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Abstract
Using a capacitive dilatometer we investigated the magnetoelastic behaviour
of single-crystalline ErNi2B2C in the temperature range 1.8 K � T � 16 K
and for external magnetic field in the tetragonal ab-plane µ0H � 6 T. For
T � TN = 6.4 K the longitudinal magnetostriction coefficient is negative,
whereas the transverse one is positive. The thermal evolution of the lattice
distortion εγ = (λ⊥ − λ‖)/

√
2 is in agreement with that of the previously

reported spontaneous tetragonal-to-orthorhombic distortion determined by
neutron diffraction. The behaviour is influenced by the distribution of the
magnetic domains in the crystal. The H–T phase diagram, constructed from
the magnetostriction curves, shows the well-known cascade of metamagnetic
transitions between several phases (antiferromagnetic AF1, ferrimagnetic F1,
F2) in the field range 0 < µ0H < 2.1 T belowTN . On the basis of a Hamiltonian
consisting of an exchange, a crystal-field, a Zeeman, and a magnetoelastic term,
we were able to reproduce reasonably well the H–T phase diagram as well as
various forced magnetostriction curves.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among the extensively investigated quaternary borocarbides RNi2B2C (R = rare earth) much
interest has been focused on ErNi2B2C because it shows a wide variety of physical phenomena
that are connected with the complex interplay between electronic, magnetic, and lattice
properties [1–9]. The compound crystallizes in a body-centred tetragonal structure (space
group I4/mmm) and becomes superconducting at the critical temperature Tc = 11.0 K. The
onset of the long-range magnetic order occurs at a lower temperature TN = 6.4 K. Below the
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Néel temperature in zero field an incommensurate, transversely polarized sinusoidal magnetic
structure was observed by neutron measurements [2, 3]. Two kinds of domain are possible,
one with the spins aligned parallel to the [0 1 0] direction with the incommensurate wavevector
q = (0.5586, 0, 0), the other with spins parallel to the [1 0 0] direction and q = (0, 0.5586, 0).

TheH–T phase diagram of ErNi2B2C was investigated by means of neutron diffraction [6],
magnetization [5], and magnetoresistivity [5]. The phase diagrams for various field orientations
such as [1 0 0], [1 1 0], and [0 0 1] exhibit a complex character and show the existence
of at least three magnetic phases for fields in the tetragonal plane. All magnetic phases
are described as incommensurate states with slightly different propagation vectors. A weak
ferromagnetic component in the zero-field phase below TWF ≈ 2.2 K was reported in [7]. In
contrast, the authors of [6] observed a small ferromagnetic component in the ferrimagnetic
phase F1 only above µ0H = 1 T. Besides the analysis of the long-range magnetic order in
ErNi2B2C, synchrotron x-ray scattering experiments revealed a tetragonal-to-orthorhombic
lattice distortion below TN [8]. The value of |a/b − 1| is about 0.2% at 3.7 K. The distortion
in zero magnetic field and its relation to the magnetic ordering has been studied also, in [9].

In the present study, magnetostriction and thermal expansion measurements were carried
out in order to evaluate in more detail the magnetic H–T phase diagram as well as the
magnetoelastic interactions. Of particular interest is checking the ability of macroscopic
magnetostriction techniques to reveal the reported lattice distortion. Furthermore, the stability
of the metamagnetic phases has been investigated by means of time-dependent relaxation
measurements.

2. Experimental details

The ErNi2B2C single crystals were grown by the floating zone method [10, 11]. The samples
used for our investigations were cut out of the same boule as the ones used in an earlier
unpolarized neutron diffraction study [7] and in zero-field specific heat measurements [12].
The good quality of the single crystal was checked by extensive structural, resistive, thermal,
and magnetic characterizations (for details see [7, 12]).

For the magnetostrictive measurements a small single-crystalline piece (1.3 × 2.4 ×
1.0 mm3) was mounted between the capacitor plates of a compensated miniature
dilatometer [13]. This device allows one to measure both longitudinal λ‖ = (�l/ l)‖ and
transverse λ⊥ = (�l/ l)⊥ magnetostriction because the capacitor may be adjusted parallel or
perpendicular to the external-field direction. The measurements were performed in an Oxford
Instruments MagLab low-loss cryostat (temperature range T = 1.5–300 K) equipped with
a 14 T superconducting magnet. Isothermal (=forced) magnetostriction was measured by
ramping the field between 0 and 10 T with a rate of 0.2 T min−1. Thermal expansion at various
fixed fields was measured by sweeping the temperature from 12 K (or from 16 K in some
experiments) to 1.8 K with a rate of 0.3 K min−1. Between several scans the sample was
heated up well above TN and subsequently cooled down in zero field to avoid the freezing in
of ordered states.

External magnetic fields were applied either along the [1 0 0] or the [0 1 0] direction.
Equivalent behaviours along the two directions are expected for a tetragonal system.

3. Results and discussion

The relative changes in sample length, λ‖ and λ⊥, obtained from thermal expansion and
magnetostriction measurements are plotted in figure 1 for fields along the [1 0 0] direction and
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Figure 1. Thermal expansion (parts (a), (c)) and forced magnetostriction (parts (b), (d)) behaviour
of an ErNi2B2C single crystal in external magnetic fields aligned in the ab-plane parallel (parts (a),
(b)) and perpendicular (parts (c), (d)) to the crystallographic [1 0 0] direction. (The scales of the
vertical axes are equal for all diagrams.) Some phase transition points used for the construction of
the H–T phase diagram (figure 3) are marked by arrows as an example.

in figure 2 for fields along the [0 1 0] direction. The data illustrate the strong anomalies at the
ordering temperature connected with the transition from the paramagnetic into the magnetically
ordered state. The Néel temperature of the compound is TN = 6.4 K in accordance with earlier
studies. In all thermal expansion curves, there was no detectable change in the sample length
at the superconducting critical point, indicating that the contribution of superconductivity to
the magnetostriction is below our experimental resolution.

The thermal expansion curves in zero field are characterized by small changes of the
sample length for T > TN . Below TN there are pronounced changes of the sample length
with temperature. Note that in figure 1 the zero-field longitudinal expansion between low
temperatures and TN is much less than the transverse one (�λ‖ = 2.9 × 10−4, �λ⊥ = 6.8 ×
10−4), whereas in figure 2 the situation is inverted (�λ‖ = 7.0 × 10−4, �λ⊥ = 0.85 × 10−4).
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Figure 2. Thermal expansion (parts (a), (c)) and forced magnetostriction (parts (b), (d)) behaviour
of an ErNi2B2C single crystal in external magnetic fields aligned in the ab-plane parallel (parts (a),
(b)) and perpendicular (parts (c), (d)) to the crystallographic [0 1 0] direction, (The scales of the
vertical axes are equal for all diagrams.) Some phase transition points used for the construction of
the H–T phase diagram (figure 3) are marked by arrows as an example.

This anisotropy constitutes clear evidence that the domains in the tetragonal plane are not
equally distributed. Taking into account the tetragonal to orthorhombic lattice distortion below
TN with relative changes of the lattice parameters from low temperatures up to TN of about
�a/a ∼= −1.1 × 10−3, �b/b ∼= +1.0 × 10−3 [8], the relative populations of domains with
moments along the [1 0 0] and [0 1 0] directions were estimated to be approximately 35 and
65%, respectively.

Thermal expansion measurements in finite magnetic fields (figures 1(a), (c) and 2(a),
(c)) show distinct features for T < TN . On increasing the temperature the sample expands
parallel to the external field (�λ‖ > 0) and contracts perpendicular to the field (�λ⊥ < 0).
The transverse thermal expansion curves for fields along [1 0 0] (see figure 1(c)) have a
pronounced minimum due to the higher amount of domains with moments along [0 1 0] which
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Figure 3. The magnetic phase diagram of ErNi2B2C for external magnetic fields parallel to
the crystallographic [1 0 0] and [0 1 0] directions as constructed from capacitive dilatometric
measurements. (The symbols denote the kind of measurement and (TE = thermal expansion,
MS = magnetostiction) the direction of the measurement in comparison with the field direction.)

tend to contract the sample when decreasing the temperature below TN . For the other direction
(figure 2(c)) the minimum has nearly vanished. Going to higher fields, the anomaly connected
with the onset of the magnetic order vanishes above 2 T (see figures 1(a) and 2(a)) and the
sample reaches the ferromagnetically aligned state F3.

The field-induced length variations are manifested in the forced magnetostriction
isotherms shown in figures 1(b), (d) and 2(b), (d). First, the curves for the two crystallographic
directions investigated are not different from each other: the value of the field-induced
longitudinal magnetostriction �λ‖ is negative (i.e. the sample contracts with increasing field)
and the transverse magnetostriction �λ⊥ is positive, for fields along the [1 0 0] direction
as well as for the [0 1 0] direction. Second, for field values above 2.2 T the curve shape
is monotonic; the sample lengths stay almost unchanged as expected for a saturated state.
Third, when the magnetic field is brought back to zero, the system nearly recovers its initial
state (very small hysteresis effects). This shows that a remarkable change of the domain
distribution cannot be achieved upon application of an external field �6 T. Finally, below the
magnetic ordering temperature TN all curves are characterized by drastic changes of slope.
These anomalies indicate phase transitions between different magnetic states. They vanish at
higher temperatures when the sample is in the paramagnetic state and the magnetostriction
coefficient is rather small.

Based on the (H, T ) anomalies in the measured magnetostriction and thermal expansion
curves, the magnetic H–T phase diagram was constructed (figure 3). The phase transition
points were taken from bends of the thermal expansion curves, which are characterized by
jumps in the derivatives of the experimental curves, or from extrema points in the forced
magnetostriction (compare arrows in figures 1 and 2).

In zero field the low-temperature phase AF1 exists over a wide temperature interval and
corresponds to the incommensurate phase characterized by q = (0.55, 0, 0) as reported in [2].
However, small bends in the low-field expansion curves were found and give a hint that the
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AF1 phase is modified in the temperature range 5.3 K < T < TN (not shown here). In
magnetic fields 0.3 T < µ0H < 2.1 T two magnetic phases are detected, marked by F1
and F2 in figure 3. They contain a ferromagnetic component as found for the phases in
measurements parallel to the [1 1 0] direction [6], but the propagation vectors of the magnetic
structures are still unknown. The ranges of existence of the phases F1 and F2 agree well with
the results reported in [5]. On increasing the field above 2.1 T the sample reaches the induced
ferromagnetic state F3. Apart from this clear evidence, the behaviour in the range T = 4.2–
6.4 K and µ0H = 0–1 T is still unclear. Note that the measurements in small magnetic fields
consist of contributions of two domains—thus the phase diagram in low fields shows phase
boundaries which originate microscopically from the behaviour of the domains (weighted with
the field-dependent domain distribution) in a magnetic field applied parallel and perpendicular
to the propagation. The phase transition lines in this region could not be detected in detail with
any of the macroscopic methods used because of their limited sensitivity. The use of scattering
experiments may be helpful to solve this problem.

Moreover, we checked the dynamical stability of this phase diagram by carrying out time-
dependent dilatometric measurements at several (H, T ) points including those near the phase
boundaries. It was observed that the sample lengths maintain their values over a long time
period (t ∼ 1 h) indicating that relaxation effects are negligible in this time window.

4. Theoretical consideration

In addition to the experimental investigations, the main features of the magnetostriction of
ErNi2B2C have been calculated using the following theoretical model. The Hamiltonian
consists of a crystal-field (CF ), an exchange (EX), a Zeeman, and an elastic term

H = HCF + HEX −
∑

i

gJ µBHext · Ji + Eel. (1)

In order to describe magnetoelastic properties, the strain dependence of the crystal-field
part has to be considered. The different terms in (1) can be described by the following
expressions (for the notation, see [14]; α and β denote the components of the vectors or
tensors, i and j the positions of the Er3+ ions):

HCF =
∑
lm,i

Bm
l (ε)Om

l (Ji ) (2a)

HEX = − 1
2

∑
i,j,α,β

Jα
i J αβ(i − j)Jβ

j (2b)

Eel = 1
2

∑
αβα′β ′

εαβεα′β ′Cαβα′β ′
. (2c)

In our approach the magnetic order is treated using a mean-field model [15] according to

HEX = −
∑

i

gJ µBHMF,i · Ji + 1
2

∑
i,j,α,β

〈Jα
i 〉T ,HJ αβ(i − j)〈Jβ

j 〉T ,H (3)

with the molecular field (‘MF ’)

Hα
MF,i = 1

gJ µB

∑
j,β

J αβ(i − j)〈Jβ

j 〉T ,H. (3a)

Now, the magnetic phase calculation program McPhase4 has been used to search for
stable mean-field spin configurations: the crystal-field parameters Bm

l used in our calculation

4 McPhase program is available at http://www.mcphase.de.
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Table 1. Parameters of the exchange tensor of ErNi2B2C as estimated from known basic magnetic
properties by a McPhase (see footnote 1) simulation. The exchange is assumed to be diagonal but
anisotropic (bold numbers).

X (a) Y (b) Z (c) Jaa (meV) Jbb (meV) Jcc (meV)

+1.0 0 0 −0.0010 −0.0022 −0.0020
0 +1.0 0 −0.0022 −0.0010 −0.0020

+0.5 +0.5 +0.5 −0.0014 −0.0014 −0.0014
0 0 +1.0 +0.0030 +0.0030 +0.0030

+1.0 +1.0 0 −0.0020 −0.0020 −0.0020

were taken from [16] (the coordinates x, y, z are chosen parallel to a, b, c, respectively):
B0

2 = −1.509 × 10−2 meV, B0
4 = +1.380 × 10−4 meV, B4

4 = −3.235 × 10−3 meV,
B0

6 = −1.207 × 10−6 meV, B4
6 = +2.263 × 10−5 meV.

The crystal-field ground state of the J = 15/2 Er3+ ion in ErNi2B2C can be described
by a quasi-quartet consisting of two doublets separated by an energy interval �. In order to
accelerate the numerical calculation of complicated magnetic unit cells, the single-ion part of
the Hamiltonian

Hi = HCF,i − gJ µBHi · Ji with Hi = HMF,i + Hext (4)

(for small effective magnetic fields Hi in comparison to the crystal field) is treated only within
the crystal-field ground-state quasi-quartet. In that special case it can be written as

Hi =




−�/2 0 0 0
0 −�/2 0 0
0 0 �/2 0
0 0 0 �/2


 − gJ µB(Ha

i J a
i + Hb

i J b
i + Hc

i J c
i ) (5)

with the angular momentum operators given by the 4 × 4 matrices

J a
i =




0 B 0 C

B 0 −C 0
0 −C 0 E

C 0 E 0


 ,

J b
i =




0 −iB 0 iC
iB 0 iC 0
0 −iC 0 −iE

−iC 0 iE 0


 ,

J c
i =




A 0 0 0
0 −A 0 0
0 0 −D 0
0 0 0 D


 .

(5a)

The constants A–E can be computed from the crystal-field parameters given above. The
values are A = −0.4768, B = −3.4683, C = −3.5791, D = −0.4659, E = 3.663,
� = 0.575 meV.

The exchange parameters J αβ , given in table 1, are the result of a self-consistent estimation
using McPhase simulations, which were based on a next-neighbour interaction in the a-
direction taking into account TN and the known magnetic structure of ErNi2B2C in zero field.
Note that it was necessary to introduce an exchange anisotropy to stabilize the transversely
polarized magnetic structure. For the refinement of the exchange parameters, neutron scattering
experiments in a magnetic field are required.

As a result of the simulation, we find in the magnetically ordered state in zero field a
transverse spin wave with a propagation vector of about q = (0.5, 0, 0). Considering that only
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Figure 4. The field dependence of
∑

i 〈O2
2 (Ji )〉T ,H calculated with the magnetic phase calculation

program McPhase (http://www.mcphase.de) (upper graph) and of the symmetrized strain taken
from the experimental data (lower graph). The dotted curve is a guide to the eyes, present to
indicate the proposed effects caused by domains at T = 2.5 K and at magnetic fields parallel to
[0 1 0].

five different exchange constants have been used, this result is in good agreement with the
wavevector q = (0.5586, 0, 0) reported in the literature [2] for the zero-field low-temperature
phase. For fields in the range 1 T < µ0H < 2 T along the [0 1 0] direction, a transverse spin
wave with the propagation vector q′ = (0.667, 0, 0) is calculated. This field range corresponds
to phase F2.

On the basis of the McPhase results we also calculated the magnetostriction by minimizing
the total free energy with respect to the strain. The lattice distortion is given in the symmetrized
notation of [14] by

εγ = 1√
2
(εaa

CF − εbb
CF ) (6a)

with

εα′α′
CF = 1

N

∑
i

(Kα′α′ 〈O0
2 (Ji )〉T ,H + Lα′α′ 〈O2

2 (Ji )〉T ,H) (α′ = a, b, c). (6b)

Since Kaa = Kbb for tetragonal symmetry [14], the orthorhombic distortion is
proportional to the expectation value

∑
i〈O2

2 (Ji )〉T ,H:

εγ = 1√
2N

(Lαα − Lββ)
∑

i

〈O2
2 (Ji )〉T ,H = Bγ

C
γ

0

1

N

∑
i

〈O2
2 (Ji )〉T ,H. (7)
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In expression (7) we introduced the notation of [14]: Bγ and C
γ

0 denote the magnetoelastic
coefficient and the elastic constant without magnetic interactions, respectively. N is the number
of rare-earth ions in the magnetic unit cell.

Using the molecular-field state calculated for several values of temperature T and magnetic
field H by the McPhase program, the distortion was evaluated from equation (7). The
calculated field dependence of

∑
i 〈O2

2 (Ji )〉T ,H at T = 2.5 K is specifically shown in figure 4
(upper graph). It shows maxima at the metamagnetic transitions at about µ0H = 1 and 2 T
corresponding to the F2/F1 and F2/F phase boundaries. Note that there is no phase boundary
at the minimum of

∑
i 〈O2

2 (Ji )〉. (The magnetostriction curves in figures 1(b), (d) and 2(b),
(d) have been interpreted accordingly.)

The result of the model calculation can be compared to the experimental data. For magnetic
fields parallel to [0 1 0] the distortion can be estimated from

εγ = 1√
2
(εaa − εbb) = 1√

2
(λ⊥ − λ‖) =

(
a

b
− 1

)
. (8)

First the magnetostriction values (see figures 2(b), (d)) were normalized to the
paramagnetic state taking into account the zero-field expansion (figures 2(a), (c)). Then the
absolute values of the difference (λ⊥ − λ‖)/

√
2 at T = 2.5 K are available. The curve is

also plotted in figure 4 (lower graph). This curve resembles qualitatively the calculation for
magnetic fields above 0.8 T. The fact that the calculated magnetostriction below 0.8 T is
smaller than the measured one is attributed to magnetic domain effects which are not included
in our present analysis (in order to do that accurately, information on the field dependence
of the domain distribution is required). As a result of the analysis, we also obtain the value
of the magnetoelastic constant Bγ /C

γ

0 = −3 × 10−5 < 0. This means a sample expansion
perpendicular to the magnetic moments (or parallel to q) in the transversely ordered phase
when a transverse magnetic field is applied. This result agrees with the behaviour in the
paramagnetic state, where domain effects can be neglected: the magnetostriction curves at
T = 10 K show �λ‖ < 0 and �λ⊥ > 0, which means also an expansion normal to the field
(or moment) direction.

Magnetostriction measurements in borocarbides were reported only for HoNi2B2C [17]
and DyNi2B2C [18]. Judging from the features of the reported magnetostriction curves together
with their H–T phase diagrams, it is expected that our analysis could be easily extended to
these two cases as well as to most of the other magnetic borocarbides.

5. Summary

In summary, thermal expansion and magnetostriction isotherms were used to investigate
and map out the H–T -phase diagram of ErNi2B2C. The phase diagram obtained agrees
quite satisfactorily with the reported phase diagrams [4–7], indicating that macroscopic
magnetostriction techniques are well suited for probing the low-temperature magnetic
properties of borocarbides. In particular, for TWF < T < TN , the magnetic stability of the
various phases as well as the metamagnetic transformations among them are reasonably well
accounted for within a mean-field treatment that assumes a magnetic Hamiltonian composed
of a crystal field, an exchange, a Zeeman, and an elastic term. This treatment reproduces the
various aspects of the experimental H–T phase diagram. Because the magnetoelastic constant
is negative, an elongation occurs perpendicular to the direction of the magnetic moments in an
external field. Our analysis reveals the importance of magnetoelastic coupling in the analysis
of magnetic properties in general and the magnetic phase diagram in particular.
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