{z}\right\rangle \tag{9}
\end{equation*}
$$

where $A$ 's are symmetrized coefficients, $\Gamma$ indicates the irreducible representation of the cubic group, $\nu$ is a number of basis functions in the irreducible representation, and $\alpha$ is an extra suffix to distinguish the irreducible representation of the same types with the same $J$ value. There are 82 irreducible representations of type $U^{\prime}, 40$ of type $E^{\prime}$ and 41 of type $E^{\prime \prime}$. The third and fourth terms in Eq. (1) are diagonal in this representation and are given respectively by

$$
\begin{equation*}
\frac{1}{2} \lambda_{d}\left[J_{d}\left(J_{d}+1\right)-\frac{1}{2} \cdot \frac{3}{2}-2 \cdot 3\right] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \Lambda_{F}\left[J_{F}\left(J_{F}+1\right)-3 \cdot 4-3 \cdot 4\right] . \tag{11}
\end{equation*}
$$

The fifth term is diagonal as shown in Eq. (5) in a basis system of

$$
\begin{equation*}
\left|\left(S_{F} S_{d}\right) S,\left(L_{F} L_{d}\right) L ; J J_{z}\right\rangle, \tag{12}
\end{equation*}
$$

which can be transformed to Eq. (9) by using the $9 j$ symbol as follows, ${ }^{11)}$

$$
\begin{align*}
& \left|\left(S_{F} L_{F}\right) J_{F},\left(S_{d} L_{d}\right) J_{d} ; J J_{Z}\right\rangle \\
& \quad=\sum_{S, L}\left|\left(S_{F} S_{d}\right) S,\left(L_{F} L_{d}\right) L ; J J_{Z}\right\rangle \\
& \quad \times \sqrt{\left(2 J_{F}+1\right)\left(2 J_{d}+1\right)(2 S+1)(2 L+1)}\left\{\begin{array}{ccc}
3 & 1 / 2 & S \\
3 & 2 & L \\
J_{F} & J_{d} & J
\end{array}\right\} . \tag{13}
\end{align*}
$$

In order to get the expression for the left-hand side of Eq. (13), the following transformation is necessary: ${ }^{11)}$

$$
\begin{align*}
& \left|\left(S_{F} L_{F}\right) J_{F},\left(S_{d} L_{d}\right) J_{d} ; J J_{Z}\right\rangle \\
& =\sum_{J_{F Z} J_{d Z}}\left|\left(S_{F} L_{F}\right) J_{F} J_{F Z}\right\rangle\left|\left(S_{d} L_{d}\right) J_{d} J_{d Z}\right\rangle \\
& \quad \times\left\langle J_{F} J_{d} J_{F Z} J_{d Z} \mid J J_{Z}\right\rangle \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& \left|\left(S_{d} L_{d}\right) J_{d} J_{d z}\right\rangle \\
& \quad=\sum_{S_{d z} L_{d Z}}\left|S_{d} S_{d z}\right\rangle\left|L_{d} L_{d z}\right\rangle\left\langle S_{d} L_{d} S_{d Z} L_{d Z} \mid J_{d} J_{d z}\right\rangle . \tag{15}
\end{align*}
$$

In the above equations, the Clebsch-Gordan coefficient, $\left\langle j_{1} j_{2} m_{1} m_{2} \mid J m\right\rangle$, is used. Moreover, the following relations are well known,

$$
\begin{equation*}
V_{c d}\left|t_{2 g}^{\mu}\right\rangle=-4 D q\left|t_{2 s}^{\mu}\right\rangle \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{c d}\left|e_{g}^{\mu}\right\rangle=6 D q\left|e q_{g}^{\mu}\right\rangle, \tag{17}
\end{equation*}
$$

where

$$
\begin{gather*}
\left|e_{g}^{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|L_{d} 2\right\rangle+\left|L_{d}-2\right\rangle\right),  \tag{18}\\
\left|e_{g}^{2}\right\rangle=\left|L_{d} 0\right\rangle \tag{19}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|t_{2 g}^{1}\right\rangle=\left|L_{d}-1\right\rangle  \tag{20}\\
\left|t_{2 g}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|L_{d} 2\right\rangle-\left|L_{d}-2\right\rangle\right),  \tag{21}\\
\left|t_{2 g}^{-1}\right\rangle=-\left|L_{d} 1\right\rangle \tag{22}
\end{gather*}
$$

By using these equations, we can calculate the matrix elements of the Hamiltonian (1) in the basis system of Eq. (9), and diagonalize them to obtain the eigen values, $E_{\beta}^{\Gamma}$, and the eigen states, $\left|\psi_{e}, \Gamma \beta \nu\right\rangle$.

$$
\begin{align*}
& H\left|\psi_{e}, \Gamma \beta \nu\right\rangle=E_{\beta}^{\Gamma}\left|\psi_{e}, \Gamma \beta \nu\right\rangle,  \tag{23}\\
& \left|\psi_{e}, \Gamma \beta \nu\right\rangle=\sum_{J J_{F} J_{d} \alpha} B_{\beta}^{r}\left(J J_{F} J_{d} \alpha\right)\left|\left(J_{F} J_{d}\right) J, \Gamma \alpha \nu\right\rangle . \tag{24}
\end{align*}
$$

In the next, the matrix element of the electric dipole transition is calculated. At first, the following matrix element is obtained.

$$
\begin{align*}
& \left\langle{ }^{8} S\left(4 f^{7}\right) S_{g z}\right| \sum_{i} x_{i \eta}\left|\left(S_{F} S_{d}\right) S,\left(L_{F} L_{d}\right) L ; J J_{z}\right\rangle \\
& \quad=-|e| \sqrt{\frac{5}{3}}(d\|r\| f) \delta_{s, 7 / 2} \delta_{L, 1}\left\langle\left.\frac{7}{2} 1 S_{g z} \eta \right\rvert\, J J_{z}\right\rangle, \tag{25}
\end{align*}
$$

where $e$ is the electronic charge, $x_{i n}$ the irreducible tensor component of the electric dipole operator for $i$-th electron and $(d\|r\| f)$ the $5 d-4 f$ radial integral,

$$
\begin{equation*}
(d\|r\| f)=\int_{0}^{\infty} d r r R_{4 f}(r) R_{5 d}(r) \tag{26}
\end{equation*}
$$

and $R(r) / r$ is the radial part of the one-electron orbital function. Then the matrix element for optical absorption is given as follows,

$$
\begin{align*}
& \left\langle^{8} S\left(4 f^{7}\right) S_{g_{z}}\right| \sum_{i} x_{i \eta}\left|\psi_{\theta}, \Gamma \beta \nu\right\rangle \\
& \quad=-|e|(d\|r\| f) P_{\beta \nu}^{r}\left(S_{g z} \eta\right), \tag{27}
\end{align*}
$$

where

$$
\begin{equation*}
P_{\beta \nu}^{r}\left(S_{g z} \eta\right)=\sqrt{\frac{5}{3}} \sum_{J \alpha} \bar{B}_{\beta}^{r}(J \alpha) Q_{\nu}^{\Gamma}\left(J \alpha, S_{g z} \eta\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{align*}
& B_{\boldsymbol{\beta}}^{r}(J \boldsymbol{\alpha})=\sum_{J_{F} J_{d}} B_{\boldsymbol{\beta}}^{r}\left(J J_{F} J_{d} \boldsymbol{\alpha}\right) \\
& \quad \times \sqrt{24\left(2 J_{F}+1\right)\left(2 J_{d}+1\right)}\left\{\begin{array}{ccc}
3 & 1 / 2 & 7 / 2 \\
3 & 2 & 1 \\
J_{F} & J_{d} & J
\end{array}\right\} \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{\nu}^{r}\left(J \alpha, S_{g z} \eta\right)=A^{\alpha}\left(J S_{g z}+\eta, \Gamma \nu\right)\left\langle\left.\frac{7}{2} 1 S_{g_{z}} \eta \right\rvert\, J S_{g z}+\eta\right\rangle . \tag{30}
\end{equation*}
$$

There are the following orthogonality relations,

$$
\begin{equation*}
\sum_{S_{g z}} Q_{\nu}^{\Gamma}\left(J_{\alpha}, S_{g z} \eta\right) Q_{\nu^{\prime}}^{r^{\prime}}\left(J^{\prime} \alpha^{\prime}, S_{g z} \eta\right)=\delta_{\Gamma \Gamma} \delta_{\nu \nu} \delta_{J J} \delta_{\alpha \alpha \prime} \tag{31}
\end{equation*}
$$

and

$$
\begin{array}{r}
\sum_{S_{g z^{\nu}}} Q_{\nu}^{r}\left(J \alpha, S_{g z} \eta\right) Q_{\nu}^{r}\left(J^{\prime} \alpha^{\prime}, S_{g z} \eta\right)=\frac{n_{\Gamma}}{3} \delta_{\alpha \alpha} \delta \delta_{J J^{\prime}},  \tag{32}\\
\text { (not depend on } \eta \text { ) }
\end{array}
$$

where $n_{\Gamma}$ indicates the degeneracy of the irreducible representation $\Gamma$. Therefore, the following relation is obtained:

$$
\begin{align*}
& \sum_{S_{g z v}}\left|P_{\beta \nu}^{\Gamma}\left(S_{g z} \eta\right)\right|^{2}=\frac{5}{9} n_{\Gamma} \sum_{J \alpha}\left|\bar{B}_{\beta}^{r}(J \alpha)\right|^{2} .  \tag{33}\\
& \quad \text { (not depend on } \eta \text { ) }
\end{align*}
$$

This implies that the dichroism occurs only when the probability $p\left(S_{g_{z}}\right)$, for the ground state to be in $\left.\left.\right|^{8} S\left(4 f^{7}\right) S_{g_{z}}\right\rangle$, depends on $S_{g_{2}}$.

The optical absorption coefficient is given by

$$
\begin{equation*}
\alpha_{n}(E)=C E f_{\eta}(E), \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\frac{4 \pi^{2} N e^{2}}{h c}(d\|r\| f)^{2}\left[\frac{\left(n_{0}^{2}+2\right)^{2}}{9 n_{0}}\right] \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\eta}(E)=\sum_{s_{g z} r v \beta} p\left(S_{g_{z}}\right)\left|P_{\beta \nu}^{r}\left(S_{g z} \eta\right)\right|^{2} G\left(E_{\beta}^{r}-E_{0}-E\right) . \tag{36}
\end{equation*}
$$

Where $n_{0}$ is the index of refraction, $N$ the number density of $\mathrm{Eu}^{2+}$ ion, $E_{g}$ the energy of the ground state ${ }^{8} S$ and $G(E)$ is the structural function due to the electron-phonon interaction, and is assumed in the following discussion, for simplicity, as the Gaussian type as follows,

$$
\begin{equation*}
G(E)=\frac{1}{\sqrt{2 \pi} \Delta} \exp \left[-(1 / 2)(E / \Delta)^{2}\right], \tag{37}
\end{equation*}
$$

where the value for $\Delta$ is taken as $300 \mathrm{~cm}^{-1}$ from the experimental results at high temperature.

The contribution from electric susceptibilities to the Faraday rotation per
unit length is given by the Kramers-Kronig relation as follows, ${ }^{12}$ )

$$
\begin{align*}
& \theta(E)=\frac{C}{4 \pi} \Theta(E)  \tag{38}\\
& \Theta(E)=E^{2} \int d E^{\prime} \frac{f_{+}\left(E^{\prime}\right)-f_{-}\left(E^{\prime}\right)}{E^{\prime 2}-E^{2}} \tag{39}
\end{align*}
$$

## §4. Numerical results

At first, several limiting cases are discussed in order to show what happens when various interactions are included. When $F_{k}, G_{k}$ and $\lambda_{d}$ tend to zero, the eigen values and the eigen states are given as follows,

$$
\begin{align*}
& H\left|\left(S_{F} L_{F}\right) J_{F} J_{F z}\right\rangle\left|S_{d} S_{d z}\right\rangle\left|L_{d} \Gamma \nu\right\rangle \\
& \quad=\left(E_{J_{F}}+E_{r}\right)\left|J_{F} J_{F z}\right\rangle\left|S_{d} S_{d z}\right\rangle\left|L_{d} \Gamma \nu\right\rangle, \tag{40}
\end{align*}
$$

where

$$
\begin{align*}
& E_{J_{F}}=\frac{1}{2} \Lambda_{F}\left(J_{F}\left(J_{F}+1\right)-24\right),  \tag{41}\\
& E_{\Gamma}= \begin{cases}6 D q, & \left(\Gamma=e_{g}\right) \\
-4 D q, & \left(\Gamma=t_{2 q}\right)\end{cases}  \tag{42}\\
& J_{F}=0,1,2, \cdots, 6 \tag{43}
\end{align*}
$$

and $\left|L_{d} \Gamma \nu\right\rangle$ is given in (18)~(22). This is the model of Freiser et al. The $l$-s coupling within $5 d$ makes ${ }^{2} t_{2 g}$ split into $E^{\prime \prime}$ and $U^{\prime}$. On the other hand, it has no matrix-elements within ${ }^{2} e_{g}$. However there are matrix elements between $U^{\prime}$ in ${ }^{2} t_{2 g}$ and $U^{\prime}$ of ${ }^{2} e_{g}$ given by

$$
\begin{equation*}
\left(U^{\prime}\left({ }^{2} t_{2 q}\right) \nu\left|\lambda_{d} \boldsymbol{l}_{d} \boldsymbol{S}_{d}\right| U^{\prime}\left({ }^{2} e_{q}\right) \nu^{\prime}\right\rangle=-\frac{\sqrt{6}}{2} \lambda_{d} \delta_{\nu \nu \prime} . \tag{44}
\end{equation*}
$$

Hence the second order perturbation gives the energy shift for ${ }^{2} e_{g}$,

$$
\begin{equation*}
-\frac{6}{4} \cdot \frac{\lambda_{d}^{2}}{10 D q}=98 \mathrm{~cm}^{-1} \tag{45}
\end{equation*}
$$

for the values given in §2. As shown in Fig. 3, the effects of the $\lambda_{d}$ term on the spectral intensity are detectable even in the $e_{g}$ band.

The Coulomb and exchange energy mainly give the exchange splitting as shown in Table III. Then the following limiting cases are examined.

$$
\begin{equation*}
\lambda_{d}=0 \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{d f}=-I \boldsymbol{S}_{d} \boldsymbol{S}_{f}-A_{I} \tag{47}
\end{equation*}
$$

where the following values of $I$ and $A_{I}$ are used.


$$
\begin{align*}
& I=2500 \mathrm{~cm}^{-1}  \tag{48}\\
& A_{t}=5000 \mathrm{~cm}^{-1} . \tag{49}
\end{align*}
$$

Since the $I$-term is much larger than the $\Lambda_{F}$-term, the eigen values and the eigen states are given approximately as follows,

$$
\begin{align*}
& H\left|\left(S_{d} S_{F}\right) S L_{F} ; J_{A} J_{A Z}\right\rangle\left|L_{d r}, \nu\right\rangle \\
& \quad=\left(E\left(J_{A}, S\right)+E_{F}\right)\left|S, J_{A} J_{A Z}\right\rangle\left|L_{d r}, \nu\right\rangle \tag{50}
\end{align*}
$$

where

$$
\begin{array}{ll}
S=7 / 2,5 / 2, & \\
J_{A}=1 / 2,3 / 2, \cdots, 13 / 2, & (S=7 / 2) \\
J_{A}=1 / 2,3 / 2, \cdots, 11 / 2 & (S=5 / 2) \tag{53}
\end{array}
$$

and

$$
\begin{align*}
& E\left(J_{A}, S=7 / 2\right)=-A_{I}-\frac{3}{2} I+\frac{3}{7} \Lambda_{F}\left(J_{A}\left(J_{A}+1\right)-111 / 4\right),  \tag{54}\\
& E\left(J_{A}, S=5 / 2\right)=-A_{I}+2 I+\frac{4}{7} \Lambda_{F}\left(J_{A}\left(J_{A}+1\right)-83 / 4\right) \tag{55}
\end{align*}
$$

The $\Lambda_{F}$-term has the following non-diagonal matrix elements,

$$
\begin{align*}
\langle S & \left.=7 / 2, J_{A} J_{A Z}\left|\Lambda_{F} \boldsymbol{S}_{F} \boldsymbol{L}_{F}\right| S=5 / 2, J_{A}^{\prime} J_{A Z}^{\prime}\right\rangle \\
& =\frac{\Lambda_{F}}{28}\left(2 J_{A}+1\right) \sqrt{\left(J_{A}+15 / 2\right)\left(13 / 2-J_{A}\right)} \delta_{J_{A A} J_{A}^{\prime} \delta_{J A Z} J_{A Z}^{\prime},} \tag{56}
\end{align*}
$$

which becomes maximum $1.75 A_{F}$ at $J_{A}=9 / 2$ and gives the second order shift of

$$
\begin{equation*}
\frac{\left(1.75 A_{F}\right)^{2}}{(7 / 2) I} \simeq 20 \mathrm{~cm}^{-1} \tag{57}
\end{equation*}
$$

The non-diagonal elements of Eq. (56) are so small that the absorption intensity for spin-orbit allowed transition is very small, and is about $1 / 1000$ of spin allowed transition as shown in Fig. 3.

In Fig. 3, the results for the case of $\lambda_{d} \neq 0$ are also shown. Within $t_{2 g}$ configuration, $\lambda_{d} \boldsymbol{l}_{d} \boldsymbol{S}_{d}$ is rewritten as
in which $\lambda_{t}=\lambda_{d}$ and the conversion of Eqs. (20) ~(22) should be done. When $\lambda_{d}$ is introduced, each $J_{A}$ level splits into three $J_{T}$ levels of

$$
\begin{equation*}
J_{T}=J_{A}-1, J_{A}, J_{A}+1 \tag{59}
\end{equation*}
$$

and by the inter $J_{A}$ matrix element, the levels of different $J_{A}$ origin but of the same $J_{T}$ mix each other. Moreover, the non-diagonal element between $e_{g}$
and $t_{2 g}$ states introduces small splitting in $\left|J_{T}, J_{T Z}\right\rangle$ of within $20 \mathrm{~cm}^{-1}$. The effect of $\lambda_{d}$-term on $e_{g}$ states is only due to these non-diagonal matrix elements, which give a small splitting of within also $20 \mathrm{~cm}^{-1}$, intensity modifications and the second order shifts. In this case, the intensity of the spin-orbit allowed transition of $e_{g}$ states become $1 / 100$ of the spin allowed transition. This is mainly due to the mixing with $t_{2 g}$ states.

In Fig. 4, the intensities for the case of $S_{g z}=7 / 2$ are shown for three polarizations of light. The differences between + and - polarization give the


Fig. 4. Circular and linear dichroism for the simplified Hamiltonian $H=V_{c d}$ $+\Lambda_{F} \boldsymbol{S}_{F} \boldsymbol{L}_{F}+\lambda_{d} \boldsymbol{S}_{d} \boldsymbol{L}_{d}-I \boldsymbol{S}_{d} \boldsymbol{S}_{F}$ are shown, in which the ground state $4 f^{7}$ ( ${ }^{8} S_{7 / 2}$ ) is assumed to be fully polarized. The triangle marks indicate the absorption intensity for the light with plus polarization, the reverse triangle marks for minus polarization and the circle marks for parallel polarization.
circular dichroism, and the differences between 0 polarization and the mean values of + and - polarization give the linear dichroism.

The Coulomb and exchange interaction between $5 d$ and $4 f$ electrons which was shown in Eq. (5) are expressed more generally, containing the configuration mixing or the shieldings due to $5 s^{2}$ and $5 p^{6}$ electrons, by using the seven parameters of $A_{K}$ and $B_{K}$.

$$
\begin{equation*}
H_{d f}=\sum_{K=2,4} A_{K} S_{K}-\frac{1}{6}\left[3+2\left(\boldsymbol{S}_{d} \boldsymbol{S}_{F}\right)\right] \sum_{K=0}^{4} B_{K} S_{K}, \tag{60}
\end{equation*}
$$

where $S_{K}$ is the scalar product of the two irreducible tensor operators of $T_{q}^{(K)}$ and $U_{q}^{(K)}$. The former is for the $4 f$ electrons and the latter is for the $5 d$ electron. Namely

$$
\begin{equation*}
S_{K} \equiv\left(T^{(K)} \cdot U^{(K)}\right)=\sum_{q}(-)^{q} T_{q}^{(K)} U_{-q}^{(K)} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle L_{F} M_{F}\right| T_{q}^{(K)}\left|L_{F} M_{F}^{\prime}\right\rangle=\frac{(-)^{3-M_{F}^{\prime}}}{\sqrt{(2 K+1)}}\left\langle 33 M_{F}-M_{F}^{\prime} \mid K q\right\rangle, \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle L_{d} M_{d}\right| U_{g}^{(K)}\left|L_{d} M_{d}^{\prime}\right\rangle=\frac{(-)^{2-M_{d}^{\prime}}}{\sqrt{(2 K+1)}}\left\langle 22 M_{d}-M_{d}^{\prime} \mid K q\right\rangle . \tag{63}
\end{equation*}
$$

Moreover

$$
\begin{array}{r}
\left\langle\left(L_{F} L_{d}\right) L, L_{z}\right| S_{K}\left|\left(L_{F} L_{d}\right) L^{\prime}, L_{Z}^{\prime}\right\rangle \\
\left.=\delta_{L, L, \delta^{\prime}}\right\rangle  \tag{64}\\
\delta_{L, L_{z}^{\prime}}(-)^{L+1}\left\{\begin{array}{lll}
3 & K & 3 \\
2 & L & 2
\end{array}\right\} .
\end{array}
$$

Table IV. The matrix elements for the scalar product $S_{K}$.

| $K$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | -8 | 24 | -6 | 66 |
| 2 | 1 | -6 | 6 | 3 | -99 |
| 3 | 1 | -3 | -11 | 4 | 66 |
| 4 | 1 | 1 | -15 | -4 | -22 |
| 5 | 1 | 6 | 10 | 1 | 3 |
| Common factor <br> $t_{\boldsymbol{K}}$ | $\sqrt{1 / 35}$ | $\sqrt{1 / 2520}$ | $\sqrt{1 / 29400}$ | $\sqrt{1 / 2940}$ | $\sqrt{1 / 873180}$ |

The values of Eq. (64) are given in Table IV. If we neglect the configuration mixing, the values for the coefficients $A_{K}$ and $B_{K}$ are given by $F_{K}$ and $G_{K}$ as follows:

$$
\begin{align*}
& A_{2}=-\frac{1}{t_{2}}\left(F_{2}\right),  \tag{65}\\
& A_{4}=-\frac{1}{t_{4}}\left(F_{4}\right),  \tag{66}\\
& B_{0}=\frac{6}{7 t_{0}}\left(21 G_{1}+84 G_{3}+462 G_{5}\right),  \tag{67}\\
& B_{1}=\frac{1}{2 t_{1}}\left(2 G_{1}+3 G_{3}-33 G_{5}\right),  \tag{68}\\
& B_{2}=\frac{1}{14 t_{2}}\left(-6 G_{1}+11 G_{3}-55 G_{5}\right),  \tag{69}\\
& B_{3}=\frac{1}{2 t_{3}}\left(3 G_{1}-8 G_{3}-11 G_{5}\right),  \tag{70}\\
& B_{4}=\frac{1}{14 t_{4}}\left(-G_{1}-4 G_{3}-G_{5}\right), \tag{71}
\end{align*}
$$

in which $t_{K}$ are given in Table IV. Using these expressions, the Coulomb and exchange energies for $S=7 / 2$ states are given as follows:

$$
\begin{equation*}
E_{Q}(L, S=7 / 2)=\sum_{K=0}^{4} C_{K}\left(S_{K} / t_{K}\right) \tag{72}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{0}=-\frac{6}{7}\left(21 G_{1}+84 G_{3}+462 G_{5}\right) \tag{73}
\end{equation*}
$$

$$
\begin{align*}
& C_{1}=-\frac{1}{2}\left(2 G_{1}+3 G_{3}-33 G_{5}\right),  \tag{74}\\
& C_{2}=-\frac{1}{14}\left(14 F_{2}-6 G_{1}+11 G_{3}-55 G_{5}\right),  \tag{75}\\
& C_{3}=-\frac{1}{2}\left(3 G_{1}-8 G_{3}-11 G_{5}\right),  \tag{76}\\
& C_{4}=-\frac{1}{14}\left(14 F_{4}-G_{1}-4 G_{3}-G_{5}\right), \tag{77}
\end{align*}
$$

Matrix elements of $T_{q}^{(K)}$ are given in basis system of $\left|\left(S_{d} S_{F}\right) S L_{F} ; J_{A} J_{A z}\right\rangle$ as follows,

$$
\begin{align*}
& \left\langle\left(S_{d} S_{F}\right) S L_{F} ; J_{A} J_{A Z}\right| T_{q}^{(K)}\left|\left(S_{d} S_{F}\right) S^{\prime} L_{F} ; J_{A}^{\prime} J_{A Z}^{\prime}\right\rangle \\
& =\frac{\delta_{S S}}{\sqrt{2 K+1}}(-)^{J_{A}^{+} J_{A}^{\prime}+S+K+3-J_{A Z}^{\prime}} \sqrt{\left(2 J_{A}+1\right)\left(2 J_{A}^{\prime}+1\right)}\left\{\begin{array}{lll}
3 & K & 3 \\
J_{A}^{\prime} & S & J_{A}
\end{array}\right\} \\
& \quad \times\left\langle J_{A} J_{A}^{\prime} J_{A Z}-J_{A Z}^{\prime} \mid K q\right\rangle . \tag{78}
\end{align*}
$$

In the $e_{g}$ states, among the $U_{q}^{(K)}$, only $U_{0}^{(0)}, U_{0}^{(2)}, U_{ \pm 2}^{(2)}, U_{ \pm 2}^{(3)}, U_{0}^{(4)}, U_{ \pm 2}^{(4)}$ and $U_{ \pm 4}^{(4)}$ have non-zero matrix element as follows:

$$
\begin{align*}
& \left\langle e_{g}^{1}\right| U_{0}^{(0)}\left|e_{g}^{1}\right\rangle=\frac{1}{\sqrt{5}},  \tag{79}\\
& \left\langle e_{g}^{2}\right| U_{0}^{(0)}\left|e_{g}^{2}\right\rangle=\frac{1}{\sqrt{5}},  \tag{80}\\
& \left\langle e_{g}^{1}\right| U_{0}^{(2)}\left|e_{g}^{1}\right\rangle=\sqrt{\frac{2}{35}},  \tag{81}\\
& \left\langle e_{g}^{2}\right| U_{0}^{(2)}\left|e_{9}^{2}\right\rangle=-\sqrt{\frac{2}{35}},  \tag{82}\\
& \left\langle e_{g}^{1}\right| U_{ \pm 2}^{(2)}\left|e_{g}^{2}\right\rangle=\sqrt{\frac{1}{35}},  \tag{83}\\
& \left\langle e_{q}^{1}\right| U_{ \pm 2}^{(3)}\left|e_{a}^{2}\right\rangle= \pm \frac{1}{\sqrt{28}},  \tag{84}\\
& \left\langle e_{g}^{1}\right| U_{0}^{(4)}\left|e_{g}^{1}\right\rangle=\frac{1}{\sqrt{630}},  \tag{85}\\
& \left\langle e_{g}^{2}\right| U_{0}^{(4)}\left|e_{g}^{2}\right\rangle=\sqrt{\frac{2}{35}},  \tag{86}\\
& \left\langle e_{g}^{2}\right| U_{ \pm 2}^{(4)}\left|e_{g}^{1}\right\rangle=\sqrt{\frac{1}{84}},  \tag{87}\\
& \left\langle e_{g}^{1}\right| U_{ \pm 4}^{(4)}\left|e_{g}^{1}\right\rangle=\sqrt{\frac{1}{36}}, \tag{88}
\end{align*}
$$

$$
\begin{equation*}
\left\langle e_{g}^{2}\right| U_{ \pm 4}^{(4)}\left|e_{g}^{2}\right\rangle=0 . \tag{89}
\end{equation*}
$$

We have caluculated the spectral intensity using the various parameters of the Coulomb and the exchange interactions, and the results are shown in Figs. $5 \sim 7$. The Fig. $6(\mathrm{~K})$ corresponds to the case of $\lambda_{d} \neq 0, I \neq 0$ in Fig. 3, and the figures (D) in Figs. 5~7 are the results of the calculations by using the values of the fourth row in Table II. In the spin allowed transitions, that is, the transitions to the states of $S=7 / 2$, the case (K) and (D) give almost the same figures to each other. This implies that the energy splittings in the states of $S=5 / 2$ have very small effects on the spin allowed transitions.

The series from (A) to (D) shows the effects of the energy splittings within the states with $S=7 / 2$, that is the effects of the $S_{1}, S_{2}, S_{3}$ and $S_{4}$ terms in Eq. (72). The figures (A) are the results of the calculations using the values in the third row in Table II. Moreover, in (C), the mean values of (A) and (D) are used, and the mean values of (A) and (C) are used in


Fig. 5. The absorption curves for the spin allowed ( $S=7 / 2$ ) transitions into the $e_{g}$ band are shown. The anisotropic parts of the Coulomb and the exchange interactions are shown in Table V.


Fig. 6. The absorption curves for the spin-orbit allowed ( $S=5 / 2$ ) transitions into the $e_{g}$ band are shown.


Fig. 7. The absorption curves for the spin allowed ( $S=7 / 2$ ) transitions into the $t_{2 g}$ band are shown.

Table V. The values for the anisotropic parts of the Coulomb and the exchange interactions in the states with $S=7 / 2$.

| The cases | $C_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ |
| :---: | :---: | :---: | :---: | :--- |
| A | -163.9 | -63.8 | -160.1 | 7.1 |
| B | -122.9 | -47.9 | -120.1 | 5.3 |
| C | -81.9 | -31.9 | -80.1 | 3.5 |
| D | 0. | 0. | 0. | 0. |
| E | -151.7 | -100.2 | -157.7 | 6.5 |
| F | -75.9 | -50.1 | -78.8 | 3.2 |
| G | -172.6 | -37.8 | -161.8 | 7.5 |
| H | -86.3 | -18.9 | -80.9 | 3.8 |

(B). Therefore the absolute values of $C_{K}$ decreases from (A) to (D) as shown in Table V. The peaks become, of course, more sharp with decreasing values of $C_{K}$. However the peak of the lowest energy is more sharp in (C) than in (D). The peak of the lowest energy in (C) is composed of two


Fig. 8. The splittings of various $J_{A}$ states into $U^{\prime}, E^{\prime}$ and $E^{\prime \prime}$ due to the anisotropic parts of the Coulomb and the exchange interactions and the effect on the absorption curve. The values of parameters for the case $C$ are shown in Table V.
kinds of states, $U^{\prime}$ of the states $J_{A}=1 / 2$ and $E^{\prime \prime}$ of $J_{A}=3 / 2$ as shown in Fig. 8. The level splitting of $J_{A}=3 / 2$ states due to $C_{2}$ and $C_{3}$ terms in Eq. (72) overcomes the line broadenings due to the electron phonon interaction. In the case of (D) on the other hand, the peak of $J_{A}=3 / 2$ is overlapped with the peak of $J_{A}=5 / 2$ by the broadening due to the electron phonon interaction, which is assumed to be $300 \mathrm{~cm}^{-1}$. In the spectral data for $\mathrm{Ce}^{2+}$ and $\mathrm{Yb}^{2+}$, the ratios between $F_{K}$ and $G_{K}$ are quite different from each other as shown in Table II. Therefore we have also calculated the spectral intensity using the ratio of $F_{K}$ and $G_{K}$ of $\mathrm{Yb}^{2+}$ and $\mathrm{Ce}^{2+}$. The cases of (E) and (G) correspond to the cases of $\mathrm{Yb}^{2+}$ and $\mathrm{Ce}^{2+}$ respectively. Moreover, in the cases of ( F ) and (H) the mean values between (D) and (E), and (D) and (G) are used respectively. Among the many figures in Fig. 5, (C) and (H) are in good agreement with the experimental results. Note that (C) and (H) are better than (D) in the lower energy region. The values of $C_{K}$ for the various cases are shown in Table V. From this table and Fig. 5, it can be concluded that the values of $C_{2}$ should be about $-20 \sim-30 \mathrm{~cm}^{-1}$, and the overall splitting due to $S_{2}, S_{3}$ and $S_{4}$ should be less than about $2000 \mathrm{~cm}^{-1}$ in order to give the peaks observed in the absorption spectrum of $\mathrm{Eu}^{2+}$ in $\mathrm{EuF}_{2}$. However we cannot determine more precise values for $F_{K}$ and $G_{K}$, or $A_{K}$ and $B_{K}$ from the experimental results.

The data which can be used in the further discussion was given in the Zeeman effect for the lowest $U^{\prime}$ level observed by Kisliuk et. al. ${ }^{3)}$ The magnetic splitting of $U^{\prime}$ levels is, in general, not isotropic and a fomula for its angular dependence is given by

$$
\begin{equation*}
\left(W / \mu_{B} H\right)^{2}=\frac{1}{4}\left[\xi_{1}^{2}+\xi_{2}^{2}\right] \pm \frac{\xi_{1}}{2} \sqrt{\xi_{2}^{2}+\frac{3}{4}\left[\xi_{1}^{2}-4 \xi_{2}^{2}\right]\left(l^{2} m^{2}+m^{2} n^{2}+n^{2} l^{2}\right)} \tag{90}
\end{equation*}
$$

where $W$ is the energy shift, $\mu_{B}$ the Bohr magneton, $H$ the magnetic field intensity, $\xi_{1}$ and $\xi_{2}$ are parameters characterizing the splitting, and $l, m$ and $n$ direction cosines of the field direction. If the direction of the field is $\langle 100\rangle$,

$$
\begin{align*}
& \left(W / \mu_{B} H\right)_{k}=\frac{1}{2}\left(\xi_{1}+\xi_{2}\right),  \tag{91}\\
& \left(W / \mu_{B} H\right)_{\lambda}=\frac{1}{2}\left(\xi_{1}-\xi_{2}\right),  \tag{92}\\
& \left(W / \mu_{B} H\right)_{\mu}=\frac{1}{2}\left(-\xi_{1}+\xi_{2}\right),  \tag{93}\\
& \left(W / \mu_{B} H\right)_{\nu}=\frac{1}{2}\left(-\xi_{1}-\xi_{2}\right), \tag{94}
\end{align*}
$$

in which $k, \lambda, \mu$ and $\nu$ imply the symmetries of the wave functions and $\left|U_{k}^{\prime}\right\rangle$, $\left|U_{\lambda}^{\prime}\right\rangle,\left|U_{\mu}^{\prime}\right\rangle$ and $\left|U_{\nu}^{\prime}\right\rangle$ have the symmetries of $\left|J=3 / 2, J_{z}=3 / 2\right\rangle, \mid 3 / 2$, $1 / 2\rangle,|3 / 2,-1 / 2\rangle$ and $|3 / 2,-3 / 2\rangle$, respectively. The following value for the lowest $U^{\prime}$ state was determined experimentally,

$$
\begin{equation*}
\xi_{1}=0.7 \quad \text { and } \quad \xi_{2}=3.5 \tag{95}
\end{equation*}
$$

In the states of $\left|U^{\prime} ; S=7 / 2, J_{A}=1 / 2, e_{g}\right\rangle$, which are considered approximately as the wave functions for the lowest state, the four states having the symmetry of $k, \lambda, \mu$ and $\nu$ are expressed as follows:

$$
\begin{align*}
& U_{k}=|-1 / 2\rangle\left|e_{\theta}^{1}\right\rangle,  \tag{96}\\
& U_{\lambda}=-|1 / 2\rangle\left|e_{\theta}^{2}\right\rangle,  \tag{97}\\
& U_{\mu}=|-1 / 2\rangle\left|e_{\theta}^{2}\right\rangle,  \tag{98}\\
& U_{\nu}=-|1 / 2\rangle\left|e_{\theta}^{1}\right\rangle \tag{99}
\end{align*}
$$

and the $g$-factor for the state $\left|\left(S=7 / 2, L_{F}\right) J_{A}=1 / 2\right\rangle$ is given by

$$
\begin{equation*}
\frac{3 J_{A}\left(J_{A}+1\right)+S(S+1)-L_{F}\left(L_{F}+1\right)}{2 J_{A}\left(J_{A}+1\right)}=4 . \tag{100}
\end{equation*}
$$

Therefore the Zeeman splitting for the states of $J_{A}=1 / 2$ is given as follows:

$$
\begin{aligned}
& \left(W / \mu_{B} H\right)_{k}
\end{aligned}=+2, \quad\left(W / \mu_{B} H\right)_{\lambda}=-2, \quad\left(W / \mu_{B} H\right)_{\mu}=+2, ~\left(W / \mu_{B} H\right)_{\nu}=-2, ~ \$ \quad \text { and } \quad\left(\begin{array}{l}
\end{array}\right.
$$

and then the values of $\xi_{2}=4$ and $\xi_{1}=0$ are given.
When the $S_{K}$ terms with none zero value of $K$ are introduced, the state of $J_{A}=1 / 2$ is mixed with the states which have higher $J_{A}$ values and then the Zeeman splitting is modified as follows,

$$
\begin{align*}
\left(W / \mu_{B} H\right)_{k}= & 2+\sum_{J_{A}+1 / 2} \sum_{K \neq 0} \frac{C_{K}\left\langle U_{k}^{\prime} 1 / 2\right| 2 S_{z}+L_{z}\left|U_{k}^{\prime} J_{A}\right\rangle\left\langle U_{k}^{\prime} J_{A}\right| S_{K}\left|U_{k}^{\prime} 1 / 2\right\rangle}{E\left(J_{A}\right)-E(1 / 2)} \\
& + \text { (higher order terms) }, \tag{101}
\end{align*}
$$

where $\left|U_{k}^{\prime} J_{A}\right\rangle$ is an abbreviated expression for $\left|U_{k}^{\prime} ; S=7 / 2, J_{A}, e_{g}\right\rangle$ and, for example,

$$
\begin{align*}
& \left|U_{k}^{\prime} 3 / 2\right\rangle=\frac{1}{\sqrt{2}}\left(|3 / 2\rangle\left|e_{g}^{2}\right\rangle+|-1 / 2\rangle\left|e_{g}^{1}\right\rangle\right)  \tag{102}\\
& \left|U_{\lambda}^{\prime} 3 / 2\right\rangle=\frac{1}{\sqrt{2}}\left(-|1 / 2\rangle\left|e_{g}^{2}\right\rangle+|-3 / 2\rangle\left|e_{g}^{1}\right\rangle\right),  \tag{103}\\
& \left|U_{\mu}^{\prime} 3 / 2\right\rangle=\frac{1}{\sqrt{2}}\left(-|-1 / 2\rangle\left|e_{\exists}^{2}\right\rangle+|3 / 2\rangle\left|e_{\exists}^{1}\right\rangle\right),  \tag{104}\\
& \left|U_{\nu}^{\prime} 3 / 2\right\rangle=\frac{1}{\sqrt{2}}\left(|-3 / 2\rangle\left|e_{\exists}^{2}\right\rangle+|1 / 2\rangle\left|e_{\exists}^{1}\right\rangle\right) \tag{105}
\end{align*}
$$

and $E\left(J_{A}\right)$ is given by Eq. (54). Since, the operator $2 S_{z}+L_{z}$ has matrix element only between the states $\Delta J_{A}=0$ and $\Delta J_{A}= \pm 1$, only the states of $J_{A}=3 / 2$ are connected to $J_{A}=1 / 2$. Moreover, only $S_{Z}$ term has matrix element between the states of $\left|U_{k}^{\prime} 3 / 2\right\rangle$ and $\left|U_{k}^{\prime} 1 / 2\right\rangle$. Therefore, the first order correction becomes as follows,

$$
\begin{align*}
& \Lambda^{(1)}\left(W / \mu_{B} H\right)_{k} \\
= & \frac{\left(C_{2} / t_{2}\right)\left\langle J_{A}=\frac{1}{2},-\frac{1}{2}\right| S_{z}\left|\frac{3}{2},-\frac{1}{2}\right\rangle\left\langle\frac{3}{2},-\frac{1}{2}\right| T_{0}^{(2)}\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left\langle e_{g}^{1}\right| U_{0}^{(2)}\left|e_{g}^{1}\right\rangle}{E\left(\frac{3}{2}\right)-E\left(\frac{1}{2}\right)}, \tag{106}
\end{align*}
$$

in which $t_{2}$ is given in Table IV and the matrix element of $S_{z}$ is given by the following expression,

$$
\begin{align*}
& \langle(7 / 2,3) 1 / 2,-1 / 2| S_{z}|(7 / 2,3) 3 / 2,-1 / 2\rangle \\
& \quad=\frac{-1}{2} \sqrt{\frac{\left[(7 / 2+3+1)^{2}-(3 / 2)^{2}\right]\left[(3 / 2)^{2}-(7 / 2-3)^{2}\right]}{3 / 2}} \\
& \quad . \frac{(-)^{2}}{\sqrt{2}}\left\langle 3 / 2,1,-\frac{1}{2}, 0 \mid 1 / 2,-\frac{1}{2}\right\rangle=\sqrt{3} . \tag{107}
\end{align*}
$$

The matrix elements of $T_{0}^{(2)}$ is given using Eq. (78) as follows,

$$
\begin{align*}
& \langle(1 / 2,3) 7 / 2,3 ; 3 / 2,-1 / 2| T_{0}^{(2)}|(1 / 2,3) 7 / 2,3 ; 1 / 2,-1 / 2\rangle \\
& =\frac{1}{\sqrt{5}}(-)^{3 / 2+1 / 2+7 / 2+2+3+1 / 2} \sqrt{4 \cdot 2}\left\{\begin{array}{ccc}
3 & 2 & 3 \\
1 / 2 & 7 / 2 & 3 / 2
\end{array}\right\}\langle 3 / 2,1 / 2,-1 / 2,1 / 2 \mid 2,0\rangle \\
& =-\sqrt{1 / 4 \cdot 35} . \tag{108}
\end{align*}
$$

The final factor is given in Eq. (81) as $\sqrt{2 / 35}$. Therefore,

$$
\begin{align*}
\Delta^{(1)}\left(W / \mu_{B} H\right)_{k} & =\frac{C_{2} \cdot \sqrt{3} \cdot \sqrt{8 \cdot 3 \cdot 5^{2} \cdot 7^{2}} \cdot \sqrt{1 / 4 \cdot 35} \cdot \sqrt{2 / 35}}{\Lambda_{F} \cdot 9 / 7} \\
& =\frac{-14}{3} \frac{C_{2}}{\Lambda_{F}} . \tag{109}
\end{align*}
$$

Moreover the following relations are easily obtained.

$$
\begin{equation*}
\Delta^{(1)}\left(W / \mu_{B} H\right)_{\mu}=\Delta^{(1)}\left(W / \mu_{B} H\right)_{k}=-\Delta^{(1)}\left(W / \mu_{B} H\right)_{\lambda, \nu}, \tag{110}
\end{equation*}
$$

and then the first order correction to the $\xi$ 's parameters are given by


Fig. 9. Faraday rotation spectrum for the $e_{g}$ band. The full lines correspond to the limit of the small magnetic polarization and the dashed lines correspond to the limit of the saturation of the magnetic polarization.

$$
\begin{equation*}
\Delta \xi_{1}^{(1)}=-\frac{28}{3} \frac{C_{2}}{\Lambda_{F}} \tag{111}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \xi_{2}^{(1)}=0 . \tag{112}
\end{equation*}
$$

Using the values of $\Lambda_{F}$ and the experimental value of $\xi_{1}$, the value for $C_{2}$ is determined approximately to be $-18 \mathrm{~cm}^{-1}$. This value is in good agreement with the value determined from the absorption curve. In the second order perturbation, the value of $\xi_{2}$ is reduced about $10 \%$ mainly due to the effect of $S_{2}$ term. This is also consistent with the experimental results.

The Faraday rotation spectra are shown in Figs. 9 and 10 , in which the same values as in Fig. 5 are used for the various parameters. In these figures, the values for the following expression are given.


Fig. 11. Circular dichroism spectra for the $e_{g}$ band. The full lines correspond to the limit of the small magnetic polarization and the dashed lines correspond to the limit of the saturation of the magnetic polarization.

$$
\begin{equation*}
F(E)=\left(\left\langle S_{z}\right\rangle / S\right)^{-1} \Theta(E) \tag{113}
\end{equation*}
$$

In Fig. 11, the spectra for the circular dichroism $D_{c}(E)$ are shown

$$
\begin{equation*}
D_{c}(E)=\left(\left\langle S_{Z}\right\rangle / S\right)^{-1} E\left(f_{+}(E)-f_{-}(E)\right) \tag{114}
\end{equation*}
$$

In the above two equations,

$$
\begin{equation*}
\left\langle S_{z}\right\rangle=\frac{\sum S_{z} e^{-\mu_{B} H S_{z} / \kappa T}}{\sum e^{-\mu_{B} H S_{z} / \kappa T} T} \tag{115}
\end{equation*}
$$

in which $H$ is the effective magnetic field, $\mu_{B}$ the Bohr magneton, $T$ the absolute temperature and $\kappa$ the Boltzmann constant.

In Figs. 9, 10 and 11, both of the values for the saturation magnetization and for the limit of the small magnetization are given. From the difference of the two values, the field dependence of the Faraday rotation or the circular dichroism can be deduced as shown in the following example. At $29000 \mathrm{~cm}^{-1}$ of Fig. 11 (C), the full line has a larger value than the dashed line. This indicates that the circular dichroism, at this wave number in this
case, saturates more rapidly than the magnetization. On the other hand, at $30200 \mathrm{~cm}^{-1}$ in Fig. 11 (C), the circular dichroism has slower saturation than the magnetization.

The spectra themselves for the Faraday rotation and the circular dichroism look rather insensitive to the values of the anisotropic parts of the Coulomb and exchange interaction. However, the field dependences of them are rather sensitive to the Coulomb and the exchange parameters. Unfortunately, we have not now precise experimental data on this point.


Fig. 12. The spectrum for the linear dichroism are shown, in which the full line shows absorption curve for the perpendicular polarization of the light and the dashed line shows that for the parallel polarization. Moreover, the ground state $4 f^{7}\left({ }^{8} S_{7 / 2}\right)$ is assumed to be fully polarized.

In Fig. 12, the linear dichroism is shown. Note that in these spectra, the peaks become clearer than those for the unpolarized light. Therefore the experiment on the polarized light would give more precise information on the excited state for the transitions of $4 f^{7} \rightarrow 4 f^{6} 5 d$.

Finally, the coupling scheme which describe the state in the configuration of $4 f^{6}\left({ }^{7} F\right) 5 d$ in the $\mathrm{CaF}_{2}$ type crystals is given as follows. At first, the crystal field on the $5 d$-electron divides the $5 d$ states into two groups, $t_{2 g}$ and $e_{g}$. In the second, the isotropic part of the exchange interaction between the $5 d$ and $4 f$ electrons gives the exchange splitting into the states of the total $\operatorname{spin} S=7 / 2$ and $S=5 / 2$. Among the remaining interactions, the anisotropic parts of the Coulomb and the exchange interactions and the spin-orbit interaction for the $4 f$ electron has the largest effects. Especially for the states of $e_{g}$ with $S=7 / 2$, the quantum number for the composite angular momentum $J_{A}$, which is given by

$$
\begin{align*}
& \boldsymbol{S}=\boldsymbol{S}_{d}+\boldsymbol{S}_{F}, \\
& \boldsymbol{J}_{A}=\boldsymbol{S}+\boldsymbol{L}_{F}, \tag{116}
\end{align*}
$$

can be a good quantum number approximately. For the states with large
values of $J_{A}$, the energy differences between the states with the neighbouring values of $J_{A}$ are large enough to give the systematic peaks in the absorption curve. However, for the states of $e_{a}, S=5 / 2$, the effects of the anisotropic parts of the Coulomb and the exchange interaction are so large that the spectrum of this part is expected to have no systematic structure.

In the state of $t_{2 g}$, the spin-orbit interaction for the $5 d$-electron have the matrix elements and have the effects as shown in Eq. (57) and in Fig. 3. In this case, therefore, the anisotropic parts of the Coulomb and the exchange interaction can easily mix together at least the states with neighbouring values of $J_{A}$ and the spectrum have no systematic structure. However, the total width of the $t_{2 g}$ band is mainly given by the spin-orbit interaction in a $4 f$-electron. This character might be observed in the magnetic dichroism of this band.

## References

1) A. A. Kaplyanskii and P. P. Feofilov, Opt. Spectry 13 (1962), 129.
2) M. J. Freiser, S. Methfessel and F. Holtzberg, J. Appl. Phys. 39 (1968), 900.
3) P. Kisliuk, H. H. Tippins, C. A. Moore and S. A. Poilack, Phys. Rev. 171 (1968), 336.
4) Y. R. Shen, Phys. Rev. 134 (1964), A661.
Y. R. Shen and N. Bloembergen, Phys. Rev. 133 (1964), A515.
5) Y. R. Shen, Phys. Rev. 133 (1964), A511.
6) D. S. McClure, Adv. Solid State Phys. 9 (1959), 400.
7) W. R. Callaham, J. Opt. Soc. Am. 53 (1963), 695.
8) D. S. McClure and Z. Kiss, J. Chem. Phys. 39 (1963), 3251.
9) B. W. Bryant, J. Opt. Soc. Am. 55 (1965), 771.
10) B. G. Wybourne, Spectroscopic Properties of Rare Earths (John Wiley \& Sons, Inc., 1965), p. 62.
11) See for example, A. Messiah, Quantum Mechanics, Appendix C (North-Holland Publishing Company, Amsterdam, 1964).
12) W. A. Crossley, R. W. Cooper and J. L. Page, Phys. Rev. 181 (1969), 896.

[^0]:    *) Present address: Ruhr University Bochum, Bochum, West Germany.

