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Abstract
We present a simple and accurate coaxial bridge capable of measuring the magnetocapacitance
and the associated loss factor of a quantum Hall effect device, with and without an external
Hall current—a situation where commercial instruments are limited. We interpret the results in
terms of the model of compressible and incompressible regions in the two-dimensional
electron gas and we deduce a novel empirical relation between the loss factor and the voltage
dependence of the magnetocapacitance. This highlights the reason for the linear voltage
dependence of the loss factor whose elimination is the basis for all metrological applications of
the quantum Hall resistance at alternating current.
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1. Introduction

The integer quantum Hall effect (QHE) denotes the occurrence
of plateaux in the Hall resistance according to RH = RK/i with
the integer number i, and RK as the von-Klitzing constant,
along with the simultaneous vanishing of the longitudinal
resistance Rxx [1]. The quantum Hall resistance (QHR) is
usually applied in resistance metrology at the i = 2 plateau.

After the great success in maintaining the dc resistance
unit, it was proposed by PTB in 1992 to operate the QHR with
alternating current (ac) and to also derive the capacitance unit
from this fixed point [2]. The subsequent research discovered
curved ac plateaux with a linear frequency and voltage
dependence. This was not understood until measurements of
the magnetocapacitance of the two-dimensional electron gas
(2DEG), and the associated loss factor, explained this as a
magnetocapacitive effect [3].

The magnetocapacitance is the capacitance between the
2DEG and a parallel metal electrode, whereby the term
‘magneto’ refers to the special features of the 2DEG which
occur only in a strong magnetic field. In particular, the 2DEG
does not behave like a conventional metal electrode because
only the compressible regions of the 2DEG shield electric fields
similarly to a metal. A magnetocapacitance measurement
senses only these regions (as far as they are not isolated from
the contacts) and thus can make an important contribution to
the understanding of the QHE. A review of the QHE measured
with dc and ac can be found, for example, in [4, 5].

The techniques developed to eliminate the capacitive
effects from the ac QHR [3, 6–8] all make use of the linear

voltage dependence of the loss factor, although the reason
for this linearity was not fully understood. We therefore
take up this matter and demonstrate the potential of precision
measurements of the magnetocapacitance. First, we describe
the measurement technique and interpret the features of the
magnetocapacitance in terms of the model of compressible
and incompressible 2DEG regions. Then, we deduce a novel
empirical relation which gives a new insight into the loss factor
and its linear voltage dependence.

2. Coaxial capacitance bridge

Coaxial ac bridges [9] were developed at the national
metrology institutes for the comparison of decadic imped-
ance standards with a very low relative uncertainty of a few
parts in 109, at the expense of a high degree of complexity.
However, the magnetocapacitance of a QHE device has a small
value and the uncertainty requirement is moderate so that a
much simpler coaxial bridge is sufficient (figure 1). It is also
capable of accurately measuring the loss factor even in the case
of long leads into a cryostat—a situation where non-coaxial
commercial capacitance bridges usually fail. In contrast to a
non-coaxial bridge, the lead corrections are well-defined and
very small. The term ‘coaxial’ is always used here in the sense
of an equal and opposite return current in each outer conductor
which makes the bridge immune to electrical interference. The
resulting low-noise level corresponds to a standard deviation
of 5 aF (at 1 pF, a voltage of 100 mV, and an integration time
of 30 s).
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Figure 1. Schematic diagram of a coaxial two-terminal-pair
bridge [9] measuring the unknown capacitance C in terms of Cref .
The transformer ratio can be set to either 1 : 1, 10 : 1, or 1 : 10. CW

and RW are Wagner components adjusted to null the current in the
zero tap of the ratio transformer.

For our purpose, a two-terminal-pair bridge (as already
used in [8, 10]) is sufficient because the capacitance to be
measured has a small value and lead corrections are negligible.
The schematic representation of such a bridge is shown in
figure 1. It measures the unknown capacitance C and the
associated loss factor D = tan δ in terms of a reference
capacitor Cref with a negligible loss factor (in our case less
than 1×10−5). Because the capacitances involved have a small
value, the bridge transformer is only weakly loaded. Therefore,
separate supply and ratio transformers are not needed. Only a
Wagner arm to balance the asymmetrical transformer loading
might be necessary. An injection system for the bridge balance
is also not needed. It is sufficient to roughly balance the
reference capacitor and to measure the residual imbalance
of the detector voltage. A commercial lock-in amplifier is
used as the detector. Its phase is adjusted by a temporary
imbalance of the reference capacitor and the unknown loss
factor is determined from the quadrature component of the
detector voltage.

As a reference capacitor, a low-loss rotary-vane precision
parallel-plate capacitor is used. A common type has two
ranges, from 50 fF to 1.1 pF and from 500 fF to 11 pF. Taking
into account that the bridge transformer can be configured for a
1 : 1, 10 : 1, or 1 : 10 ratio, the total measuring range goes from
5 fF to 110 pF. The reproducibility of the reference capacitor
is about 0.5 fF, mainly due to a very small mechanical slip and
due to the lack of temperature control, and this determines the
uncertainty of the capacitance measurement1. The uncertainty
of the loss factor is 1 × 10−5 (k = 1). To demonstrate the
accuracy of the simple coaxial bridge, appendix A shows a
measurement of a 1 pF capacitance standard and its associated
loss factor in comparison with a commercial capacitance
bridge. Appendix A also gives some more information on
the uncertainties.
1 As an alternative to the bridge shown in figure 1, it is also possible to use
a fixed-value reference capacitor and to replace the ratio transformer with
a decade inductive voltage divider. If a temperature-stabilized fused-silica
capacitance standard of either 1 pF, 10 pF or 100 pF would be used as the
reference, the limitations of the rotary-vane capacitor could be overcome, if
required.

3. QHE devices and potential distribution

The present knowledge of the potential and current distribution
in the 2DEG is discussed in [11–16] and briefly summarized
here: at the edge of the 2DEG where the electron density
drops to zero, the energy levels are bent upwards so that the
electrons are confined in the 2DEG. This leads to the formation
of compressible and incompressible strips along the edge of
the 2DEG. ‘Compressible’ refers to the ability of the electrons
at the Fermi edge to move to other free states. Therefore,
the compressible strips are equipotential regions which shield
electric fields similarly to a metal and carry no Hall current. In
contrast, the incompressible strips are transparent to electric
fields like a dielectric, carry a Hall current, and a Hall voltage
drop occurs there.

In the bulk of the 2DEG, the disordered potential
landscape of the 2DEG is filled with electrons up to the
Fermi energy and this creates a landscape of compressible
and incompressible regions. In the central plateau region, the
bulk of the 2DEG is maximal incompressible with embedded
small compressible ‘puddles’ and carries a fraction of the
dissipationless Hall current only in the presence of a close-by
gate [18]). Towards the inter-plateau regions, the compressible
puddles become much larger, merge into a network with
embedded incompressible ‘islands’, and carry the main part
of the now dissipative Hall current, unaffected by the presence
of a gate.

All capacitance measurements reported here were carried
out at GaAs/AlGaAs devices manufactured at PTB. The charge
carrier density is 4.8 × 1015 m−2 and the dimensions of the
2DEG are 2.6 mm × 0.8 mm. The QHE devices are double-
shielded [7] to allow precision measurements of the ac quantum
Hall resistance [8]. A double-shielded device is surrounded
by two rectangular shields which are arranged in such a way
that the narrow gap between them is close to the defining Hall
potential contacts. For simplicity, only the dominating bottom
part of the shield is shown in figure 1. The magnetocapacitance
investigated here is the capacitance between the 2DEG and one
half-shield. The geometry is not the very best for a precision
measurement of the magnetocapacitance, but we wanted to
gain information on our real double-shielded QHE devices. To
improve the accuracy, the results have been corrected for the
separately measured cross-capacitance between the two half-
shields (445 fF) and for the calculated capacitance between
the metallic contact pads and the half-shield (104 fF). The
loss factor has been corrected for the contribution from the
printed circuit board and the GaAs substrate (3.2 × 10−4).
Even though the geometry is complicated, we think that the
boundary effects and stray capacitances do not significantly
affect the main findings.

Normally, six of eight terminals of a double-shielded
QHR device are bonded to allow a so-called triple-series
connection scheme [19, 20]. In contrast, a magnetocapacitance
measurement requires only one terminal. Indeed, the unneeded
terminals cannot be left open-circuited because the lead
capacitances CL would draw considerable currents through the
QHE device and the corresponding Hall voltages would appear
as an apparent loss factor which is orders of magnitude larger
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Figure 2. The magnetocapacitance C of a QHE device (top curve
with left-hand scale) and the associated loss tangent (right-hand
scale), measured as a function of magnetic flux density at a
frequency of 1 kHz, a bath temperature of 0.3 K, and an rms voltage
of 200 mV. The dashed lines indicate the dc quantum Hall and
longitudinal resistance and are given without a scale, just as a guide
to the eye.

than the true loss factor of the 2DEG. One possible solution is
to use a special QHE device manufactured with only a single
terminal (as in [3]). Here we present a new solution which is a
modification of the multiple-series connection scheme [19, 20]
and can be applied to any multi-terminal QHE device, to allow
the full spectrum of characterization measurements at one and
the same device. This connection scheme is described in
appendix B.

4. Experimental results

Figure 2 shows the magnetocapacitance measured without an
applied Hall current. The sweep rate of the superconducting
solenoid is set in such a way that the existing structures are not
significantly deformed and in particular that no peaks are lost
or smeared out. First, we will discuss the magnetocapacitance
and then the loss factor.

4.1. Magnetocapacitance

In the inter-plateau regions, the magnetocapacitance is flat
and has nearly the same value as at zero magnetic flux
density (figure 2). This is attributed to the 2DEG being
mainly compressible. In the central plateau regions, the
magnetocapacitance exhibits depressions because the bulk of
the 2DEG becomes mainly incompressible and transparent
to electric fields [12, 16] so that its contribution to the
magnetocapacitance is reduced.

This general behaviour is in agreement with former mag-
netocapacitance measurements [3, 21], only the depressions
have different depths. We attribute this to the different spacing
between the 2DEG and the gate. In the case of a sub-µm spac-
ing as in [21], the minima of the magnetocapacitance are of
the order of one per cent of the geometrical capacitance at zero
magnetic field. The reason is that in the central plateau region
the magnetocapacitance originates mainly from the compress-
ible edge strips and the electric fields are concentrated in the

small space between these edge strips and their projection onto
the gate. In our case, the spacing is 450 µm, i.e. much larger
than the width of the edge strips. Therefore, the electric fields
between the edge strips and the gate are spread over a larger
fraction of the space between the 2DEG and the gate. As a
result, the relative depth of the depressions is smaller. With a
simple stripline model, we estimate the width of the compress-
ible strips at i = 2 to be smaller than 1 µm, very similar to [21].

Each depression in figure 2 occurs in a range of magnetic
flux density where the longitudinal resistance vanishes and the
Hall resistance is accurately quantized. (On a coarse scale, the
Hall plateaux seem to be much wider, but this is a misleading
impression because the outermost parts of the plateaux do not
exhibit an accurate quantization.) At our bath temperature
of 0.3 K, the well-defined QHR plateaux with a vanishing
longitudinal resistance are the even ones up to i = 10 and
the odd one i = 3 (whereas i = 1 is out of the range of
our superconducting solenoid). The plateau i = 5 is clearly
visible in the dc QHR, but it has no central region with a
vanishing longitudinal resistance and no accurate quantization.
Therefore, it is fully absent in the magnetocapacitance even if
the scale is enlarged to the noise limit. This applies even more
to the higher odd plateaux and also to the even ones higher than
i = 10. This clearly shows that the accurately quantized state
with a vanishing longitudinal resistance (not to be confound
with the wider, only coarsely flat Hall plateau) is strictly tied
to the mainly incompressible state of the 2DEG.

Figure 3 shows the magnetocapacitance around i = 2 at
a higher resolution and measured at different voltages. We
distinguish between three regimes with different behaviour
which in the following are interpreted in the model of the
compressible and incompressible 2DEG regions as developed
in [13–16].

In regime III, the Hall resistance is quantized to a high
relative degree of at least 1 × 10−9. In this regime, the
magnetocapacitance has a weakly curved shape and a small
linear voltage dependence. This is interpreted as follows: the
bulk is mainly incompressible with embedded fine-grained
compressible puddles. These puddles are isolated from the
contacts and thus not cyclically charged. Consequently, only
the compressible strips contribute to the magnetocapacitance.
Because the incompressible regions do not shield electric fields
and contract with increasing electric field strength in favour of
the compressible area, the magnetocapacitance increases with
the applied voltage.

In regime II, the Hall resistance is still quantized within
a relative uncertainty of at least 5 × 10−5. The compressible
puddles in the bulk become larger and constitute a network
with embedded coarse-grained incompressible islands. As
far as the compressible regions touch the contacts, they
are cyclically charged and thus increasingly contribute to
the magnetocapacitance. The local electric field in the
incompressible regions becomes larger and causes a larger
contraction in favour of the compressible regions. As a result,
the magnetocapacitance sensing the compressible area exhibits
a larger increase with voltage.

Regime I is the inter-plateau region where the longitudinal
resistance is already larger than 10 �. (The innermost
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(a) 

(b) 

Figure 3. (a) The magnetocapacitance C of a QHE device (left-hand
scale) and the associated loss tangent (right-hand scale), measured
as a function of magnetic flux density at the i = 2 plateau, at a
frequency of 1 kHz and a bath temperature of 0.3 K. The rms
voltages from top to bottom are 400 mV, 200 mV, 100 mV and
50 mV. The abscissa at the top gives the associated filling factor ν.
Three regimes I, II and III are indicated. (b) The same
magnetocapacitance data at a higher resolution. The dashed line
indicates the capacitance value measured at zero magnetic flux
density.

parts of this regime correspond to the outermost parts of
the Hall plateau, but even there the Hall resistance is not
fully quantized and the plateaux on a finer scale are no
longer flat.) In this regime, the magnetocapacitance is flat
and voltage-independent. This is interpreted as follows:
Coming from regime II, the incompressible islands in the
bulk further decrease so that the 2DEG becomes mainly
compressible (and dissipative), apart from the incompressible
edge strips and some small residual incompressible islands.
Thus, the magnetocapacitance approaches a value close to
the geometrical capacitance. Because the incompressible
regions are now much smaller and fine-structured, the
electric field therein is shielded much more effectively. The
small incompressible area together with the small electric
field therein thus explains the practically vanishing voltage
dependence of the magnetocapacitance.

The value of the magnetocapacitance in regime I is smaller
than the value obtained at zero magnetic flux density by
(1.0 ± 0.1) fF (bottom part of figure 3). This is attributed
to the incompressible edge strips which do not exist at zero
magnetic flux density. From this, we estimate the width of the
incompressible strips at either side of the 2DEG to be about
0.5 µm, in reasonable agreement with other results [21] and
very similar to the width of the compressible strips.

The aspects discussed so far are in qualitative agreement
with the picture developed in [13–16]. In contrast, our results

show a symmetry with respect to the integer filling factor,
whereas [13–16] present asymmetric behaviour. We attribute
this difference to three facts. Firstly, our QHE devices have
much larger dimensions. Secondly, a magnetocapacitance
measurement does not sense compressible puddles in the bulk
which are isolated from the contacts. And thirdly, our results
are obtained without an applied Hall current. Our first results
with applied Hall current also show a clear asymmetry, but the
details are quite complex and require more research before the
results can be published.

Finally, we would like to relate our results to the
breakdown of the QHE at large currents [17]. Even if no
Hall current is applied, the width of the central depression
of the magnetocapacitance decreases with increasing voltage
(see figure 3). As a first consequence, the precisely quantized
regime III is expected to disappear at a voltage level of a
few volts, although the capacitive current is more than four
orders of magnitude smaller than the breakdown current.
And secondly, in the case of an applied Hall current (well
below the breakdown), the voltage-induced contraction of
the incompressible regions increases the local current density
therein and this could cause a voltage-induced boost of those
effects which finally lead to the breakdown. Since we have not
investigated this aspect, we will leave it to the future.

4.2. Loss factor

The loss factor of the 2DEG is also shown in figures 2 and 3. At
the i = 2 plateau, the loss factor shows a peak at either side of
the plateau centre. With increasing integer filling factor, these
peaks merge together to a single peak which finally disappears.
Correspondingly, the width of the vanishing longitudinal
resistance and the width of the accurately quantized Hall
resistance decreases. Resolving these plateaux, as well as
the depression of the magnetocapacitance and the associated
loss factor peaks, would require a lower bath temperature (the
lower, the larger the integer filling factor). Our 3He system
allows only the investigation of the i = 2 plateau, but this
plateau has the highest relevance to the application of the QHR
as an electrical impedance standard. We therefore restrict the
analysis to the i = 2 plateau.

In the inter-plateau regime I as well as at zero magnetic
field, the loss factor of the 2DEG is small (2.3 × 10−4) and
independent of voltage and frequency, similar to conventional
dielectric materials at such low temperatures. In the central
plateau region III, the loss factor is larger and exhibits a linear
voltage dependence (figures 3 and 4). Extrapolating the loss
factor in regime III to zero voltage yields the same small
value as in the inter-plateau regime I and at zero magnetic
flux density. In the transition regions II, the loss factor
shows pronounced peaks and a maximum voltage dependence
(figures 2 and 3).

Finally, figure 5 shows that the magnetocapacitance as
well as the loss factor do not exhibit a significant frequency
dependence (at least in the kHz frequency range and within
the resolution of our measurement). This was already found
in previous works, for example [3, 10], but is shown here with
higher accuracy.
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Figure 4. The magnetocapacitance C (left-hand scale) and the
associated loss tangent (right-hand scale) at i = 2 of the same QHE
device as in figure 3, measured as a function of the applied rms
voltage U at a frequency of 1 kHz and a bath temperature of 0.3 K.
The open symbols are calculated according to (1) with a fitted value
χ = 0.485 and with the measured value tan δ0 = 2.3 × 10−4.

Figure 5. The magnetocapacitance C (left-hand scale) and the
associated loss tangent (right-hand scale) of the same QHE device
as in figure 4, measured at i = 2 as a function of frequency at an rms
voltage of 100 mV.

4.3. Model of the loss factor

In [22], the loss factor of the 2DEG has been attributed to
polarization losses. This explains the frequency-independence
of the loss factor, which for a long time had been an
unexplained mystery of the ac QHR [5]. Nevertheless, this
model could not explain the observed dependence of the loss
factor on magnetic flux density and voltage, and the voltage
dependence of the magnetocapacitance was beyond the scope
of the model.

Here we would like to add a novel aspect, based on the
voltage dependence of the magnetocapacitance. To quantify
the increase of the magnetocapacitance C with the rms voltage
U , we calculate the derivative dC/dU , whereby the linearity
of the voltage dependence justifies replacing the infinitesimal
differences by the measured finite differences. To obtain a
dimensionless quantity, we multiply by a normalizing factor
U/C and define a quantity X = U/C·dC/dU (which is the rel-
ative change of capacitance to the relative change of voltage).

As deduced from the measurements of the magnetocapac-
itance and the dc longitudinal resistance [23–25], the incom-
pressible regions of the 2DEG contract with increasing local

Figure 6. Top: the same magnetocapacitance C as already shown in
figure 3. Bottom: from each pair of original loss factor curves
measured at two successive voltages, the mean value has been
calculated (thick lines) and is compared with the loss factor
calculated according to (1) with χ = 1 (thin lines). For better
visibility, an arbitrary offset has been added.

electric field strength. This means for the ac case, firstly, that
the size of the incompressible regions cyclically alternates,
and secondly, that the rms size of the incompressible regions
decreases with the rms value of the local electric field. Conse-
quently, the rms value of the compressible area (which is the
complement of the incompressible area and sensed by a mag-
netocapacitance measurement) increases with the rms value
of the applied voltage. The quantity X defined above is thus
interpreted as a measure of the incompressible fraction of the
2DEG weighted with the local electric field strength.

The contraction of the incompressible regions means a
displacement of the localized electrons in the incompressible
regions by the local electric field, analogous to the
displacement polarization of a dielectric material. We describe
this by a quantity χ which is analogous to the imaginary part
of the electrical susceptibility, even though we do not have a
microscopic model. Taking into account that the polarizing
electric fields are only present in the incompressible fraction
of the 2DEG, described by the quantity X, the loss tangent of
the 2DEG can be written as

tan δ = χ · U

C
· dC

dU
+ tan δ0, (1)

whereby tan δ0 takes into account the polarization losses which
occur independent of a magnetic field.

Figure 6 shows the loss factor calculated according to
(1) as a function of magnetic flux density in comparison to
the measured loss factor. For simplicity, χ has been set to
1. The agreement is remarkably good, though not perfect.
It would become even better if χ would vary from about
0.5 at the plateau centre to 1 in regime II. (The remaining
deviations might be due to the overly simple model.) Also
the voltage dependence of the loss factor calculated according
to (1) agrees well with the measured results (see the open
symbols in figure 4). In any case, the remarkable finding is
that the loss factor stands in a fixed physical relation to the
voltage dependence of the magnetocapacitance. The link is
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the local electric field which causes both the contraction and
the polarization of the incompressible regions.

We would like to emphasize that the ac losses of the
incompressible regions are remarkably high, of the order of
1, and this is about four orders of magnitude higher than for
conventional dielectrics at the same temperature. However,
an incompressible quantum conductor is not a conventional
dielectric and, fortunately, the polarising electric fields are
quite weak due to the extensive shielding of the embedded
compressible regions so that the overall loss factor is not that
large.

5. Conclusion

A simple coaxial bridge allows the accurate measurement of
the magnetocapacitance and the loss factor of GaAs quantum
Hall effect devices. The dependence of the magnetocapaci-
tance on filling factor and voltage is interpreted in terms of
compressible and incompressible regions of the 2DEG. In the
central plateau region, the capacitive charging current flows
mainly through the compressible edge strips, whereas in the
inter-plateau regions the charging current is distributed over the
whole bulk. Furthermore, the magnetocapacitance is voltage
dependent because the incompressible regions contract due to
the electric field therein which in turn is responsible for the
polarization losses. Therefore, the loss factor stands in a fixed
physical relation to the voltage dependence of the magnetoca-
pacitance. This also explains the linear voltage dependence of
the loss factor, which has so far not been understood although it
is used in all approaches to eliminating the capacitive ac losses
from the ac QHR.

In a next step, we will apply the measuring technique also
to graphene, a two-dimensional carbon monolayer with unique
properties [26], to explore its ac behaviour and to assess its
potential as an alternative quantum Hall impedance standard.
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Appendix A. Comparison with a commercial
capacitance bridge and uncertainty contributions

To demonstrate the accuracy of the simple coaxial capacitance
bridge used in this work, a parallel-plate capacitor with a
nominal value of 1 pF and a low, but significant loss factor
has been measured with short leads at room-temperature and
compared with a measurement by a commercial, non-coaxial
capacitance bridge (figure A1). The results are in good
agreement within the particular uncertainty. They also show
that the reference capacitor does not exhibit a significant
frequency dependence in the frequency range investigated
here. The voltage dependence of the reference capacitor has

Figure A1. The capacitance C (left-hand scale) and the associated
loss tangent (right-hand scale) of a parallel-plate capacitor measured
as a function of frequency at an rms voltage of 500 mV. Solid
symbols are the results of the simple coaxial bridge and open
symbols are the results obtained by a commercial capacitance
bridge. For a better visibility, the data of the coaxial bridge have
been slightly shifted in frequency. The uncertainty bars correspond
to coverage factor k = 1.

not been explicitly measured, but is typically of the order of
10−10 V−1 and hence negligible for our application.

The bridge transformer can be configured for a 1 : 1, 10 : 1,
or 1 : 10 ratio. In each configuration, the transformer ratio
usually deviates from nominal. The deviation is typically
below 1×10−6 and thus negligible here. If required, the 10 : 1
ratio could be calibrated by a separate set-up [9] and the 1 : 1
deviation could be eliminated by a reversal measurement.

The uncertainty of the capacitance measurement is limited
by the resolution and repeatability of the rotary-vane reference
capacitor. Using a fixed-value reference capacitor and
replacing the ratio transformer with a decade inductive voltage
divider (as already mentioned in section 2), the relative
uncertainty could be reduced to a value as low as 1 × 10−7.

The loss factor of the reference capacitor is lower than
1 × 10−5 (and also lower than the loss factor uncertainty
of the commercial bridge) and this is the main uncertainty
contribution to the loss factor of the capacitor under test. The
loss factor of the reference capacitor could be determined by
other methods with an uncertainty of about 2 × 10−6 [28].

The type A uncertainty of both the capacitance and the
loss factor at an integration time of 3 s and an rms voltage of
500 mV amounts to 2×10−6 and can be further reduced by a
longer integration time or by using a low-noise pre-amplifier
(see, for example, the appendix of [29]).

The user has to fix the desired uncertainty and this
determines the required effort. In our case, the ultimate
uncertainty is not needed so that the bridge can be simple.
The main point for our application is that the uncertainty
does not significantly increase when a capacitance through
long leads into a cryo-magnetic system is measured. This
applies in particular to the loss factor whose measurement by
a commercial bridge usually fails in that case.

Appendix B. Connection scheme of QHE devices

The QHE devices investigated here are manufactured at PTB
for a triple-series connection scheme [19, 20], as shown
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Figure B1. (a) Schematic representation of a QHE device with eight
terminals of which two are not bonded. (b) Equivalent circuit [27].
(c) Equivalent circuit of a QHE device at which lead 1 is used for a
magnetocapacitance measurement. To avoid that the leads attached
to the other terminals remain open-circuited, they can be connected
to lead 1 at a star point outside of the cryostat (as indicated by the
dashed lines). The Hall resistance element has been omitted because
no external Hall current is applied. The lead capacitances CL are
also indicated. For simplicity, the outer conductors are not shown.

in figure B1(a), so that the Hall voltage can be measured
orthogonally to the Hall current. The equivalent circuit of such
a six-terminal device (figure B1(b) [27]) can be adapted to the
situation of a magnetocapacitance measurement whereby only
one terminal is connected to the capacitance bridge and no
external Hall current is applied (figure B1(c)).

If unused leads connected to the QHE device remain open-
circuited, the lead capacitances CL draw a considerable current
through the QHE device. The resulting Hall voltages appear
as an apparent contribution ωRHCL to the loss factor which in
our case amounts to 3.5×10−2 kHz−1, independent of whether
the 2DEG is connected to the high- or to the low-potential
side of the capacitance bridge. This unwanted effect would
completely cover the loss factor of the 2DEG.

Our new solution is a modification of the multiple-
series connection scheme [19, 20]: all leads attached to the
QHE device have to be connected to a single star point (as
shown in figure B1(c) which in turn is connected to the
capacitance bridge. The lead capacitive currents now flow
off along the leads, but they no longer flow through the QHE
device. The lead capacitances asymmetrically load the bridge
transformer, but this can be compensated for by the Wagner
arm. Because the leads have a certain lead resistance RL, a
corresponding voltage drop occurs at each lead. The multiple-
series connection compensates for this except for the usual two-
terminal-pair lead contribution to the loss factor, ωRLCL/2.
This contribution is very small (5 × 10−6 at a frequency of
1 kHz), well-defined and could be corrected for, if desired.

The original multiple-series connection scheme with two
star points, as shown in figure B2, can be used to measure
the magnetocapacitance of a QHE device through which an
external alternating Hall current flows. One star point is to
be connected to the high-terminal of the capacitance bridge,
whereas the other star point is connected to zero potential (i.e.
the outer conductor network). The ac voltage U charging the

U

2DEG

I6≈ 0

I R2 H I R3 H
I R6 H I R5 HRH

U = 0
IH

I5≈ 0

I4

I1

CL2 I2≈ 0 CL3 I3≈ 0

CL6 CL5

Figure B2. Equivalent circuit of a QHE device for a
magnetocapacitance measurement with applied ac Hall current.

magnetocapacitance and the ac voltage driving the Hall current
IH = U/RH are thus the same, which is exactly the situation
of a real ac QHR measurement. Note that the Hall current
which is four orders of magnitude larger than the capacitive
current does not flow through the reference capacitor; the Hall
resistance only appears to the bridge transformer as a weak
asymmetrical load which can be compensated for by a Wagner
arm, if required.

It is also possible to measure the magnetocapacitance in
the presence of a direct Hall current whose magnitude can be
set independently of the ac measuring voltage. We suggest
to create the direct current by an adjustable battery because
a controlled dc current source may cause interference. In any
case, the particular transformer must be protected with a large-
value blocking capacitor to prevent it from getting strongly
magnetised by a dc current.

Finally, we would like to mention that the equivalent
circuit does not take a non-zero longitudinal resistance into
account. In the case without an applied Hall current, the
longitudinal voltage is zero because the Hall current is zero.
In the case with an applied Hall current, we measured only
under the condition of a small longitudinal resistance where
the Hall resistance is at least roughly quantized. The multiple-
series connection then compensates for the small longitudinal
resistance in the same way as it does at a usual ac QHR
measurement.
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