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Abstract
We report our theoretical and experimental investigations on a new imaging modality,
magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located
in a static magnetic field and a time-varying (μs ) magnetic field. The time-varying magnetic field
induces eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the
Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related
with the electrical impedance distribution in the sample. MAT-MI combines the good contrast of
electrical impedance tomography with the good spatial resolution of sonography. In principle, MAT-
MI mainly has two unique features due to the solenoid nature of the induced electrical field. Firstly,
MAT-MI could provide explicit or simple quantitative reconstruction algorithm for the electrical
impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging
modalities in which the current is applied directly with electrodes. In the theoretical part, we provide
the formulas for both the forward and inverse problems of MAT-MI and estimate the signal amplitude
in biological tissues. In the experimental part, the experiment setup and methods are introduced and
the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot
experimental results suggest the feasibility of the proposed MAT-MI approach.

INTRODUCTION
Electrical impedance tomography (EIT) (Krestel 1990, Webb 1992, Paulson et al 1993,
Morucci and Rigaud 1996) has been used in various clinical applications and continues to
attract substantial research interest because of its functional information. However, the spatial
resolution of EIT is low. In order to provide high spatial resolution of impedance information,
we have developed a new approach called magnetoacoustic tomography with magnetic
induction (MAT-MI) by combining ultrasound and magnetism. In this method, the sample is
put in a static magnetic field and a time-varying (μs ) magnetic field (Fig. 1). The time-varying
magnetic field induces eddy current in the sample. Consequently, the sample will emit
ultrasonic waves through the Lorentz force produced by the combination of the eddy current
and the static magnetic field. The ultrasonic waves are then collected by the detectors located
around the sample for image reconstruction. MAT-MI combines the good contrast of EIT with
the good spatial resolution of ultrasound.

The MAT-MI is similar to magnetoacoustic tomography (MAT) (Towe and Islam 1988, Islam
and Towe 1988, Roth et al 1994, Roth et al 1998) or the reverse mode of Hall effect imaging
(HEI) (Wen et al 1998, Wen 1999, Wen 2000) where electric stimulation instead of magnetic
stimulation is employed. In MAT and HEI/MAT the current is either spontaneous or injected
into a sample by applying electrodes on the surface of the sample. As a contrast, in MAT-MI
a magnetic inductor is used to generate a time-varying magnetic field, which in turn induces a
pulsed electrical field and eddy current. The magnetic inductor used in MAT-MI is similar to
the magnetic stimulator (MS) widely used in the research and clinical environment, especially
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for the intracranial delivery of magnetic energy into the brain (Irwin et al 1970, Barker et al
1990, Roth and Basser 1990 , Malmivuo and Plonsey 1995, Davey and Epstein 2000, Wagner
et al 2004). But the induced electric pulse width (in the μs scale ) in the MAT-MI is much
shorter than that of commercial magnetic stimulators (in the ms scale) in order to obtain the
spatial resolution of mm scale. This is because the resolution in MAT-MI is approximately the
electric pulse width times the acoustic speed in soft tissues (about 1.5 km/s).

Compared with the other similar imaging modalities aimed at obtaining the electrical
impedance distribution such as EIT, magnetic induction tomography (MIT) (Al-Zeibak et al
1995, Griffiths et al 1996, Merwa et al 2005), HEI/MAT, and magnetic resonance electrical
impedance tomography (MREIT) (Woo et al 1994, Kwon et al 2002, Gao et al 2005), MAT-
MI has several unique features. Firstly, it will not be affected by the low-conductivity layer of
tissue at/near the surface of human body, such as the skull of the head and the fat layer of the
breast. This is because the magnetic fields, unlike electrical currents, can go into the low-
conductivity layer easily. For example, assume we have a two-layered object in a conductive
medium (Fig. 2). The outer layer has a low conductivity like the skull or fat, while the inner
layer has a high conductivity like the muscle or brain tissue. If we inject currents into the
medium with electrodes, as used in EIT, HEI/MAT, and MREIT (Woo et al 1994, Kwon et
al 2002, Gao et al 2005) the outer layer will reduce the amount of current entering into the
inner layer. This will decrease the sensitivity to the changes of conductivity in the inner layer.
As an extreme example, there will be no current in the inner layer if the outer layer is insulating.
Under such extreme case, the conductivity distribution within the inner layer can not be
reconstructed no matter what kind of reconstruction algorithm is used in the imaging
modalities. We call this shielding effect (Wen 1999, Tidswell et al 2001). As a contrast, there
is still current in the inner layer in MAT-MI even the outer layer is insulating. There is also no
shielding effect in MIT due to the use of magnetic induction. But no high-spatial-resolution
MIT has been reported. The second unique feature of MAT-MI is that the electrical field
induced by a time-varying magnetic field in MAT-MI is a solenoid field, while irrotational
fields are used in most other tomography related with the electrical properties, such as EIT,
HEI/MAT, and MREIT. We find that there are explicit formulas to reconstruct conductivity
from acoustic signals in MAT-MI due to this unique feature of solenoid field, as will be shown
in the reconstruction methods. At last, MAT-MI is compatible with MRI setup. In both imaging
modalities, the sample is located in a static magnetic field and a time-varying magnetic field.
However, MAT-MI is much less demanding in the field homogeneity and stability than MRI.

In the Theory section, we present the formulas for both the forward and inverse problem in
MAT-MI and estimate the pressure induced in biological tissues. In the Experiments section,
the experimental setup and methods are introduced. The MAT-MI signals and an image from
metal samples are also shown.

THEORY
In this section, we first derive the formulas for the forward problem, which express the acoustic
pressure in terms of the eddy current and the static magnetic field. Then, we estimate the
pressure induced in biological tissue by computing the acoustic waves from a sphere in a
uniform electrical and magnetic field. At last, we will provide the formulas for the inverse
problem in MAT-MI.

Forward problem

In a medium with a current distribution J
∼

 (in this paper, the tilt over a variable means that the
variable is a function of time; otherwise, the variable is not a function of time if not denoted

Xu and He Page 2

Phys Med Biol. Author manuscript; available in PMC 2007 March 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



explicitly) in a static magnetic field B0, we have the following wave equation for the induced

pressure p
∼
(r, t) (Roth et al 1994),

∇2 p
∼

− 1

cs
2

∂2 p
∼

∂t 2 = ∇ ⋅ (J
∼

× B0), (1)

where cs = 1
ρ0βs

 is the acoustic speed, ρ0 is the density of the medium at rest, and βs is the

adiabatic compressibility of the medium. We have assumed that B
∼
1(r, t) ≪ B0(r) in the above

equation, where B
∼
1(r, t) = B1(r)step(t) is the time-varying magnetic field in our experiments

and step(t) is the step function (it equals 1 when t is larger than zero and equals zero otherwise).
This is because the time-varying magnetic field is generated by discharging a capacitor for
only about 1 microsecond and the current in the coil is approximately proportional to the
discharging time. Therefore the current in the coil should not be large enough to produce a
magnetic field that is comparable with the static magnetic field. The estimate from our
experiments also supports this assumption, as will be shown in the experimental setup section.

J
∼

 in the source term can further be written as the product of a purely spatial and a purely

temporal component i.e., J
∼
(r, t) = J(r)η(t),  where J(r) describes the spatial distribution of

the induced eddy current density, and η(t) describes the shape of the stimulating pulse. Note
that J(r) has the unit of As/m2. Here we consider J(r) to be the induced eddy current since the
current generated by excitable membranes within a biological system is in the frequency of
several KHz while the induced current in MAT-MI used for image reconstruction is in a much
higher frequency range. We consider only the case that the stimulating pulse is very short η
(t) ≈ δ(t). In experiments, the temporal profile of the induced current includes a strong short
positive peak (μs) and a small long negative tail (ms). The net area under the profile is zero.
But if we measure only the part of the signal that is within a short time after the positive peak
(for example 100 μs ), the net area under this portion of profile is positive and we can
approximate this profile as a delta function. In the following estimate on the pressure, we have

J(r) ≈ J
∼
ave(r)τ by using J(r) = ∫0

+∞J
∼
(r, t)dt,  where τ is the excitation pulse length and

Jave (r) is the average current density during the excitation.

After using Green’s function, the solution of Eq. 1 can be written as (Morse and Feshbach
1953)

p
∼
(r, t) = − 1

4π ∮
V

dr′∇
r′

⋅ J(r′) × B0(r
′)

δ(t − R/ cs)

R , (2)

where R = | r − r′|  and the integration is over the sample volume. The physical meaning of
this equation is that, in an acoustically homogenous medium, the pressure p, at a spatial point
r and time t, is proportional to the integration of ∇ · (J × B0) over a spherical surface [a circle
in the two-dimensional (2-D) case]. The spherical surface is centered at r and has a radius of
tcs. Applying integration by parts to Eq. 2, we have

p
∼
(r, t) = − 1

4π ∮
V

dr′J(r′) × B0(r
′) ⋅ ∇

r′

δ(t − R/ cs)

R . (3)
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Using ∇r′, = −∇r, we have

p
∼
(r, t) = − − 1

4π ∮
V

dr′J(r′) × B0(r
′) ⋅ ∇r

δ(t − R/ cs)

R . (4)

Now the differentiation over r can be moved out of the integration and we have

p
∼
(r, t) = − 1

4π ∇ ⋅ ∮
V

dr′J(r′) × B0(r
′)

δ(t − R/ cs)

R . (5)

This equation is easier to compute in the theoretical analysis and numerical simulations.

Estimation of the pressure
We use a spherical sample to estimate the amplitude of the MAT-MI signal from biological
tissues. Assume a sphere with a radius a in a static magnetic field B0 and a time-varying
magnetic field. For simplicity, we assume that B0 = B0ŷ and the electric field induced by the
time-varying magnetic field Eext = E0x̂ are homogeneous. Although the total electric field in
the sphere is different from Eext (see Eq. 9), we will use Eext to approximate the total electric
field for simplicity because we only want to estimate the order of the induced pressure. The
sphere and background is acoustically homogeneous and has the same acoustic properties.
Take the center of the sphere as the origin, the electrical conductivity of the system is

σ(r) = σ0sa(r),

sa(r) = { 1, if r < a
0, if r > a

.

In the estimation, we use J
∼

= σE
∼

, where we have ignored the displacement current

− ∂D
∼/ ∂t, because the ratio of displacement to conduction current is on the scale of ωɛ/σ

(Wang and Eisenberg 1994), where ɛ is the permittivity of the sample (~10−9 F/m in biological
tissue) and ω is the frequency, and the ratio is on the scale of 0.001 at the MHz range in the
biological tissues. The pressure can be computed through Eq. 5 as

p
∼
(r, t) =

acsτσ0E0B0
2r ẑ ⋅ r̂(h (t̂) +

h1(t̂)a

r ). (6)

where r̂ is a unit vector along r , t̂ = (tcs − r)/ a,

h (t̂) = { − t̂, if | t̂ | < 1
0, if | t̂ | > 1

, (7)

and h1(t) = ∫−∞
t dth (t)

h1(t) = {(1 − t 2)/ 2, if | t| < 1
0, if | t | > 1

. (8)

From Eq. 6, the amplitude of the pressure can be estimated as p
∼
(r, t) =

acsτσ0E0B0
2r ẑ ⋅ r̂.
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We use the following parameters for estimation. a = 10mm, r = 50mm, cs = 1500m / s , τ =
0.5μs . B0 = 1T is in the same scale of commercial MRI scanners. σ = 0.2Sm−1 is typical for
soft biological tissues. Eo = 1000Vm−1 is in the same scale of commercial magnetic stimulators.
According to Eq. 6, we have p(r, t) = 0.015 ⋅ ẑ ⋅ r̂ Pascal, which means that the pressure is
anisotropic in the spatial distribution. When measuring from along z axis (which is the direction
of J × B0), the amplitude is maximal, 0.015 Pa. This level of pressure should be measurable
for current acoustic detectors.

Inverse problem
The inverse problem can be divided into two steps. In the first step, we will reconstruct ∇ ·
(J × B0) from pressure. In the second step, we will reconstruct the conductivity distribution
from ∇ · (J × B0). The first step can be accomplished with back-projection algorithm. The
reconstruction step from ∇ · (J × B0) to σ is more challenging. The total electrical field in the
sample can be divided into two parts

E = Eext + Ersp, (9)

where the first part Eext represents the solenoid electrical field induced directly by the changing
magnetic field, and Ersp represents the electrical field caused by the conductivity heterogeneity
of the sample (Malmivuo and Plonsey 1995). It is of electrostatic nature, so it can be expressed
as the gradient of a scalar potential

Ersp = − ∇φ. (10)

Eext can be computed easily when the coil configuration is known. However, Ersp can not be
measured from experiments. The challenge in the reconstruction step from ∇ · (J × B0) to σ
lie in how to derive σ without using Ersp .

From p
∼

 to ∇ · (J × B0)

Assume we can measure the acoustic signals across a surface ∑ around the to-be-imaged object.
Let’s consider Eq. 1 for the case of Ĵ(r, t) = J(r)δ(t). After integrating both sides of Eq. 1 over
the time range (−∞,0+) , where 0+ is an infinitely small real, we have

− 1

cs
2

∂ p
∼

∂t |
t=0+

= ∇ ⋅ (J × B0). (11)

The spatial derivative term disappears in the integration because the pressure is zero before
time zero. In the appendix, we show that Eq. 11 is still valid in an acoustically heterogeneous

medium. Eq. 11 means that we can obtain ∇ · (J × B0) if we can derive − 1

cs
2

∂ p
∼

∂t |
t=0+

from

the pressure measured over ∑. In an acoustically homogeneous medium, this step can be
accomplished by time reversing the acoustic waves using Eq. 15 in (Xu and Wang 2004a) as

p
∼′

(r, 0+) ≈ 1
2πcs

∫
Σ
∫dSd

n ⋅ (rd − r)

| r − rd|2 p
∼″

(rd, | r − rd | / cs), (12)

where rd is a point on the detection surface ∑, r is a point in the object space, and the single
and double prime represent the first and second derivative over time, respectively. In deriving
Eq. 12, we have ignored the first term in the integrand on the right hand side of Eq. 15 in (Xu
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and Wang 2004a), because it is much smaller than the second term in the MHz range.
Combining Eq. 11 and Eq. 12, we have

∇ ⋅ (J × B0) ≈
− 1

2πcs
3∫

Σ
∫dSd

n ⋅ (rd − r)

| r − rd|2 p
∼″

(rd, | r − rd | / cs) (13)

This is a back-projection algorithm, in which the pressure at each time point is projected
(assigned) to each point on the sphere over which the integration of the object value yields the
pressure, as shown in Fig. 3.

From ∇ · (J × B0) to σ

Here we propose two methods for the second step in the reconstruction.

Method 1 Piecewise distribution—In this method, we don’t need to change the direction
of the static magnetic field B0 because only one set of measurement is needed. This is a major
advantage of this method over the other methods.

First, according to Faraday’s law,

∇ × E
∼

= −
∂B
∼
1

∂t . (14)

Using B
∼
1(r, t) = B1(r)step(t),  we have E

∼
(r, t) = E(r)δ(t),  where E is the spatial component

of the electrical field and obeys

∇ × E = − B1. (15)

Combing Eq. 15 with J = σE , we have

∇ × (J/ σ) = − B1. (16)

After expanding the cross product, we have

(∇ × J) /σ + ∇( 1σ ) × J = − B1. (17)

If we assume the sample is piecewise smooth, then we have |∇σ|/σ << |∇ × J| / |J| except at
the boundary points, therefore the second term in Eq. 17 can be ignored and we take an inner
product of both sides of Eq. 17 with B0 , we have

σ ≈ −
(∇ × J) ⋅ B0

B1 ⋅ B0
= −

∇ ⋅ (J × B0)

B1 ⋅ B0
(18)

for the points inside a smooth piece, where we replace (∇ × J) · B0 with ∇ · (J × B0 ) after
using ∇ × B0 = 0 for the point in the sample due to the fact that the magnetic field is generated
by the sources outside the sample. ∇ (J × B0 ) can be obtained from pressure according to Eq.
13. Eq. 18 does not hold on the boundary between regions with different conductivity.
Therefore we have to distinguish the internal smooth point from the boundary point, where |
∇σ|/σ > |∇ × J| / |J|. The result given by Eq. 18 can be improved iteratively by the following
algorithm:
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σn =
− (∇ × J) ⋅ B0

B1 + ∇(1/ σn−1) × Jn−1 ⋅ B0
, (19)

where (∇ × J) · B0 , B0 , and B1 are measured or derived from measurement in the experiments,
σn−1 and σn are the conductivity distribution obtained after the (n−1)-th and n-th iteration,
respectively, and Jn−1 is the computed current distribution corresponding to σn−1 . To start the
iteration, σ0 is given by Eq. 18. Then for the given σn−1 and boundary conditions, Jn−1 can be
computed by solving the forward linear system of equations using the conjugate gradient
method for sparse matrix. After that, the conductivity will be updated according to Eq. 19 in
each iteration until a stopping condition is met.

Method 2: Solve J—In the second method, we need to change the direction of the static
magnetic field B0. According to ωɛ/σ << 1 and Ampere’s law, we have

∇ ⋅ J = 0. (20)

B0 · (∇ × J) can be reconstructed from the pressure measured around the objects. Therefore if
we make three sets of measurements, where B0 is along three perpendicular directions, we can
determine ∇ × J. After combining the boundary condition J · n|∑ = 0 and Eq. 20, J can be
determined. Then we take an inner product of both sides of Eq. 17 with J , we have

σ = − (∇ × J) ⋅ J
B1 ⋅ J . (21)

Compared with the first method, this method is more accurate. But it is obviously more
challenging, because there are more intermediate steps, which makes the problem complex.
At last, it should be pointed out that the above two methods are unique to MAT-MI, because
both of them require B1 = −∇ × E ≠ 0. Magnetic induction can satisfy this requirement, but
electrical stimulation cannot.

EXPERIMENTS
MAT-MI is intrinsically a 3-D imaging modality, in which the acoustic signals should be
detected across a surface surrounding the to-be-imaged object. The reconstruction algorithms
for the quantitative distribution of conductivity proposed in the theory section are based on the
data collected in a 3-D configuration. However, in the present experimental study, we focus
on the demonstration of the proposed idea in a 2-D system, in which the detector scans around
the object in a circle, because of the huge cost and effort necessary to build a 3-D system.
Nevertheless, the 2-D system can correctly image the boundaries of the object that is
approximately positioned within a plane, such as the wire loop used in our experiments.

In the image reconstruction, we use only the first step described in the inverse problem
subsection of the theoretical studies. This is because the second step is significant only for
quantitative imaging and our current 2-D system is not sufficient for quantitative imaging as
discussed above. The reconstruction formula is modified from Eq. 13 as

I (r) = ∑
i=1

n n ⋅ (ri − r)

| r − ri|2
p
∼
(ri, | r − ri| / vs), (22)

where ri is the position of the detector at the i-th scanning point, and the summation is over all
the scanning points. Therefore, the reconstructed image represents the boundary of ∇ · (J ×
B0 ) induced by the magnetic induction in the sample. The acoustic signals are processed by a
high-pass filter to eliminate the low-frequency disturbance.
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Experimental setup
Fig. 4 shows a diagram of the experiment setup. The unfocused transducer (V303, Panametrics)
has a central frequency of 1 MHz and a diameter of 13 mm. It points horizontally to the sample.
For good coupling of acoustic waves, both the transducer and the sample were immersed in
water. The transducer scanned around the object in a circular orbit with a radius of 130 mm.
The step size of the scanning is 2.5 degrees. We can only scan 340 degrees of the circular orbit
because the rack used to hold the magnetic inductor blocks part of the scanning orbit.
Nevertheless, a partial view data is sufficient to reconstruct the boundary of the sample (Xu
and Wang 2004b).

A home-made magnetic inductor induces electric pulses with a width of 1.2 μs at the rate of 4
Hz. The circular coil of the magnetic inductor has a radius of 40 mm. We used a single-turn
coil with a radius of rc = 4 cm to estimate the induced electrical field in the space, Eind . In our
experiments, the electrical field induced by the circular coil of the magnetic inductor is
symmetrical and oriented in circular loops around the axis of the inductor coil, while the probe
coil is located concentrically with the stimulator coil. Therefore, the probe coil approximately
fits into one of the electrical field lines (loops). Consequently, we have Eind = V/(2πrc ) , where
V is the voltage measured over the probe coil. The induced electrical field right around the coil
of the inductor is measured to be about 250 Vm−1 while the induced electrical field at the
position of the samples in our experiments (about 5 cm away from the coil of the inductor) is
measured to be around 25 Vm−1 . According to the measured electrical field, we can estimate
the final magnitude of the time-varying magnetic field at the sample’s position as B1 =

2τEind/rc = 0.00125 T after considering 
d(B1 ⋅ πrc

2)

dt = − Eind ⋅ 2πrc and Eind is almost
constant during the excitation period.

A permanent magnet (50 mm by 50 mm by 25 mm) was put around 2 cm under the sample.
The permanent magnet can create a magnetic field along the z-axis with a flux density of about
0.1 T at 2 cm from its surface. A function generator was used to trigger the magnetic inductor,
control its pulse length, and synchronize the oscilloscope sampling. The signal from the
transducer was first amplified, then recorded and averaged 100 times by a software oscilloscope
(National Instruments, Austin). A personal computer was used to control the step motor for
scanning the detector and transferring the data. A multifunctional card in the computer acted
as the function generator, oscilloscope, and part of the driver for the stepper motor.

Experiment results
Firstly, we used a copper stripe with a section of 1 mm by 4 mm as the sample for observing
the MAT-MI signals. The long dimension of the strip is perpendicular to the scanning plane.
A major peak was observed in the signals after high-pass filtering (Fig. 5). When we moved
the copper back and forth, the peak also moved accordingly, as shown by comparing the two
figures in Fig. 5. We also moved the detector around the copper. In most positions, we can
detect the signal from the copper although the amplitude of the signal varies. Basically, the
amplitude of the signal increased when the detector moved closer to the object.

Then we imaged a close metal loop, which is made from a 0.5 mm diameter metal wire. We
did not observed any signal due to the scattering by the wire. Fig. 6 shows the signal. There
are two major peaks with a time delay of about 30 μs , which matches with the distance between
the front and rear boundary of the loop when looking from the position of the transducer. This
shows that the two major peaks correspond to the two boundaries. When we moved the detector
around the object, the signal looks similar except that the time delay between the two peaks is
different.
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Fig. 7 shows the MAT-MI and the photo of a metal wire loop. The center of the image is the
origin of the circular scanning orbit of the transducer. The reconstructed image represents the
boundary of ∇ · (J × B0 ) induced by the magnetic induction in the sample. Therefore we
compare only the size and shape of the loop in the MAT-MI image and the corresponding photo
and we find they are in good agreement.

DISCUSSION
Imaging electrical impedance with noninvasive measurements is important to various
biomedical applications. A number of efforts have been made to probe the physiological or
pathological status of biological systems from the information on the electrical impedance of
tissues. Such impedance information on the biological tissues may also be useful to other
biomedical research such as electric source imaging, in which electromagnetic measurements
are made over the body surface or out of the body while the tissue impedance information is
necessary to solve the forward problem (He 2004;He and Lian, 2005).

Under the acoustic homogeneity assumption, we have derived explicit theoretical formulas
governing MAT-MI. This theoretical development is important because it offers a well-posed
problem to solve the electrical-impedance imaging problem. In many other impedance imaging
approaches such as EIT or MIT, the inverse problem is ill-posed which limits the spatial
resolution of the methods.

The conductivity of copper is substantially larger that the conductivity of biological tissues.
Therefore, the signals measured in the present experiments might be much larger than the
signals from biological tissues of the same size. Therefore, considerable improvement of the
sensitivity of the detection system is necessary to apply this method to imaging biological
tissues. Nonetheless, the present experimental results suggest the feasibility of the proposed
MAT-MI in detecting electrical impedance.

Most of the theoretical studies in this paper are about the acoustically homogeneous medium.
Therefore the application of this method is mainly limited to soft-tissue imaging. We expect
that the acoustic heterogeneity in the soft tissues will only bring minor distortion. Because
firstly, the acoustic heterogeneity is within 10% in soft tissues, and the wave reflection at the
tissue interfaces will be small. Secondly, the acoustic signals are mostly below 1 MHz in our
experiments. Therefore, the corresponding wave scattering is negligible. The effect of acoustic
heterogeneity in MAT-MI is similar to that of another imaging modality, photoacoustic
tomography (PAT) (Wang et al 2003). In PAT, when electromagnetic radiation is absorbed in
biological tissues, the heating and the subsequent expansion will cause emission of acoustic
signals, called the thermoacoustic effect. The thermoacoustic signals from a tissue sample are
collected to map the distribution of the radiative absorption within the sample. MIT-MI differs
from PAT only in the mechanism of generating acoustic waves. In PAT, it has been
demonstrated both theoretically (Xu and Wang 2003) and experimentally (Wang et al 2003)
that the effect of the acoustic heterogeneity in soft tissues is negligible. It is therefore anticipated
that the effect of the acoustic heterogeneity on MIT-MI in soft tissues should also be negligible.

In summary, we have developed a new imaging technique – magnetoacoustic tomography with
magnetic induction (MAT-MI) for high-resolution imaging of electrical impedance
distribution. We present the results of our theoretical and experimental investigations on the
new imaging modality. In the theoretical part, we provide the formulas for both the forward
and inverse problems of MAT-MI. In the experimental study, we show the signals from point
metal objects and a metal wire loop. The MAT-MI image of the metal wire loop is in good
agreement with the shape of the object, which demonstrates the feasibility of the proposed
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MAT-MI approach. Using more sensitive detecting system would allow us to obtain images
from biological tissues.
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APPENDIX DERIVATION OF EQ. 11 IN AN ACOUSTICALLY
HETEROGENEOUS MEDIUM

According to Newton’s second law of motion we have

∂(ρ0v
∼
(r, t))

∂t = J
∼

× B0 − ∇ p
∼
, (23)

where v(r,t) is the velocity at point r and time t ; ρ0 is the density of the medium at rest; p
∼

 is

the pressure. In the case of J
∼
(r, t) = J(r)δ(t), after integrating both sides of Eq. 1 over the time

range (−∞,0+) , where 0+ is an infinitely small real, we have

ρ0v
∼
(r, 0+) = J × B0. (24)

Now using the conservation of mass we have

− ∇ ⋅ (ρ0v
∼
) = ∂ρ

∂t , (25)

where ρ is the density variation. At last, using the following equation

ρ
ρ0

= βsp, (26)

where βs is the adiabatic compressibility of the medium, taking a divergence of both sides of

Eq. 24, and using cs = 1
ρ0βs

,  we have Eq.11.
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Fig. 1.
Illustration of MAT-MI.
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Fig. 2.
Shielding effect when injecting current with electrodes.
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Fig. 3.
Illustration of backprojection.
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Fig. 4.
Experimental setup
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Fig. 5.
The signals from the point object at different locations.
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Fig. 6.
The signals from a metal wire loop.
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Fig. 7.
(a) The image representing the boundary of ∇ · (J × B0) induced by the magnetic induction
after the first step of the reconstruction and (b) the photo of a metal wire loop.
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