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1. Introduction 

   Functionally graded materials (FGMs) are inhomogeneous 

composites that can be described as the gradually variation of 

material microstructure from one material to another material. 

FGMs have recently attracted much attention due to its merits 

including improved stress distribution, higher fracture toughness 

and reduced stress intensity factors, enhanced the thermal 

resistance. With the development of advance material science and 

technology, FGMs have been utilized in various engineering fields 

such as micro/Nano electro mechanical systems, thin films in the 

form of shape memory, alloys biomedical materials, and atomic 

force microscopy (AFM), space vehicles, reactor vessels, 

semiconductor industry and general structural elements in high 

thermal environments [1-9]. Therefore, considering static and 

dynamic behavior of functionally graded structures under 

different actuation is very significant.  

As experiments on nanoscale objects are often fraught with 

uncertainty due to the difficulty of fabricating and manipulating 

these objects at length scales below ≈10 nm [10], size dependent 

continuum theories have been commonly used to simulate 

material discontinuities in micro/nano-scales. To predict the 

responses of nanostructures under different loading conditions, 

theoretical analysis have been more noteworthy because the 

experimental methods are encountered in difficulties when the size 

of physical systems is scaled down into the nanoscale. There are 

several size-dependent continuum theories such as couple stress 
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In this paper, the mechanical vibration analysis of functionally graded (FG) 

nanoplate embedded in visco Pasternak foundation incorporating magnet and 

thermal effects is investigated. It is supposed that a uniform radial magnetic field 

acts on the top surface of the plate and the magnetic permeability coefficient of the 

plate along its thickness are assumed to vary according to the volume distribution 

function. The effect of in-plane pre-load, viscoelastic foundation, magnetic field 

and temperature change is studied on the vibration frequencies of functionally 

graded annular and circular nanoplate. Two different size dependent theories also 

are employed to obtain the vibration frequencies of the FG circular and annular 

nanoplate. It is assumed that a power-law model is adopted to describe the variation 

of functionally graded (FG) material properties. The FG circular and annular 

nanoplate is coupled by an enclosing viscoelastic medium which is simulated as a 

visco Pasternak foundation. The governing equation is derived for FG circular and 

annular nanoplate using the modified strain gradient theory (MSGT) and the 

modified couple stress theory (MCST). The differential quadrature method (DQM) 

and the Galerkin method (GM) are utilized to solve the governing equation to obtain 

the frequency vibration of FG circular and annular nanoplate. Subsequently, the 

results are compared with valid results reported in the literature. The effects of the 

size dependent, the in-plane pre-load, the temperature change, the magnetic field, 

the power index parameter, the elastic medium and the boundary conditions on the 

natural frequencies are scrutinized. According to the results, the application of 

radial magnetic field to the top surface of plate gives rise to change the state of 

stresses in both tangential and radial direction as well as the natural frequency. 

Also, The temperature changes play significant role in the mechanical analysis of 

FG annular and circular nanoplate. This study can be useful to product the sensors 

and devices at the nanoscale with considering the thermally and magnetically 

vibration properties of the nanoplate 
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theory(CST) [11], strain gradient elasticity theory(SGT), modified 

couple stress theory(MCST) [12] and nonlocal elasticity theory 

[13-16]. From among these theories, modified strain gradient 

theory (MSGT) is one of the most practical theoretical techniques 

for the studying of MEMS/NEMS devices due to their 

computational efficiency and accuracy compared with to the 

atomistic model ones. Numerous works have been conducted on 

the mechanical performance of functionally graded material 

structures, including buckling and dynamic stability, bending, free 

Vibration. 

The linear free and forced vibration of FGM circular plates and 

annular sectorial plates was studied by Nie and Zhong [17] using 

the DQ method, respectively. The nonlinear vibration of 

functionally graded beams based on Euler-Bernoulli beam theory 

and von Kármán geometric nonlinearity was investigated by Ke et 

al. [18] using the direct numerical integration method and Runge-

Kutta method. Xia and Shen [19] considered vibration analysis for 

compressively loaded and thermally loaded postbuckled FGM 

plates with piezoelectric fiber reinforced composite (PFRC) 

actuators based on a third order shear deformation plate theory and 

the general von Kármán-type equation. The free vibration of edge 

cracked cantilever microscale FGM beams was investigated by 

Akbaş [20] based on the modified couple stress theory (MCST). 

The free vibration of nanocomposite beams reinforced by single-

walled carbon nanotubes was discussed by Lin and Xiang [21]. 

The free vibration analysis of radially FGM circular and annular 

sectorial thin plates of variable thickness, resting on the Pasternak 

elastic foundation was studied by Hosseini-Hashemi et al. [22]. 

Shamekhi and Nai [23] investigated the buckling analysis of 

radially-loaded circular FGM plate with variable thickness based 

on Love-Kichhoff hypothesis and the mesh-free method. The 

elastic solutions of an FGM disk with variable thickness subjected 

to a rotating load was provided by Bayat et al. [24]. The free 

vibration problem of sandwich FGM shell structures with variable 

thickness using the DQ method was considered by Tornabene et 

al. [25]. Wang et al. [26] studied Timoshenko Nano-beams 

formulations based on the modified strain gradient theory. Ansari 

et al. [27,28] analyzed the linear and nonlinear vibration 

characteristics of functionally graded microbeams based on SGT 

and Timoshenko beam theories. They illustrated that the value of 

material property gradient index plays a more important role in the 

vibrational response of the functionally graded microbeams with 

lower slenderness ratios. Recently, the free vibration response of 

functionally graded higher-order shear deformable microplates 

was investigated by Sahmani and Ansari [29] based on strain 

gradient elasticity theory. Ghayesh et al studied [30] the nonlinear 

forced vibrations of a microbeam employing strain gradient 

elasticity theory. 

The buckling of rectangular nanoplate under shear in-plane load 

and thermal environment was analyzed by Mohammadi et al [31]. 

They found that the critical shear buckling load of rectangular 

nanoplate is strongly dependent on the small scale coefficient. 

Civalek and Akgoz [32] investigated the vibration behavior of 

micro-scaled sector shaped graphene surrounded by an elastic 

matrix. Employing the nonlocal elasticity theory to study the 

vibration of rectangular single layered graphene sheets (SLGSs) 

resting on an elastic foundation was considered by Murmu and 

Pradhan [33]. They have employed both Winkler-type and 

Pasternak-type models for simulate the interaction of the graphene 

sheets with a surrounding elastic foundation. The results showed 

that the natural frequencies of SLGSs are strongly dependent on 

the small scale coefficients. Pradhan and Phadikar [34] analyzed 

the vibration of multilayered graphene sheets (MLGS) based on 

nonlocal continuum models. They have shown that the nonlocal 

effect is quite significant and needs to be included in the 

continuum model of graphene sheet. Wang et al. [35] studied 

thermal effects on vibration properties of double-layered 

nanoplates at small scales. Reddy et al, [36] investigated the 

equilibrium configuration and continuum elastic properties of 

finite sized graphene. Aksencer and Aydogdu [37] proposed levy 

type solution for vibration and buckling of nanoplate. In this 

paper, they considered rectangular nanoplate with isotropic 

property without effect of elastic medium. Malekzadeh et al. [38] 

employed the differential quadrature method (DQM) to 

investigate the thermal buckling of a quadrilateral nanoplates 

resting on an elastic medium. Thermal vibration analysis of 

orthotropic nanoplates based on nonlocal continuum mechanics 

and two variable refined plate theory was considered by Satish et 

al. [39]. They represented vibration frequency of rectangular 

nanoplate just only for simply supported boundary conditions and 

they didn’t represent vibration frequency for other boundary 

conditions. Prasanna Kumar et al. [40] studied  thermal vibration 

analysis of monolayer graphene sheet with isotropic property 

embedded in an elastic medium via nonlocal continuum theory 

axisymmetric buckling of the circular graphene sheets with the 

nonlocal continuum plate model was represented by Farajpour et 

al. [41]. Moreover, they studied the buckling behavior of circular 

nanoplates under uniform radial compression. They showed that 

nonlocal effects play an important role in the buckling of circular 

nanoplates and the results predicted by nonlocal theory are in 

exactly match with MD results. The vibration analysis of circular 

and annular graphene sheet was studied by Mohammadi et al [42] 

using the nonlocal plate theory. The results revealed that the scale 

effect is less prominent in lower vibration mode numbers and is 

highly prominent in higher mode numbers. 

The magneto-thermo-mechanical response of a FGM annular 

rotating disc with variable thickness was  investigated by Bayat et 

al 43]. They observed that unlike the positive radial stresses 

developed in a mechanically loaded FGM disk, the radial stresses 

due to magneto-thermal load can be both tensile and compressive. 

Behravan Rad and Shariyat [44] studied a porous circular FG plate 

with variable thickness subjected to non-axisymmetric and non-

uniform shear along with a normal traction and a magnetic 

actuation. The plate was supported on a non-uniform Kerr elastic 

foundation. They considered the effect of material, loading, 

boundary and elastic foundation on the resulting displacement, 

stress, Lorentz force, electromagnetic stress and magnetic 

perturbation quantities. Wang and Dai [45] derived analytical 

expressions for magneto dynamic stress and perturbation response 

of an axial magnetic field vector in an orthotropic cylinder under 

thermal and mechanical shock loads. They showed the response 

histories of dynamic stresses and the perturbation of the field 

vector. Nejad MZ, et al [46] investigated the buckling analysis of 

arbitrary two-directional functionally graded Euler-Bernoulli 

nano-beams based on nonlocal elasticity theory. The size 

dependent free vibration analysis of nanoplates made of 

functionally graded materials based on nonlocal elasticity theory 

with high order theories has been studied by Daneshmehr, Alireza 

et al [47]. Zargaripoora, A., et al [48] presented the free vibration 

analysis of nanoplates made of functionally graded materials 

based on nonlocal elasticity theory using finite element method. 

Nejad, Mohammad Zamani, et al [49] employed the Non-local 

analysis of free vibration of bi-directional functionally graded 

Euler-Bernoulli nano-beams. Hosseini, Mohammad, et al [50] 

proposed the stress analysis of rotating nano-disks of variable 

thickness made of functionally graded materials. Nejad, M.Z., et 

al [51] presented Eringen's non-local elasticity theory for bending 

analysis of bi-directional functionally graded Euler-Bernoulli 

nano-beams. Size-dependent stress analysis of single-wall carbon 

nanotube based on strain gradient theory has been proposed by 
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Hosseini, M., et al [52]. Zamani Nejad, Mohammad., et al [53] 

presented a review of functionally graded thick cylindrical and 

conical shells. Shishesaz, M., et al [54] investigated the analysis 

of FGM nanodisk under thermo elastic loading based on SGT. The 

vibration behavior of functional graded (FG) circular nanoplate 

embedded in a Visco-Pasternak foundation and coupled with 

temperature change is studied by Goodarzi et al [55]. 

It is obvious that the natural frequency is easily affected by the 

applied in-plane pre-load, magnetic field and temperature change. 

As a result, one of the practical interesting subjects is to study the 

effect of in-plane pre-load on the property of transverse vibration 

of functional graded circular and annular nanoplate. Researches 

that studied on the FG circular and annular nanoplate are very 

limited in number with respect to the case of rectangular 

nanoplate. Based on the available literature, this study tries to 

investigate the magneto-thermo elastic behavior of the FG circular 

and annular nanoplate embedded in a Visco-Pasternak elastic 

foundation based on the MCST. The governing equation of motion 

is deduced from Hamilton’s principle. The DQM is utilized to 

solve the governing equations of FG circular and annular 

nanoplate with simply supported, clamped boundary conditions 

and the other boundary conditions. The results showed some new 

and absorbing phenomena, which are useful to design nano-

electro-mechanical system and micro electro-mechanical systems 

devices using FG circular and annular nanoplate. 

2. Fundamental Formulations 

Consider a radial magnetic field vector H  as shown in figure (1). 

The resulting Lorentz force 
z

f and the perturbation of electric 

field vector e acts along Z  and  directions respectively. Now 

assume an annular circular plate with uniform transverse load 
0

P

acting on its top surface (see figure 2) is exposed to this magnetic 

field. As a result, the total transverse load acting on the plate, along 

z  direction, would be, 
0z z

q P f  . This will induce a 

displacement field vector U in the plate.  

Assuming the magnetic permeability ( )z  of the plate [46] is 

equal to the magnetic permeability of its surrounding, ignoring the 

displacement electric currents, the Maxwell’s electrodynamics 

equations for the plate may be described as Wang X et al [45]. 

 

 

 
 

Fig 1. Radial magnetic field vector [9]  

 
Fig 2. Geometry, loading and coordinate system of the annular 

plate [9] 
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(2) 

Where J  is the surface density vector of the electric current 

and e  is the perturbation of the electric field vector, h  is the 

perturbation of the magnetic field vector and 
0

t  is the time. 

Applying cylindrical coordinates ( , , )r z  application of the 

magnetic field vector ( ,0,0)H H
r

 to equations (1) and (2), results 

in: 
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3. Differential equations for nanoplate 

A mono-layered circular and annular nanoplate resting on a 

Visco-Pasternak medium is shown in Fig.3, in which the 

geometrical parameters of outer radius, inner radius and thickness 

are also indicated by a, b and h respectively. In the present study, 

functionally graded materials made of metals and ceramics are 

studied. The bottom of the plate is assumed to be fully metallic 

while the top of the plate is fully ceramic. The variation of young’s 

modulus, Poisson’s ratio and density is assumed to vary by power 

law. The variations in the material properties are expressed as 
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Where, ( ), (z) and (z)E z    are the Young's module, the 

thermal expansion and the Poisson's ratio respectively. To study 

the mechanical behavior of FG annular and circular nanoplate in 

thermal environment and magnet field, the Kirchhoff plate theory 

is considered. On the basis of the Kirchhoff plate theory, the 

displacements at any material point in the plate are given by 

Where w(r,t)  is the displacement of the middle surface of 

the nanoplate at the point( , ,0 )r  .The size-dependent 

theories are utilized to predict accurately the mechanical 

behavior of the engineering structures in the nanoscale. The 

classical continuum theory is independent on the structure size. 

Thus, the classical continuum theory has a weakness to 

analyses of the nanostructures. To overcome this weakness, the 

classical continuum theory is modified and the modern 

continuum theories are existed. In this work, the modified 

couple stress theory is employed to analyze the nonlinear 

vibration behavior of FG circular and annular nanoplate. In 

comparison with the MCST, the MSGT contains two 

additional gradient tensors of the dilatation and the deviator 

stretch in addition to the symmetric rotation gradient tensor. 

Three independent material length scale parameters and two 

classical material constants for isotropic linear elastic materials 

are used to specify these tensors. For a continuum constructed 

by a linear elastic material occupying region Ω with 

infinitesimal deformations, the stored strain energy Um can be 

defined as:                                                                           

in which the components of the strain tensor ij ,the dilatation 
gradient tensor i

 , the deviator stretch gradient tensor 
(1)
ijk

 , 
and the symmetric rotation gradient tensor (1)

ij
 are given as 

[43]. 

 
Fig.3. Functionally graded circular and annular nanoplate embedded 

on a Visco-Pasternak foundation. 

The parameters λ and μ denote the Lame constants, 
respectively which are given as Eq.11 [44]. 

By substituting the components of strain tensor, dilatation 
gradient tensor, deviator stretch gradient tensor, and symmetric 
rotation gradient tensor, the corresponding components of 
classical and nonclassical stresses can be evaluated. Therefore, 
the strain energy ΠS and kinetic energy are as Eq.12.  

 

Where A denotes the area occupied by the mid-plane of the 
circular FG nanoplate. Furthermore, I1 and I2 are represented 
as the following form. 

/2 /2

2

2 1

/2 /2

( ) ,   ( )  (13)

h h

h h

I z dz I z z dz 
 

    

In Eq. (12), couple moments, bending moments, other 
higher-order resultants force and higher-order moments caused 
by higher-order stresses effective on the section are introduced 
as [55] and supplementary materials. 

The work done by external forces can be expressed as Eq.14 

Here 0
q and q

z are the distributed external force and Lorentz 

force respectively, f is the reaction force of elastic medium. The 

reaction force of the foundation is modeled as three different 

models. These models are linear Winkler, linear Winkler–

Pasternak, and visco Winkler–Pasternak foundation. The 

formulation of these foundations is stated as: 

( , )                    The winkler foundation (15)wf K w r t  
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Using Hamilton’s principle 2 ( ) 0
1

t
W dt

s T extt
    and taking the 

variation of w , integrating by parts and setting the coefficients of 

w equal to zero leads to the following governing equation and 

the boundary conditions. Eq.16 and Eq.17. 

 

 (1) (1) (1) (1)1
(10)

2
m ij ij i i ijk ijk ij ijU p m dv     



   

( , )
,  v=0,  w=w(r,t)

w r t
u z

r


 


                         (9) 

2

, 2

3 2

3 2 2

2 2

2 2

3 2

3 2 2

2 2

1 2

1 1
( )

1 1
( )

1

2 1
( )

1 1
( )

1

2

r rr r

p

r

s

A

z rrz

z
rrr r

T

w w w
M w M Y

r r r r r

w w w
M

r r r r r
dA

w w w
P T

r r r r

Tw w w w
M M

r r r r r r r

w w
I I

t r

 




  



   
    

   
   
   

  
  

   
      
 

    
   

    

  
   

  



2

(12)
A

dA
t

  
     


0

( , ) ( , )

(14)

ext

z

W q w r t f w r t

q q q

 

 



2

( ) ( ) ( )
( ) ,    ( ) (11)

(1 ( ) ) 2(1 ( ))

z E z E z
z z

z z


 

 
 

 

2 ( , )
( , ) ( , ) Visco-Pasternakw G d

w r t
f K w r t K w r t C

t


   



,

, , , ,

, , , ,

,

,

2

2

0   or   -M 2

2 0

0   or   rM

0   

0   or  

r r r r

p
p p r

r r r r r rr z r rrz

rrz r z rrr r rrr rr r r r

p

r r r r z rrz

rrr rrr r r

w rM M Y

M
rY M rM rP T

r

rT T M rM M M

w
rY rM rP rT

r

M rM M

w

r

 





     

  





  









   

     

      


    



   





r 0 (16)p

r rrrM rM  

398 



Moradi et al. 

 

 

 

 

 

 

 

 

 

Where, ,  and CA B   are represented as [55]. 

A FG circular and annular nanoplate is considered to be 
resting on a Visco-Pasternak elastic foundation. The geometric 
properties of the nanoplate are demonstrated by outer radius a, 
inner radius b, thickness h. The following non-dimensional 
parameters are introduced for convenience and generality. 

Employing the above expressions, a non-dimensional 
differential equation for vibration of FG circular and annular 
nanoplate in thermal environment and magnet field can be 
obtained as Eq.19. 

One can insert the size dependent parameters set equal to zero 

(l0=l1=l2=0), In order to obtain the governing equation of the 

classical FG circular and annular plate. Moreover, with the 

assumption l0=l1=0 in the Eq. (24) the governing equation of 

the circular and annular plate will be obtained by the MCST. 

The Eq. 24 is rewritten as the following form Eq.25. 

 

 

In the above equation, the matrices  M ,  C and  K are the 
mass, damper and stiffness matrix, respectively. By defining 
the new freedom vector and general solution of the Eq. 19 as 
the following form Eq.21 

Using the Eq. (21), we can rewrite the Eq. (20) as  
 

 
In the Eq.22, the   is a complex number and the vibration 

frequency of the FG circular and annular nanoplate is the 
imaginary part of the . The elements of the stiffness, mass and 
damper matrix are given in [55].  
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4. Solution procedure 

4.1. Solution FG circular nanoplate by Galerkin method 

The Galerkin method has been widely used for the analysis 

of mechanical behavior of the structural elements at large and 

small scales, such as static, dynamic and stability problems 

[45,46] Since this numerical method provides simple formulation 

and low computational cost. Moreover, it is more general than the 

Rayleigh–Ritz method because no quadratic functional or virtual 

work principle is necessary. The Galerkin’s method is used to 

change the nonlinear partial differential equation to a nonlinear 

ordinary differential equation. To this end, one can easily obtain 

Where ( ) ( 1,2,..., )f j n
j
   are the basic functions which must 

satisfy all boundary conditions, but not necessarily satisfy the 
governing equation. ( 1,2,..., )A j n

j
  are unknown coefficients to be 

determined. The integration extends over the entire domain of 
the plate  . The symbol Q  indicates a differential operator and 
is the right-hand side of Eq. (23). Here, the boundary 
conditions (BC) are assumed to be clamped for the FG circular 
of constant thickness along the edge 1  . The boundary 
conditions are written as w and it’s the first derivative are zero 
at 1  . In the Galerkin method, the lateral deflection can be 
determined by a linear combination of the basic functions for 
the numerical solutions of the problem under investigation. 
The basic functions must satisfy all the above-mentioned 
boundary conditions. The chosen basic function for ( )W   are.  

Using Eq. (23), Eq. (24) and (22), one can achieve the 
following system of linear algebraic equations. 

 

 

 

 

 

 

 

 

 

 

Here ,M C and I  are differential operators, which are 

given in [50].  

4.2. DQM Solution  

In this study, the differential quadrature method (DQM) [55] 

method is used to calculate the spatial derivatives of field variables 

in the equilibrium equations. The differential quadrature method 

(DQM) is a more efficient method, with acceptable accuracy and 

using less grid points. DQ technique can be applied to deal with 

complicated problems reasonably well because its implementation 

is very simple. In this approach, the problem formulation becomes 

simpler and also low computational efforts are required to obtain 

acceptable solutions in comparison with other approximate 

numerical methods such as the finite elements method (FEM), the 

finite difference method, the boundary element method and the 

mesh less methods. Moreover, DQ method is free of the shear 

locking phenomenon that occurs in the FEM because of 

discretizing the strong form of the governing equations and the 

related boundary conditions. Also, some other advantages and 

disadvantages of the DQ technique are reported in the review 

paper of Bert and Malik [56]. DQ approach has been utilized by 

many researchers for analyzing nanostructure elements, such as 

elastic buckling of single-layered graphene sheets. According to 

DQ method, the partial derivatives of a function ( )f r
 
as an 

example, at the point ( )ir  are expressed as [56]. 

Where the number of grid points in the r direction and the 

respective weighting coefficient related to the s th-order 

derivative are n  and
s

ijC respectively. According to Shu and 

Richard rule [46]. 

How to select the grid points is a key point in the successful 

application of differential quadrature method. It has been shown 

that the grid point distributions which is based on well accepted 

Gauss-Chebyshev–Lobatto points, gives sufficiently accurate 

results. According to this grid point’s distribution, the grid point 

distribution in the   direction for annular and circular FG 

nanoplate are given in [56]. 

The non-dimensional computational domain of the 
nanoplate is0 1  .  

By direct substitution boundary conditions into the discrete 

governing equation, they are incorporated in the analysis [55]. 

Moreover, the derivatives in the boundary conditions are 

discretized by the DQ procedure. After implementation of the 

boundary conditions, ,M C and I  can be written in the following 

form Eq.28. 
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Where, 

1
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After employing the aforementioned solution procedure, one 

achieves the following system of linear algebraic equations: 

      0 (30)A B Q  
 

Where  A  and  B  are
 
   2 2n n    square 

matrices, which are easily extracted. Furthermore, the non-

dimensional buckling load   can be calculated from the 

eigenvalues of an algebraic equations system. This parameter is a 

complex number that the imaginary part is the vibration frequency 

of the FG circular and annular nanoplate. 

5. Result and discussions 

Magnet-thermo vibration analysis of FG circular and annular 

nanoplate based on modified couple stress theory and modified 

strain gradient theory is discussed here according to the formulas 

obtained above. The effects of the main parameters including the 

small scale parameters, magnetic field, temperature change and 

their combinations on the natural frequencies are investigated. 

Properties of FG circular and annular nanoplate in this paper are 

considered as follows: 

6 370 GPa, 23 10 , 2702 m m mE kg m      

0.3 , 1.256665081 6 [ ]m

H
E

m
     

6 3427 GPa,  7.4 10 , 3100 c c cE kg m      

The existing local plate model solutions are applied to verify 

the accuracy of circular and annular results. Following four 

boundary conditions have been considered in the vibration 

analysis of the annular graphene sheets.  

SC: Annular graphene sheet with simply supported outer and 

clamped inner radius. 

SS: Annular graphene sheet with simply supported outer and 

inner radius.  

CC: Annular graphene sheet with clamped outer and inner 

radius. 

CS: Annular graphene sheet with clamped outer and simply 

supported inner radius. 

5.1 Validation of the work 

In this section, the present work is compared with the 

reported results in the literature. To this end, in order to 

compare the numerical results, it is assumed that the nonlocal 

parameter is set to zero and the model can easily reduce to the 

classical circular and annular plate model. To confirm the 

reliability of the present formulation and results, comparison 

studies are conducted for the natural frequencies of the circular 

plate by ignoring size dependent parameters. The comparison 

of the vibration frequency parameters for circular plates is 

tabulated in table 1. It is observed that the present results are in 

excellent agreement with the classical results.  

The comparison of natural frequency is presented in table 2 for 

the annular plates. The obtained results for nanoplate in table 2 
are in good agreement with those non-dimensional natural 
frequency values by previous researchers [53, 56].  

Although DQ method is a highly efficient method by using 
a small number of grid point, but it is not efficient when the 
number of grid points is large and it is also sensitive to grid 
point distribution. To establish the numerical algorithm as well 
as convergence of the present results, the non-dimensional 
natural frequencies of FG circular and annular nanoplate 
embedded in various elastic medium corresponding to 
different numbers of grid points are plotted in fig.4. The radius 
of nanoplate, size dependent parameter, the shear, Winkler and 
damping coefficients are 20 nm, 0.5 nm, 5, 80 and 5, 
respectively. According to the Fig.4, it is remarked that the 
number of grid points is considered as ( 11N  ). 

Since there are no published results available for annular 
nanoplates in open literature, the results of annular microplate 
are used for comparison. To obtain these results, the modified 
couple stress theory is utilized. From this table, one can see that 
the present results are in good agreement with the reported 
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Results in the literature.  To obtain the natural frequencies 
of the FG annular plate, the boundary condition of annular 
microplate are assumed SS and CC. The other material 
properties of the annular microplate are reported by Ke et al. 
[57]. 

Fig. 4 Convergence study and minimum number of grid points ( N ) 

required to obtain accurate results. 

 

5.2 Numerical Results 

Numerical analyses for the magneto-thermo-mechanical free 

vibrational characteristics of FG circular and annular nanoplates 

with various elastic foundations and boundary conditions are 

performed using the proposed MCST and NSGT plate model and 

presented solution methodology. It is intended to study the 

influences of important parameters such as the non-dimensional 

nonlocal parameter, temperature change, external magnetic 

potential and type of edge support on the natural frequency of FG 

circular and annular nanoplates Fig.5 shows the variation of 

vibration frequency versus compressive in-plane pre-load for FG 

annular nanoplate. The non-dimensional parameters of elastic 

foundation such as shear modulus parameter KG , Winkler 

modulus parameter KW and damping modulus of damper C  for 

the surrounding polymer matrix are considered to 5, 80 and 5 

respectively as well as the magnetic field parameters are 

considered based on [58]. The results show that the vibration 

frequency is sensitive to the modulus of the surrounding elastic 

medium and decreases by increasing the in-plane pre-load as well 

as increases by increasing the magnetic field effect. Furthermore, 

it is shown that the damping modulus gives rise to decrease the 

vibration frequency. Therefore, the FG nanoplate based on the 

Pasternak and Visco-Winkler medium have the greatest and the 

smallest vibration frequency, respectively. Figure 6 shows the 

natural frequencies of the FG circular nanoplate under magnetic 

field for four different boundary conditions, when different values 

of aspect ratio are considered to determine the effect of the aspect 

ratio on the vibration frequency of the FG nanoplate. To obtain the 

results, the power index parameter, inner radius, the size 

dependent parameter of MSGT and magnetic field parameters are 

considered to 7, 30 nm, 0.5h and the data based on [58] 

respectively. Fig. 6 illustrates the non-dimensional frequency 

increases with the increase of aspect ratio and also the non-

dimensional frequency increases monotonically by increasing the 

rigidity of boundary conditions. Moreover, the Fig. 6 shows that 

increasing the aspect ratio gives rise to increase the gap between 

the curves.  

 
Fig.  5 Variation of vibration frequency of annular with the 

compressive pre-load for various kind of elastic medium.  

 
Fig. 6 Variation of vibration frequency with the aspect ratio for annular by 

various boundary conditions 

 
The Fig.7a and Fig.7b illustrate the first vibration frequencies 

of the annular and circular FG nanoplate respectively. In this 

figure, for different temperature changes and magnetic field 

parameters, the dependency of vibration frequency versus the 

radius of annular FG nanoplate is observed. To obtain the results, 

it is supposed that the FG nanoplate resting on a visco-Pasternak 

medium and the shear elastic, Winkler elastic and external 

damping coefficient are considered to 5, 80 and 5, respectively. 

Moreover, the power index of FG material and the size dependent 

length of FG circular nanoplate are specified to 5, and 0.5h, 

respectively. By employing the modified strain gradient theory, 

the vibration frequencies of FG annular nanoplate are extracted. 

From the Fig.7 it is obvious that the vibration frequency of FG 

circular nanoplate is strongly depend on the nanoplate radius and 

this dependency is more for the larger temperature change. 

Moreover, diminishing nanoplate radius causes to decrease the 

effects of temperature change. Also, the temperature changes have 

a decreasing effect on the vibration frequency of circular 

nanoplate. In contrast, the Magnetic field has an increasing effect 

on the vibration frequency of circular and annular nanoplate. 
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Table 1  Comparison of the present results with natural frequency parameters of classical plate theory 2h C a   

 References 

Boundary condition 
Leissa and Narita 

[59] 

Kim and Dickinson 

[60] 

Qiang  

[61] 

Zhou et al. 

[62] 
Present 

simply supported boundary 

condition 13.898 13.898 13.898 13.898 13.898 

clamped boundary condition 
Leissa 

[59] 

Kim and Dickinson 

[60] 

Qiang  

[61] 

Zhou et al. 

[62]  

Present 

(DQM) 

Present 

(Galerkin) 

21.26 21.26 21.26 21.26 21.26 21.26 

  

Table 2 Comparison of the present results with classical plate theory for the lowest six natural frequency parameters  2 , = 0.4a h C b a      

 References 

Boundary condition Li and Li [61] Zhou et al [62] 

Present 

 

 

CC 63.04 62.996 62.979 

SS 30.09 30.079 30.084 

SC 42.63 42.548 42.569 

CS 46.74 46.735 46.743 

 

 

Fig. 7. Variation of vibration frequency with the radius of annular (a) and 

circular (b) FG nanoplate (Clamp-Clamp) under magnet field and various 

temperature changes. 

According to the figure.7, the natural frequency is strongly 

depend to the radius of FG nanoplate and this parameter has a 

decreasing effect on the nanoplate natural frequency. Furthermore, 

as the vibration frequency becomes zero in a specific radius and 

temperature change in, there are a critically temperature and radius 

for FG nanoplate. Therefore, these specific radius and temperature 

change are called the critically parameters. It is necessary to note 

that the effect of magnetic field has an increasing effect on 

nondimensional natural frequency. 

Depicted in fig.8a and fig8.b are the influence of 
nondimensional nonlocal parameter under magnetic field based 
on [58] and the temperature change of 50T   by considering the 
modified couple stress and the modified strain gradient theory 
on the vibration response of FG circular and annular nanoplate 
with various power index parameter. It can be found that as the 
size dependent parameter increases, the non-dimensional 
frequency increases for all values of the power index 
parameter. The fig.8 show that for all values of power index 
parameters the difference between MCST and MSGT results 
increase as the values of size dependent parameter increase. 
Moreover, the vibration frequency decreases as the power 
index parameter increases. Furthermore, as can be seen from 
Fig. 8, the non-dimensional frequency is sensitive to the size 
dependent parameter for small values of power index 
parameter and increases by increasing the value of magnetic 
field. 

Fig. 8a. Variation of vibration frequency with the size dependent 

parameters of the FG circular (a) nanoplate for various power index 

parameter and two different elasticity 
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Fig. 8b. Variation of vibration frequency with the size dependent 

parameters of the FG annular (b) nanoplate for various power index 

parameter and two different elasticity 

Fig.9a and Fig.9b highlight the influence of temperature 
changes on non-dimensional natural frequency with 
considering different power index, size effect parameters and 
magnetic field. The aspect ratio of nanoplate is considered 0.4. 
It is depicted that the non-dimensional frequency increases as 
the rigidity of the boundary condition for all lengths increases. 
Such vibration response is observed for other boundary 
conditions as well. Also, the results illustrate that low power 
index parameter leads to higher natural frequency of FG 
annular nanoplate in comparison with high power index 
parameter. Also, the value of nondimensional natural 
frequencies annular nanoplate under magnetic field is more 
than circular nanoplate. Moreover, it is shown that the effect of 
temperature change on the nondimensional frequency is 
significant for simply supported annular nanoplate with high 
power index parameter in comparison with the annular 
nanoplate with rigidity boundary condition and small power 
index parameter. 

 

Fig.9a. Variation of vibration frequency of the FG circular nanoplate for 

various power index parameter, radius and boundary conditions. 

 

 

 

Fig.9b. Variation of vibration frequency of the FG annular (b) nanoplate for 

various power index parameter, radius and boundary conditions. 

 

6. Concluding remarks 

The magneto-thermo-mechanical free vibration of FG circular 

and annular nanoplates with different boundary conditions was 

numerically studied. The FG circular and annular nanoplates were 

considered to be subjected to an applied magnetics potential and a 

uniform temperature change. The size-dependent mathematical 

formulation of FG circular and annular Nanoplate was extracted 

based on the modified couple stress theory and the modified strain 

gradient theory based on the Kirchhoff plate theory. The 

differential quadrature method and Galerkin method were utilized 

to calculate the natural frequencies of FG nanoplate. A parametric 

study was conducted to consider the influences of nondimensional 

nonlocal parameter, magnetic and thermal loadings and boundary 

conditions on the free vibration characteristics of FG circular and 

annular nanoplates. The importance of taking the small-scale 

effect into account was investigated by providing a direct 

comparison between the results predicted by the present nonlocal 

FG circular and annular nanoplate model with those by the 

classical continuum mechanics model. From the results, it was 

concluded that the nondimensional vibration frequency of FG 

circular and annular nanoplate is intensely depend on nanoplate 

radius and this dependency is more at high temperature change and 

magnetic field. Moreover, the non-dimensional natural frequency 

decreases at high temperature case. In contrast, the magnetic field 

has an increasing trend to non-dimensional natural frequency. 

Also, the effect of temperature change on nondimensional natural 

frequency is in contrast to low temperature case in comparison to 

high temperature. Furthermore, it is observed that the effect of 

power index parameter on the modified strain gradient theory is 

much more than the modified couple stress theory and also the 

power index parameter has a decreasing effect on the vibration 

frequency of FG circular and annular nanoplate. In addition, as the 

size dependent parameter increases, the differences between the 

vibration responses of the FG annular and circular nanoplate 

increase. Finally, changing the state of stress in both tangential and 

radial directions is caused by applying radial magnetic field to the 

top surface of the plate, which gives rise to change the natural 

frequency.  
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gradient tensor i , the deviator stretch gradient tensor
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ij are given as 
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