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Abstract. The present paper is concerned with magneto-visco-elastic 
surface waves in conducting media involving time rate of strain and stress 
of first order, the media being under an initial stress of hydrostatic tension 
or compression. The theory of magneto-visco-elastic surface waves in a 
conducting medium involving time rate of strain and stress of first order 
is derived under an initial stress. The above general theory is then employed 
to characterise Rayleigh, Love and Stoneley waves. Results obtained in 
the above cases reduce to well-known classical results when viscosity and 
magnetic field are absent. 
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1. Introduction 

Surface waves play an important role in the study of earthquakes, seismology, 
geophysics and geodynamics. The theory of surface waves has been widely investigated 
and developed by Rayleigh (1885), Voigt (1887), Stoneley (1924), Ewing et al (1957, 
pp. 257-259, 311), Hunter (1960, pp. 1-57), Bland (1960, pp. 30-75), Flugge (1967, 
pp. 3-21) and Jeffreys (1959, pp. 35-38). As the inner parts of the earth are under 
considerable stress from the weight of the matter resting on its surface, we may 
suppose that the initial equilibrium stress is approximately of hydrostatic nature. 
Moreover, the earth is placed in its own magnetic-fidd. Therefore, the investigation 
presented in this paper may be of importance when surface waves propagate under 
initial stress, magnetic fields and the viscous nature of the medium are involved. It is 
believed that the considered problem has not been so far investigated. 

The interplay of an electromagnetic field with the motion of deformable solids has 
also been undertaken by many investigators (Knopoff 1955; Banos 1956; Chadwick 
1957; Suhubi 1965; Yu & Tang 1966; De & Sengupta 1971). Yu & Tang (1966) 
thoroughly discussed the dilatational and rotational waves in a magneto-elastic 
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initially stressed conducting medium. De & Sengupta (1971, 1972) investigated 
magneto-elastic waves and disturbances in initially stressed conducting media. 
Acharya & Sengupta (1978) investigated the problem of magneto-thermo-elastic 
surface waves in initially stressed conducting media. More recently, the effect of 
viscosity on the elastic surface waves is receiving greater attention from many 
investigators (Das & Sengupta 1990a, 1990b, 1992; Roy & Sengupta 1983a, 1983b). 

In the present paper the authors investigate magneto-visco-elastic surface waves 
in a conducting medium under hydrostatic stress (tension or compression) paying 
special attention to Rayleigh, Love and Stoneley waves. Dispersion relations are 
derived for Rayleigh and Love and some comments on Stoneley waves are also 
included. 

2. Basic equations 

The equations of motion for a perfectly conducting elastic solid under initial stress 
(hydrostatic tension or compression) in a uniform magnetic field are (Yu & Tang 1966) 

~2U i ~2U~ (OHi OHx) Ozi~ 
POt 2 - -  PO dX/~X~ +#eHo \axl c3xj + c3x--~' (1) 

(c~ui Oul~, i,j = 1,2,3, 
Hi = H° \c~xl Oxi J 

where Po is the hydrostatic tension or compression (tension when Po < 0  and 
compression when Po > 0), zq is the stress tensor over the initial stress, u~ is the 
displacement vector with respect to coordinates x t, x 2, x 3 and time t, p is the density 
of the material, Ho is the intensity of the uniform magnetic field parallel to x~-axis, 
#e is the magnetic permeability. 

3. Formulation of the problem 

Let M1 and M 2 be two electrically conducting charge free isotropic, homogeneous, 
visco-elastic, semi-infinite solid media in welded contact under an initial hydrostatic 
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Figure 1. Interface geometry. 



Magneto-visco-elastic surface waves 339 

tension or compression permeated by uniform magnetic field (figure 1). We further 
assume that the medium still remains homogeneous and isotropic under the combined 
influence of magnetic field and initial stress. The magnetic properties of the conducting 
solids in the domains M1 and M2 are assumed to be sensibly the same. We consider 
a system of orthogonal Cartesian axes Ox~ XeX3, the origin 0 being on the interface, 
and Ox3 being normal to the interface (figure 1). 

We consider the possibility of a type of wave travelling in the positive xl -direction 
in such a manner that the disturbance is largely confined to the neighbourhood of 
the boundary and all the particles at any instant on any line parallel to x2-axis have 
equal displacements. Due to the first assumption we assert that the wave is a surface 
wave and the second assumption concludes that all partial derivatives with respect 
to the coordinates x2 are zero. Then using the formulae u = grad ~b + curl ~, the 
displacement components, u~ and u3 at any point may be expressed in the form 

so that 

o¢, o4, 
U 1 = 0X 1 0X3, U 3 = ~X 3 -t- ~X-'-~' (2) 

V2~) = A, V2~/= 0u3 0Ul V 2 = 02  02 0Ul 0u3 
0x1 0x3, 0x 2 q- 0xi~, A = t~x1 -t- --,t~x3 

where ~ and ~ are functions of co-ordinates xl ,  x3 and time t. 
The first order stress-strain relation for an isotropic visco-elastic medium is (Voigt 

1887) 

(tll +q2~f)Tilm(~,l + ~.2~)Ac~i)+ 2(l~l +#2~)ei), (3) 

where t/l, 21, 1~1 are elastic constants, ~/2, ~'2 and ].12 are constants due to viscosity, 
__1 ei~ - ](u~.~ + uja ) is the strain tensor and 6~ is the Kronecker symbol. 
Using (3) in (1), the displacement equations of motion for a conducting first order 

visco-elastic medium under hydrostatic stress in an uniform magnetic field as 

[(~1 "JF/./1) -[- (~2 -[" ]../2) ~t ] ~---~1 'Jr" (#1 "~ ]-12 ~ )  V2 Ul 

( o)o.1 
-- ql-kl"12 poV2Ul----P 1'11+q2~ ~ ,  

(/,/i .~_ ]./2 ~ )  V2 u2 __ po (i,]1.3u y]2 ~ )  V2 u2 Jr. K (?]1Jc. 0~ ¢~2u2 - 

0 '~ 0 2 u2 

[(al-{'fll)Jt-(,~.2"lUfl2)~] OA -'[-(/ll-[-fl2~)V2u3--Po(i']l'Jt-~2~)V2u 3 
ax3 

g(l~ 1 0 ~//02u3 02ul ~ / 63 kO2U3 + 

2 where l -  # ,H o. The above relations apply to both M1 and M2. 
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Introducing (2) in (4) yields 

02q~ - [ ( V ~ T + O t  2 V~r(O/Ot))L p°]v2pd ~b+--K O2~b 
p OxlOx3' 

0 2 ~ - [  (V~s + V~s(O/ot)) p ] K 0 2 ~  Po V2~, + _ _ _ ,  
Ot z L p Ox~ 

02u2 _ (V~s + V~s(O/Ot)) V2u2 + - - - ,  
Ot 2 L p Ox~ 

where 

V2r~ _ ~1 + 2#x --I.V2T 22 + 2/x2 2 __ I l l ,  #2 
- - ,  -- _ _ ,  V x s -  - -  V22s= - - ,  

P P P P 

0 
L = ql + q2 Ot 

(5) 

Again, (5) apply to both M x and M 2. In the sequel, M 2 is identified by 
t t ¢ t # p', rt'~, rt2,21,22, tax, #2 for its properties. 

3.1 Boundary conditions 

To obtain the frequency equation we apply the following conditions of continuity 
across the interface 

(i) The components of displacement at the interface between Mx and M2 must be 
continuous. 
(ii) Stress components z31, Za2, Zsa are continuous across the interface. They are 

( D( ,:+ ,2+) 02tk + 
U~+~2 20x~Ox3 Ox~ Ox~ 

Lz32= #x, +/~2~)~xa , (6) 

respectively given by 

Ll"31 = 

L't'33 = 
t ~t/ t 

4. Harmonic solutions 

To investigate equations (5), let us take harmonic solutions 

(~b, ~b, u2) = [$(x3), ~(x3), a2(xa)]e "~' -~'), (7) 

for medium M1. For medium M2, the dashed functions 4,',~',a 2 replace 4,,if, a2. 
Introducing (7) in (5) we get 

dx 2 rl2 2 = ' v , , ~ - ~ p o / v )  l 4, v(v~,~ - (Po~*/p)) dx~ 
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v ~ , -  '~(po/p) p(v,~ - '~,(po/p)J 

d21~2 F to2)' *l" L "2 + ~ O ~  

(8) 

in which 

r/~=(r/x--itor/2), V i r  = V 2 r - i t o V ~ ,  V2KS= V ~ s - - i t o V ~ s .  

Similar relations for M2 can be obtained by using dashed variables ~b ^ ' ,#  ̂' ,~2,~,q2, '  ' ' 
V I T ,  V2T,  V l S ,  V28,  ?1~', ,2 ,2 . . . .  p,. . . . .  V~cr, VKs,  ~z,/z~, 22,/z2, According to our assumption 
K is the same for both the media. 

Clearly, (8) must have exponential solutions; and, in order that  ~, ~ and us describe 
surface waves, they must become vanishingly small as x3 tends to infinity. Thus for 
the medium Mz the solutions of (5) may be taken in the following form: 

= [Aexp { _  x3(~/z __ ~2)1 /2}  + f lexp{_ x3(~/z _ ( 2 ) , / 2 } ] e x p { i ( ~ l x ,  --cot)}, 

~b = B 1 exp{ - xa(t/2 - ~)~/2 + i(tlXx _ tot)}, 

u2 - -Cexp  - x 3  ~2 + , , - -2~- - -Z , - -~ . ,  + i ( ~ x ~ - t o t )  . (9) 
V~s - @./O)n~ J 

For the medium M 2 

where 

~b'= [A' exp{x3(t/2 - ~t?)l/2 } _~_ B '  exp {x3(t/2 - ~22)1/2 } lexp {i(r/xl - tot)}, 

~ ' =  B', exp {x3(r/2 -- ~'zz) zlz + i (Tlx t - -  tot)}, 

U2 = C'cxp {X3 [ff2 + ((K~rfP')~2--to2)~'ll/2 } - - - ~  + i(tlX 1 -- cot) , (10) 
VKs- (Po/P)rlx J 

(~ = V~r - 'IK(Po/P) V'K~ - ~7{ (Po/P')' 
;2 = (to2 _ ( r / p ) ~ ) ~ 7 ~  ;'~ (to~ _ ( r~2/p , ) )~7 ,  

v ~ -  ~*(Po/P) ' = v ' ~ -  ~7;(Po/P') ' 
a n d  

B = ~ x B  1, B '  ' '  ---- glB1, 
with 

(11) 

_ ~ , 2 ) ~ / ~  ( 2 ) 1 / 2  ( - -  #IK/p')(~! 2 -- 2 ( i t lK/p)(  F12 2 t 
0~1 (.,02 2 2 , 0~1 

- ~2 [(V,~T/nK) -- ("O/P)]' to~ -- ~ [ ( V ~ T / ~  ') -- (Po / / ) ]  

In evaluating quantities like (tf  - ~2) 1/2, the root with positive real part will be taken 
in each case. 

Now applying the boundary conditions (i) and (ii) we get 

A + (~1 -- iQ2)B1 = A '  + (~t' 1 "4- it)' ~B' -- ~- '2!  1 ~ 

C--C ' ,  

i Q t A  + ( iQ2~tt  + 1 ) B z  = - ~t2z"~' A'  - ~z"ct'z ~2"~' - 1)B'I ,  

(12a) 

(12b) 

(12c) 
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p [ 2 i Q , a + { ( l  +Q22)+2iQza,}B ,] 
\ t i t /  

, I v ' A ' ,  =p ~ U)E-2~e;A'  + l -  2~¢2~,'~ +(, + ~?))~1, OEd) 

V 2 . "[ 1/z C ,,( + 

J 

, ( vk2s'~ _{ ~#2 + ((KIp')__ n'(V~2s _ ( P o l O ' ) r l ~ ,  ~') J C,' (12e) t ) - 1,'" 

[ { V x r ( Q ' - l ) +  2 V 2 s } A + { V r r ( Q 2 - 1 ) a '  + - 

t 2  I = [{V~2r(Q 12 - I)+2VKs}A + 

+ {-xr ,~2  V'2 ~°'2 -- 1)cx'l + 2Vi:2s(£1 + iQ'2)}B'I] (12f) 

where 

n 2 j  ' 

From (12b) and (12e) we get 

C = C ' = O .  

O ~ = ( 1  ( ~ 1 / 2 ,  k = 1 , 2 .  
\ 

Thus we conclude that there is no propagation of the displacement u 2. The wave 
velocity equation is, therefore, obtained from (12a), (12c), (12d), (12f) by the elimination 
of the constants A, Bt,  A', B' 1, in the determinant form as 

where 

IM,~I =0,  (i , j= 1,2,3,4), (13) 

M , l = l ,  M , 2 = ( a , - i Q 2 ) ,  M , 3 = - l ,  M~4=-(&l+iQ'2) ,  

M21 =iQ1, Mz2=(iQ2ctx + 1), M23 =iQ't, M24=(i~t'lQ'2- 1), 

Ma=p(V[s / t l~ )2 iQ ,"  M32 2 , 2) 2iQ2~,}, = P(Vxs/)Ix){(1 + Q2 + 
t 12 , t  • i • t i 

= - + Q 2  )), p (Vrs/tl r ){ 21Q2a 1 +(1 ,2 M33=p(Vrs / t l r )21QI ,  M34 , ,2 , ,  _ 

M41 __ (p/tlx){, Vxr(Q,2 2 _ 1) + 2V2s}, 

M,2 -= (P/tl~){V~r(Q~ - l)at  + 2V~s(at - iQ2)}, 

M43 = - ( p' / tl ~¢ ' ) { V'K2r ( Q'~ 2 - 1) + 2Vx2s}, 

i ' -(P/tlr ){Vrr(Q2 - l)a', + + Q2)}" M 4 4 =  , , ,  , 2  12 2 VKZS (~,1 

From (13) we obtain the wave velocity in the common boundary under consideration 
in the presence of magnetic field, initial stress in the nature of hydrostatic tension or 
compression, viscosity where viscosity is of first order including strain rate and stress 
rate. 
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5. Particular cases 

5.1 Rayleioh waves 

In the particular case of Rayleigh waves the interface becomes a free surface and M2 
is treated as vacuum. 

Hence in view of (12d) and (12f) we get 

2iQa A + {(1 + Q2) + 2 iQ2~  } B~ = O, (14) 

2 2 2 V 2 K s } A  2 2 - -  {VKr(Q 1 - 1)+ + {Vrr (Q 2 1)~ 1 + 2V2s(~a - i Q 2 ) } B  1 =0.  
(15) 

For the indispensable constants A, BI from (14) and (15) to assume non zero values 
we have 

where 

M t  I ,jl =0 (i,j= 1,2), (16) 

M'11 = 2iQa, M't2 = (1 + Qz z) + 2~Q2~ 1, 

M21 = V2xr,=l to2 - 1) + 2V~cs, M'22 = V2rr,=2 t°z -- 1)~1 + 2VZxs(nx - iQ2)" 

Equation (16) represents the magneto-visco-elastic Rayleigh wave velocity equation 
under the initial stress in the nature of hydrostatic tension or compression in a 
medium, including strain rate and stress rate. 

In the absence of viscous effects, (16) reduces to 

where 

2iP 

v~T(P~- 1) + 2v~ 
(1 + P~) + 2in 1 P2 I 
V~r(p~ _ 1)nl + 2V~s(n 1 _ iP2) = O, 

(17) 

CO 2 CO 2 -- Kq2/p 

p 2 = 1  ( V 2 r _ ( p o / p ) ) q  2, p 2 =  l ( V 2 s _ ( p o / p ) ) q  2, 

i K [ l  (032/?] 2 2 2 1/2 - Vls) + (g /pVls ) ]  
711 2 2 2 2 2 2 2 ( K V 2 T / p V 2 $ ) ]  • pvlr[(~o/~ V~r)-(o~/'t vls)+ 

Equation (17) represents the magneto-elastic Rayleigh-wave velocity equation under 
the initial stress of hydrostatic tension or compression. This agrees with the result 
obtained by Acharya & Sengupta (1978). 

Moreover, in the absence of the magnetic field and initial stress (Po = 0, K = 0) we 
get from (17) the Rayleigh wave velocity equation for the elastic medium as 

where 
4 E l _ _ ( c 2 1 V 2 1 T ) ] l 1 2 [ 1  2 2 1 /2__  2 2 2 - ( c / v x s ) ]  - ( 2 -  (c IV l s ) ) ,  

c 2 = c02/rt  2. 

( 1 8 )  

Equation (18) is in complete agreement with the classical result of Rayleigh. 

5.2 Love waves 

We know that for such types of waves u 2 is the only component of displacement 
vector u to play the role. Let us consider that the medium M2 is bounded by two 
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×1 

• ~ Figure 2. Love wave formulation. 

horizontal plane surfaces at a finite distance H apart, the upper plane surface being 
free while the medium M1 extends to an infinitely great distance (figure 2). 

The notable fact here is that the displacement in M2 may no longer diminish with 
distance from the boundary between M 1 and M2 so that for the medium M2 we 
preserve the full solution as 

vK - (polp),I,  ) ) 

(-V~x~ ~ ~ ) x exp(ifflx I - ogt)), 

(19) 

2 , t  ,2  where the restriction that the real part of {)72 + ((K/p')~l 2 -co )nx/[Vxs-  (Po/P')rl *'] }1/2 
be positive is not required. 

For  the present case the boundary conditions are 

(i) u2 and z32 are continuous at x3 = 0, 
(ii) ~32 = 0 at x 3 = - H. 

Employing the boundary conditions (i) and (ii) we obtain 

C = C' 1 + C 2 (20a) 

Vxs -- (po/P)rlx _] 

[ x t/2+ V , r 2 s : ( ~ o / p ~  J (C',-C'2), (20b) 

[ C',e - a  ~/2 + W r 2 s = ~  J 
[ ((K"'/"')- ''2 

-C'2e -n r/2+ V'r2-(Po/P') ~1.' =0.  (20c) 

Eliminating C, C'I, C' 2 from equations (20a)-(20c) we get 

p(',s'~\ V2 E ) 7 .  J 1 - --~--~(c2-(K/P))rl*l'/2 '{'V'x2s'~F (c2---(K/p'))rI*'V '2 ') *, 1]u2 
Vx, -(po/p)rlr J - p k -~ )  L ,s --(Po/P rtK 

. f . F (c - ( K / p ) ) ~ I K  x tan t r/n / ,7,,2-- ~ ,  1 =0 ,  (21) 
[ L Vxs - (Po/P)fix 

where c = co/r/. 
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Equation (21) represents the required wave velocity equations for Love waves in 
a magneto-visco-elastic solid medium including strain and stress rates of first order 
under an initial hydrostatic tension or compression. It is seen from (21) that Love 
waves depend upon viscous field as well as magnetic field and also on the initial 
stress in the nature of hydrostatic tension or compression. 

5.3 Stoneley waves 

In the classical theory, Stoneley waves are the generalised form of Rayleigh waves 
propagating in the vicinity of interface of two semi-infinite media M1 and M 2. Hence 
in our general case Stoneley waves propagating along the common boundary of M1 
and M2 are determined by the roots of the wave velocity equation (13). In the absence 
of magnetic field, initial stress, viscosity and strain-stress rates this equation of course 
reduces to the classical result obtained by Stoneley. 

We are grateful to the referees for their valuable comments and suggestions towards 
improvement of the paper and its appearance in the present form. 
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