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Abstract: This study deals with the problem of steady laminar flow of an electrically conducting viscous
incompressible fluid between two parallel porous plates of a channel in the presence of a transverse magnetic
field when the fluid 1s being withdrawn through both the walls of a channel at the same rate. A solution for the
case of small R (Suction Reynolds number) and M (Hartmann number) is discussed. Expressions for the velocity
components and the pressure are obtained. The govermng nonlinear differential equations are solved
numerically using R-K Gill’s method and the graphs of axial and radial velocity profiles have been drawn.
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INTRODUCTION

The Magnetohydrodynamic flow between two
parallel porous plates is a classical problem in fluid
dynamics and it 18 known as the Hartmann flow. The
solution of the above problem has many applications
m magnetohydrodynamic power generators,
magnetohydrodynamic pumps, accelerators, aerodynamic
heating, electrostatic precipitation, polymer technology,
petroleum industry, purification of crude oil and fluid
droplets and sprays.

The influence of a transverse uniform magnetic field
on the flow of a conducting fluid between two mfimte,
parallel, stationary and insulated plates was studied
(Hartmann, 1937).

The problem of steady flow of an incompressible
viscous fluid through a porous charmel with rectangular
cross section, when the Reynolds number is low was
studied and a perturbation solution assuming normal wall
velocities to be equal was obtained (Berman, 1953).

A detailed analysis of forced convection heat
transfer to an electrically conducting liquid flowing in a
channel with transverse magnetic field was studied
(Perlmutter and Siegel, 1961).

The Hall effect on the steady motion of electrically
conducting and viscous fluids in channels was studied
(Tar, 1962).

The effect of the Hall currents on the steady
magnetohydrodynamic couette flow with heat transfer
was studied (Soundalgelear et al., 1979, Soundalgelkar and

Uplekar, 1986). The temperatures of the two plates were
assumed either to be constant (Soundalgekar et al., 1979)
or to vary linearly along the plates mn the direction of the
flow (Soundalgekar and Uplekar, 1986).

The effect of Hall current on the steady Hartmann
flow subjected to a uniform suction and injection at the
boundary plates was studied (Abo-El-Dhat, 1993).

The effect of temperature dependent viscosity on the
flow in a chamnel has been studied m the hydromagnetic
case (Attia and Kotb, 1996, Attia, 1999).

Here we consider the steady two dimensional lammar
flow of an incompressible viscous fluid between two
parallel porous plates in the presence of a transverse
magnetic field by assuming the normal wall velocities to
be equal. The perturbation solution obtained for this
problem reduces to the results of Berman when the
Hartmanmn number is zero (Berman, 1953).

MATHEMATICAL FORMULATION

The steady lamimar flow of an incompressible viscous
fluid between two parallel porous plates is considered in
the presence of a transverse magnetic field of strength Ho
applied perpendicular to the walls. The origin is taken at
the centre of the channel and let x and y be the coordinate
axes parallel and perpendicular to the channel walls.

The length of the channel is assumed to be L and
2 h is the distance between the two plates. Let uand v be
the velocity components m the x and y directions,
respectively.
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The equation of continuity is

du v _, (1)
ox oy

The equations of momentum are
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where, 0 1s the electrical conductivity and B = p, Ho, L1,
being the magnetic permeability.

The boundary conditions are u (x, h) = 0, u (x,-h) = 0,

v (x, h) = Vand v (x,-h) = -V where V is the velocity of

suction at the walls of the channel. Tet 1) = v/h and the

Egs. 1-3 become

du 1 av
t—=0
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where v 1s the kinematic viscosity, p the density of
the fluid, p the coefficient of viscosity and p the pressure.
The boundary conditions are converted into
u(x, 1)=0, u(x-1)=0 (7

and vix =V, v(x-1)=V (8)

Let ¥ be the stream function such that

_ 1oy 9
“‘han 9
' (10)

ax

The equation of continuity can be satisfied by a
stream function of the form

¥ (x,y) = [hU©O)»-vx () (1)

where 17 (0) is the average entrance velocity at x = 0. From

Eq. 11, the velocity components (9) and (10) are given by

u= % [RU(0) — Vx] £(n) (12)
v=VEm (13)
where the prime denotes the differentiation with

respect to the dimensionless variable 11 = y/h. Since the
fluid is being withdrawn at constant rate from both the
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walls, v is independent of x. Using (12) and (13) in (5) and
(6), the equation of momentum reduces to

,la_p —[U(O) %J {%(ff’f’z ) ,I\:_wawL G_BszJ(l-fD

p ox P
2
S Lo Ve W (15)
hp on h
Now differentiating (15) w.r.t. x, we get
I’p _, (16)
axan
Differentiating (14) w.r.t. ‘1, we get
2 2p7
I [0y 2| L Xppe ) Y pr, SBL 07
oxom h Jdnl h h p
From (16), Eq. 17 can be written as
2
= o)L o (18)
dn| h h p

which 18 true for all x.

Let
R = Suction Reynolds number = hv/v

1
M = Hartmann number = Bh{gf
vp

Integrating (18) w.r.t. 1 and substituting the above
eXpPressions we get

I+ R (¢ - ff)aR f =K (19)

2,2

where , _ Hiteoh andKisan arbitrary constant.
pv

Boundary conditions on

fmare £(1)=1, [(-1)=-1, ' (1)=0and [ (-1)=0 (20)

Hence the solution of the equations of motion and
continuity is given by a nonlinear third order differential
Eq. 19 subject to the boundary conditions (20).

RESULTS

Approximate analytic solution: The nonlinear ordinary
differential Eq. 19 subject to conditions (20) must in
general be mtegrated numerically. However for the special
case when 'R’ and 'a’ are small, approximate analytic results
can be obtained by use of a regular perturbation
approach. In this situation f may be expanded in the form.

£=Y RO @1
K=Y K, R @2
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where f, satisties the conditions

£ (1) =-1,6 (-1)=0, f(1)=1,£(1)=0

and
L =L (=0andf (1)=1L'(1)=0whenn=0

Here £;’s and k,;’s are mdependent of R. Substituting (21 and (22) n (19) we get

" +RE"+R L OO R(E +RE +RYE O +RE+RME,
(£, +RE"+RYE" .. o pa(f, +RE+RY/ D] =K, +K, R+KR*+ ... ...

Equating the coefficients of R, we get
)" =K,

£+ 1% - 4f)" - afy =K,
£+ 24§ -G f-af, = K,
Solution of Eq. 25 subject to the boundary conditions (23) 15

£, () = %n3+%nz+Bn+C

Applymg the boundary conditions (23) to the above equation we get
f,(m) = 2(3 -n’ )

Solution of Eq. 26 and 27 subject to the boundary conditions (24) are

f,m) = ﬁ(ﬂf +3n° *2n)+%(4ns +2m° —m)

]

280330 24 12 10 6 70 20 10
+M°(0.000671+ 0.0027695a —3.211667 x 107%a%)
+n(~0.00054 - 0.00209a + 0.0013a)

11 3 T 2om T T 5 2pnd
fz(n)_l{n _an’ ' _Zan’_a'm’ 3n’ 3an +MJ

—6a 81
K, = 3+{Ta+ EJR +R*(-0.0174-0.05121a + 0.00573a’ )

Hence the first order perturbation solutions for £ (1) and K are

£ ()=, (M +Rf (n)and
K¥ =K, +K,R
lLe.
R M®
FOM) =G -n2)+ —— (-0 +3n° =20 )+ (-1’ + 20 —
M) =23+ (430" =I)s— o’ w2 )
where aR = M?
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(31
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The Second order perturbation solutions for f(1) and K are

9 (n)y = £, (M) +R L () +R* £, (1) and
K® =K,+K,R+K,R
Le.

@) _Mn 2 R 7 3 M’ 5 3
f (n)75(3—'n )+ﬁ(—n +3n —2n)+5(—n +2In° -n)
. RZT]“ ~ MZR'I’]g ~ RZT]B ~ 3M2RT]7 ~ M4,n7 . 3R2n7 . 3M2RT]5 . 7M4n5
92400 6720 3360 2800 1680 19600 5600 2800
+ N (0.000671 R +0.0027695 M'R —0.003211667M")

+1(—0.00054R? — 0.00209M’R + 0.0013M*) (36)

v (aR=M,aR*=aRR =M'R, a’R* = M

K® = —3+{—65a+ 2;] R —0.0174R* —=0.05121 M*R + 0.00573 M* (37)

The above results reduces to the results of Berman when M = 0 (Berman, 1953).
Hence the first order expressions for the velocity components are

u (x, M) —[U(O)—\f}- f'(m) —[U(O) —\;X];(l —nz)[l—:;o 2= =7n')+ —1\6’10 (5n* —DJ (38)
1 R M2
_ _ - o 3 a7 PV (39)
vin) = VI '\{zne n)+—280(3n n n)+—40 (Zn’ - n)}

Pressure distribution: From Eq. (14), we have

h2 ap VX S5 f’2 (n)_ 2pf

— X -Ju(oy- =||f R -Mf

v }( )+ {Mn)f,,(n)} (n)}
and since () +R (f’z () — FIE” () - M) =K (from 19)

we have ap_KpV[U(O)_VX}

ox b’ h

ik
( p} (40)

I BV / 1
on = n L) -eviE(m) () (41)

Now, from Eq. 15, we have

Since dp = @dx-#— @dy
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op dap ¥
=dp=LTdx+ 2 dn|n==
p=- n[ ul J

on h
= o= U(0) o KT m)-pv ) ) )
Integrating (42) we get
F e vt uv ,
p(m) =p (0, O)f%f (n)+h@2{u(o)x 2’; }r%(f(n)f(o)) (43)

= The pressure drop in the major flow direction 1s given by

2
P (O, Mp . 1) = %{\;ihxu(o)} (44)
NUMERICAL SOLUTION 1.5 ) 1
3
The approximate results of the previous section are

not reliable when the Reynolds number is not small. To 1 1. M=0.500 forR=05
obtain the detailed information on the nature of the flow e g ﬁ:g;gz g'%:;-g
for different values of R and M, a numerical sclution to hal ) ’ ' ’

the govermng equations 15 necessary. For different 0.5
ranges of the parameters R and M, the two point
boundary value problem expressed by Eq. (19) and (20)

has been integrated by using R-K Gill’s method and the 0 I—
graphs have been drawn. -1 038 06 04 02 0 02 04 06 08 1
Ul
DISCUSSION Fig. 2: Axial velocity profiles when M= 0.5, M =0.707,

M =1.581 for different values of R
The axial velocity and the radial velocity profiles have

been drawn for values of R in the range of 0<R<10 and 15
different values of M. These are shown in Fig. 1-6. Figure
1 represents the axial velocity profiles for M = 0 when R
takes the values 0.5, 1.0 and 5.0. These profiles decrease 11 1.M=0.707 forR=0.5 s
in the central region and mcrease near the walls with the e 2.M=1.000forR = 1.0
. = 3.M=2236forR=5.0
mcrease of R. 4. M=2.828 forR=8.0
Figure 2 shows the axial velocity profiles for M = 0.5, 0.5 5.M=3.162 forR=10.0
0.707, 1.581 for the values of R = 05, 1.0 and 5.0, )
1.5
’ 1
2 3
c L] T T L] T T T L} T T 1
-1 08 06 -04 02 0 02 04 06 08 1
1.M=0forR=0.5 n
1 2. M=0forR=1.00
3. M=0 forR =5.00 Fig. 3: Axual velocity profiles when M =0.707, M=1.0,
'g M= 2828 M = 3.162 for different values of R
0.5+

respectively. As M increases the axial velocity profiles
decrease 1n the central region and increase near the
walls.

InFig. 3 and 4 it 1s seen that as M increases the axial
velocity profiles become flat in the central portion and
steep near the walls. This gives that for large M, the fluid
Fig. 1. Axial velocity profiles when M = 0 for different moves like a block which shows some sort of rigidity. This

values of R confirms the 1dea that in conducting fluids, magnetic field

W

T T T T T T T T
-1 08 06 04 02 0 02 04 06 08 1
n
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1.5
1-
1. M= 0.866 for R=0.5
g 2L M=1225forR=1.0
L M=273%forR=5.0
054 4. M=13.464 for R=8.0

n
uJ

-Il -o'.s -UI.6 -OI.4 -(ll.2 b OI.2 0:4 0’.6 018 I1
n
Fig. 4 Axial velocity profiles when M = 0.866, M =1.225,

M= 2.739, M = 3.464 for different values of R

0.8 1L.M=1225forR=1.0
2.M=2.739forR=5.0
3.M=3464 forR = 8.

-1 -DI -0'.6 -(;.4 -ﬂl.2 (; 0:2
n
Fig. 5: Radial velocity profiles when M = 1.225, M =2.739,

M = 3.464 for different values of R

T T
¢4 06 08 1

1.M= 1,000 forR=1.0
2.M=2236forR=5.0
3.M=2828forR=38.0
4, M=3.162 for R = 10.0

T T T T T T T T T
-1 08 06 04 02 0 02 04 06 03 1

n

Fig. 6 Radial velocity profiles when M = 1.0, M = 2.236,
M= 2.828, M = 3.162 for different values of R

brings rigidity in the fluid. Hence it 1s observed that {' (1))
decreases with increase in the values of R and the profile
18 parabolic. This 18 n good agreement and correlates well
with the results of Berman (1953).

The function f (1) (n-velocity profiles) 1s plotted
against 1 for various values of R in Fig. 5 and 6,
respectively. It 1s observed that for R>0 and for different
values of M in the region-1<m<0, f decreases with

increase of R while in the region 0<m<1, f increases with
increase of R.

CONCLUSION

In the above analysis a class of solutions of the
magnetohydrodynamic flow of viscous fluid between two
parallel porous plates 1s presented, mn the presence of a
transverse magnetic field when the fluid 13 being
withdrawn through both the walls of a channel at the
same rate. The result obtained for this problem reduces to
the result of (Berman, 1953) when the Hartmann number is
Zero(1.e., when M = 0).

ACKNOWLEDGMENT

The authors wish to thank Dr. T. Govindarajalu, Dean,
Jeppiar Educational Trust for his help in preparing the
numerical solution to this problem.

REFERENCES

Abo-El-Dhat, E., 1993. Hartmann flow with uniform
suction and injection at the bounding plates. MS
Thesis, Helwan University, Egypt.

Attia, HA. and N.A. Kotb, 1996. MHD flow between two
parallel plates with heat transfer. Acta Mechanica,
117: 215,

Attia, HA., 1999 MHD flow and heat transfer between
two parallel plates with temperature dependent
viscosity. Mech. Res. Comm., 26: 115.

Berman, A.S., 1953. Laminar flow in chamnels with porous
walls. J. Applied Phys., 24: 1232,

Hartmann, JT., 1937. Hg-Dynamics-I, Theory of the
laminar flow of an electrically conducting liquid in
a homogeneous magnetic field, Kgl Danske
Videnskab. Selskab Mat.-Fys. Medd. 15, No. 6.

Perlmutter, M. and R. Siegel, 1961. Heat transfer to an
electrically conducting fluid flowing m a channel with
a transverse magnetic field. NASA, TN-875.

Soundalgekar, V., N. Vighnesam and H. Takhar, 1979.
Steady MHD couette flow with heat transfer
considering constant temperature. IEEE Trans.
Plasma Sci1., 7: 178.

Soundalgekar, V. and A. Uplekar, 1986. Steady MHD
couette flow with heat transfer considering varying
temperature. IEEE Trans. Plasma Sci., 14: 579.

Tam, 1., 1962. Steady motion of electrically conducting
and viscous fluids in channels. J. Aerospace Sci.,
29 287,

2425



	Page 1

