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�e problem of two-dimensional steady laminar MHD boundary layer 	ow past a wedge with heat and mass transfer of nano	uid
embedded in porous media with viscous dissipation, Brownian motion, and thermophoresis e
ect is considered. Using suitable
similarity transformations, the governing partial di
erential equations have been transformed to nonlinear higher-order ordinary
di
erential equations.�e transmutedmodel is shown to be controlled by a number of thermophysical parameters, viz. the pressure
gradient, magnetic, permeability, Prandtl number, Lewis number, Brownian motion, thermophoresis, and Eckert number. �e
problem is then solved numerically using spectral quasilinearization method (SQLM). �e accuracy of the method is checked
against the previously published results and an excellent agreement has been obtained. �e velocity boundary layer thickness
reduces with an increase in pressure gradient, permeability, and magnetic parameters, whereas thermal boundary layer thickness
increases with an increase in Eckert number, Brownianmotion, and thermophoresis parameters. Greater values of Prandtl number,
Lewis number, Brownian motion, and magnetic parameter reduce the nanoparticles concentration boundary layer.

1. Introduction

Fluid 	ows with convective heat and mass transfer over a
wedge shaped bodies is ensured inmany thermal engineering
applications like crude oil extraction, geothermal systems,
thermal insulation, heat exchangers, and the storage of
nuclear waste, Nagendramma et al. [1]. A model of steady
laminar 	uid 	ow over a wedge has developed for the �rst
time by Falkner and Skan [2] to illustrate the application of
Prandtl’s boundary layer theory. Late, Hartree [3] investigated
the same problem with similarity transformation and gave
numerical results for wall shear stress for di
erent values of
the wedge angle. Eckert [4] also solved Falkner-Skan 	ow
along an isothermal wedge and presented the �rst wall heat
transfer values. Aerward, the variety of applications and
understanding of the physical features of laminar boundary
layer 	ow past a wedge have motivated many researchers (to

mention a few, Martin and Boyd [5], Sattar [6], Kandasamy
et al [7], and Turkyilmazoglu [8]).

Magnetohydrodynamic (MHD) is the study of 	uid 	ow
in electrically conducting 	uids with magnetic properties
that a
ect 	uid 	ow characteristics. When a magnetic �eld
is incident in an electrically conducting 	uid, a current is
induced. �is e
ect polarizes the 	uid and as a result the
magnetic �eld is changed (Makanda et al. [9]). Due to exten-
sive practical applications ofMHD in technological processes
such as plasma studies, petroleum industries, MHD power
generator designs, design for cooling of nuclear reactors, and
construction of heat exchangers and on the performance of
many other systems, there are many studies that considered
MHD 	uid 	ow past a wedge. �ese include the work of
Abbasbandy et al. [10] who examined the e
ects of MHD in
the Falken-Skan 	ow of Maxwell 	uid, and El-Dabe et al. [11]
considered theMHD boundary layer 	ow of non-Newtonian
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Casson 	uid on a moving wedge with heat and mass transfer.
Khan et al. [12] also analyzed MHD laminar boundary layer
	owpast awedgewith the in	uence of thermal radiation, heat
generation, and chemical reaction.

In the past few years,MHDboundary layer 	owwith heat
and mass transfer of nano	uids has become a major topic
of modern-day interest. Nano	uids have a signi�cant role in
enhancing the heat transfer properties of 	uids. �e most
important properties of nano	uids are enhanced e
ective
	uid thermal conductivity and heat transfer coe�cient. Some
recent studies on MHD boundary layer 	ow of nano	uid
include the work of the Srinivasacharya et al. [13] who
analyzed the steady laminar MHD 	ow in a nano	uid over a
wedge in the presence of a variable magnetic �eld. Rasheed
et al. [14] also investigated MHD boundary layer 	ow of
nano	uid over a continuouslymoving stretching surface.�e
e
ects of thermal radiation on mixed convection 	ow of
nano	uid over a stretching sheet in the presence of amagnetic
�eld are studied by Nageeb et al. [15].

Viscous dissipation e
ect changes the temperature dis-
tribution by playing a role like an energy source, which
leads to a
ected heat transfer rate and hence needs to be
considered in heat transfer problems. �e analysis of MHD
boundary layer 	ows in porous media with and without the
e
ect of viscous dissipation has been a subject of several
recent researchers. Accordingly, Arthur et al. [16] analyzed
hydromagnetic stagnation point 	owover a porous stretching
surface in the presence of thermal radiation and viscous
dissipation e
ects. Also, Ramesh et al. [17] studied the MHD
boundary layer 	ow past a constant wedge within porous
media. Heat and mass transfer of MHD 	ow of nano	uids
in the presence of viscous dissipation e
ects are numerically
analyzed by Haile and Shankar [18]. Majety et al. [19] studied
the e
ect of viscous dissipation onMHDboundary layer 	ow
past a wedge through porous medium. �ey concluded that
viscous dissipation produces heat due to drag between the
	uid particles, which cause an increase in 	uid temperature.

Most of the standard methods of solving the boundary
layer problems are the numerical approach based on the
shooting algorithm with the Runge-Kutta scheme, �nite
di
erence method, spectral homotopy analysis method,
and Newton-Raphson based methods such as the quasilin-
earization method and the successive linearization method.
Recently, spectral based numerical techniques such as the
Spectral Quasilinearization Method and Spectral Relaxation
Method have been developed (see Motsa et al. [23], Motsa
[24], and Magagula et al. [25]). As indicated by Motsa et al.
[26] and Zhou [27] Chebyshev spectral collocation methods
are easy to implement and adaptable to various problems
and provide more accurate approximations with a relatively
small number of unknowns. Gottlieb andHesthaven [28] also
added that thewide use of spectralmethods hasmotivated the
researcher by their accuracy and e�ciency in solving incom-
pressible Navier-Stokes equations. Furthermore, Motsa et al.
[29] stated that the interest in using Chebyshev spectral
collocation methods in solving nonlinear PDEs stems from
the fact that these methods require less grid points to
achieve accurate results and e�cient compared to traditional
methods like �nite di
erence and �nite element methods.
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Figure 1: Physical model of 	ow con�guration and coordinate
system.

�e present study deals with MHD boundary layer 	ow
past a wedge with heat and mass transfer of nano	uid
embedded in a porous media with viscous dissipation,
Brownian motion, and thermophoresis parameter e
ects.
Using appropriate similarity transformation, the governing
nonlinear partial di
erential equations are transformed to
nonlinear higher-order ordinary di
erential equations.�en,
these equations are numerically solved using Spectral Quasi-
linearization Method. �e e
ects of di
erent parameters on
velocity, temperature, and concentration �elds are investi-
gated and analyzed with the help of their graphical and
tabular representations.

2. Mathematical Formulation

Consider steady two-dimensional, laminar boundary layer
	ow past a wedge with heat transfer of incompressible
electrically conducting nano	uid embedded in a porous
media with viscous dissipation e
ects.�e coordinate system
is chosen with � coordinate pointing parallel to the plate in
the direction of the 	ow and � coordinate pointing towards
the free stream, as shown in the Figure 1. �e wall of the
wedge is maintained with uniform and constant temperature�� and nanoparticle concentration ��. �� and �� are,
respectively, greater than the ambient temperature �∞ and
ambient nanoparticle concentration �∞. �e subscripts �
and ∞ denote conditions at wall and ambient, respectively.
�e 	uid is assumed to have constant physical properties.

It is also assumed that a constant magnetic �eld �0 is
applied in the positive y-direction, normal to the walls of the
wedge. �e induced magnetic �eld caused by the motion of
electrically conducting 	uid is neglected, as it is very small
compared to applied magnetic �eld (Ullah et al. [22]). �e
Naiver-Stokes equation of motion including electromagnetic
body force or Lorentz force within conductive media is given
by 	 = 
� × �, where 
� is the conduction current de�ned
as 
� = �(� + u × �), � is the magnetic �eld, � is the
electric �eld, u is the velocity vector of the 	uid, and � is the
electrical conductivity of the 	uid (Nicholas [30]). Since the
induced magnetic �eld caused by the motion of electrically
conducting 	uid � is negligible as compared to the applied



Mathematical Problems in Engineering 3

magnetic �eld �, then 
� = �(u×�) = �[(, V, 0)×0, ��, 0)] =����̂. �us, the Lorentz force 	 = 
� × � = (0, 0, ���) ×(0, ��, 0) = −��2��̂ = −��20.
We use the general model of the conservation equation

for a general scalar variable � which can be expressed as ( see
Versteeg and Malalasekera [31])

� (��)�� + ∇. (�u�) = ∇. (Γ∇�) + �� (1)

where the velocity vector given by u = ⟨, V, �⟩, � is density
of the 	uid, Γ is the di
usion coe�cient, and �� is the source
term. Equation (1) is the so-called transport equation for
property �, and it clearly highlights the various transport
processes.

By setting � equal to 1, u, temperature of 	uid �, and
nanoparticle concentration� in (1) and selecting appropriate
values for di
usion coe�cient Γ and source terms ��, we
obtain special forms of PDEs (Navier-Stokes equations) for
the continuity, momentum, energy, and nanoparticle con-
centration. With the above assumptions and the boundary
layer approximations, the continuity, momentum, energy,
and nanoparticle concentration equations governing steady
two-dimensional MHD boundary layer 	ow past a wedge
embedded in a porous media with viscous dissipation e
ects
and constant 	uid properties are given as (see Srinivasacharya
et al. [13], Haile and Shankar [18], and Alam et al. [32]).

��� + �V�� = 0 (2)

��� + V

��� = − 1��
���� + ]�

�2��2 − (��
2
0�� + ]�� ) (3)

���� + V

���� =  � �2���2 +
]��� (

���)
2

+ #{%	 (���� ���� ) + %
�∞ (���� )
2}

(4)

���� + V

���� = %	 �2���2 + %
�∞
�2���2 (5)

�e appropriate boundary conditions are given as

 = 0;
V = 0;
� = ��;
� = ��,

at � = 0

(6)

 = ' (�) = '∞��;
� *→ �∞;
� *→ �∞,

as � *→ ∞
(7)

 = '∞;
� = �∞,

/� � = 0
(8)

where  and V are, respectively, the � and � velocity compo-
nents. ��, ]�,  �, and ��, are respectively, density, kinematic
viscosity, thermal di
usivity, and speci�c heat capacity of the
base 	uid. � is the permeability of porous medium, %	 is
the Brownian di
usion coe�cient,%
 is the thermophoresis
di
usion coe�cient, and # is the ratio of the e
ective heat
capacity of the nanoparticle material and the heat capacity of
base 	uid.

�e y-momentum equation implies that the pressure � in
the boundary layer must be equal to that of the free stream
for any given � coordinate. Because the velocity pro�le is
uniform in the free stream, there is no vorticity involved;
therefore, simple Bernoulli’s equation can be applied in this
high Reynolds number (Falkner and Skan [2]). It is assumed
that '(�) = '∞�� is the 	uid velocity at the wedge outside
the boundary layer, where '∞ is the free stream velocity. For
a uniform stream, the momentum equation (3) becomes (see
Falkner and Skan [2], and Nageeb et al. [15])

− 1��
���� = '2'2� + (��20�� + ]�� )' (9)

Substituting (9) into (3), the momentum equation is written
as

��� + V

��� = '2'2� + ]�
�2��2

+ (��20�� + ]�� ) (' − )
(10)

Here, � is measured from the tip of the wedge, 3 is the
Falkner-Skan power-law parameter, and 4 = 23/(1 + 3)
is the Hartree pressure gradient parameter corresponding to4 = Ω/8 for the total angle Ω of the wedge (see Figure 1).
Physically, 3 < 0 corresponding to an adverse pressure
gradient (oen resulting in boundary layer separation) while3 > 0 represents favorable pressure gradient (Nagendramma
et al. [1]). In the Blasius solution 3 = 0 corresponding to an
angle of attack of zero radians, where 3 = 1 corresponding
to stagnation point 	ow.
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In order to transform the governing equations (2)-(7) to
a set of ordinary di
erential equations, introduce the stream
function 9(�, �) such that

 = �9��
V = −�9��

(11)

and we use the following transformation variables (see Ullah
et al. [22], and Alam et al. [32]):

: = �√1 + 32 '∞
]�

�(�−1)/2;

9 (�, :) = √ 21 + 3]�'∞�(�+1)/2A (:)
A� (:) = ';
B (:) = � − �∞�� − �∞ ;
C (:) = � − �∞�� − �∞

(12)

where : is a dimensionless similarity variable, A(:) nondi-
mensional stream function, A�(:) is non-dimensional veloc-
ity, B(:) is nondimensional temperature, and C(:) is nondi-
mensional nanoparticle concentration.

Upon substituting similarity variables into (3)-(7), the
continuity equation (2) is identically satis�ed and the follow-
ing system of ordinary di
erential equations is obtained:

A��� + AA�� + 4 [1 − A�2] + 11 + 3 (F + G) [1 − A�]
= 0 (13)

B�� + HI [AB� + �JA��2 + KLB�C� + K�B�2] = 0 (14)

C�� + MNHI (AC�) + K�KLB�� = 0 (15)

�e transformed boundary conditions are

A = 0;
A� = 0;
B = 1;
C = 1,

/� : = 0;

(16)

A� *→ 1;
B *→ 0;
C *→ 0,

/Q : *→ ∞
(17)

with

F = 2��20�1−���'∞ ;

G = 2]��1−��'∞ ;
�J = '2�� (�� − �∞) ;
HI = ]� �
MN =  �%	 ;
KL = #%	 (�� − �∞)

]�
;

K� = #%
 (�� − �∞)
]��∞ ;

Re = '��
]�

(18)

where F is magnetic parameter, Re is local Reynolds
number, HI is Prandtl number, �J is Eckert number, G
is the permeability parameter, MN is Lewis number, KL is
the Brownian motion parameter, K� is the thermophoretic
parameter, and prime (�) denotes derivative with respect to :.

�e physical quantities of engineering interest in the
present study are the skin friction coe�cient��, local Nusselt
numberK, and local Sherwood number �ℎ, respectively,
and de�ned as

�� = 2#��'2 (�) ;
K = �S�� (�� − �∞) ;
�ℎ = �F�%	 (�� − �∞) ;

(19)

where #�, S�, andF� are the surface shear stress, the surface
heat 	ux, and surface mass 	ux; and, respectively, they are
given as

#� = T� (���)�=0 ;
S� = −�� (���� )�=0 ;
F� = −%	 (���� )�=0

(20)
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�e nondimensional skin friction coe�cient, local Nusselt
number, and local Sherwood number are, respectively, given
as

��√Re = 2√3 + 12 A�� (0) ;
K√Re

= −√3 + 12 B� (0) ;
�ℎ√Re

= −√3 + 12 C� (0)
(21)

3. Numerical Method

�e system of nonlinear ODE (13)-(15) subjected to the
boundary conditions (17) has been solved numerically using
spectral quasilinearization method (SQLM). �e main idea
behind this method is identifying univariate andmultivariate
nonlinear terms of function and its derivative in each of the
equations of the systems (13)-(15), linearizing the terms and
applying Chebychev pseudospectral collocation method (see
Motsa [33]).

Applying spectral quasilinearization method, (13)-(15)
give the following iterative sequence of linear di
erential
equations:

A����+1 + /1,�A���+1 − /2,�A��+1 + /3,�A�+1 = /4,� (22)

B���+1 + L1,�B��+1 + L2,�A���+1 + L3,�A�+1 + L4,�C��+1 = L5,� (23)

C���+1 + J1,�C��+1 + J2,�A���+1 + J3,�A�+1 + J4,�B��+1 = J5,� (24)

where the terms containing I + 1 subscripts denote current
approximations and terms containing I subscripts denote
previous approximations. �e corresponding boundary con-
ditions are

A�+1 (0) = 0;
A��+1 (0) = 0,
A��+1 (∞) *→ 1

(25)

B�+1 (0) = C�+1 (0) = 1,
B�+1 (∞) = C�+1 (∞) *→ 0 (26)

where

/1,� = A�;
/2,� = 24A�� + 11 + 3 (F + G) ;
/3,� = A��� ;
/4,� = A�A��� − 4 (1 + A�2� ) − 11 + 3 (F + G)

L1,� = HI (A� + KLC�� + 2K�B��) ;
L2,� = 2HI�JA��� ;
L3,� = HIB��;
L4,� = HIKLB��
L5,� = HI�JA��2� + HIKLB��C�� + HIK�B�2� + HIA�B��;
J1,� = HI (MNA� − K�B��)
J3,� = HI (MNC�� − (K�KL) B��) ;
J4,� = −HI (K�KL) (A� + KLC�� + 2K�B��)
J2,� = −2HI�J (K�KL)A��� ;
J5,� = HI {MNA�C��

− (K�KL) [�JA��2� + KLB��C�� + K�B�2� + A�B��]}
(27)

�e physical domain on which the system of governing
equations (13)-(15) de�ned in [0,∞) is moved to [−1, 1]
using the transformation � = 2:/M∞ − 1, where M∞ is
a scaling parameter assumed to be large and the interval[0,∞) is replaced by [0, M∞]. Spectral collocation method
is applied to the system of (22)-(24); and the di
erentiation
matrix D = 2%/M∞ is used to approximate derivatives of
unknown variables, where D is (K + 1) × (K + 1) Chebyshev
di
erentiation matrix (see Trefethen [34]). �e system of
(22)-(24) is solved as a coupled matrix:

[[
[
Λ 11 Λ 12 Λ 13Λ 21 Λ 22 Λ 23Λ 31 Λ 32 Λ 33

]]
]
[[
[
	�+1Θ�+1Φ�+1

]]
]
= [[
[
e1e2e3
]]
]

(28)

with transformed boundary condition

	�+1 (���) = 0,
	�+1 (���−1) = 0,

	�+1 (�0) = 1
(29)

Θ�+1 (���) = 1,
Θ�+1 (�0) = 0;

Φ�+1 (���) = 1,
Φ�+1 (�0) = 0

(30)
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where e1 = /4,�;
e2 = L5,�;
e3 = J5,�
Λ 11 = D

3 + diag (/1,�)D2 − diag (/2,�)D
+ diag (/3,�) ;

Λ 12 = O;
Λ 13 = O

Λ 21 = diag (L2,�)D2 + diag (L3,�) ;
Λ 22 = D

2 + diag (L1,�)D;
Λ 23 = diag (L4,�)D
Λ 31 = diag (J2,�)D2 + diag (J3,�) ;
Λ 32 = diag (J4,�)D;
Λ 33 = D

2 + diag (J1,�)D

(31)

	�+1 = [A�+1,0, A�+1,1, − − −, A�+1,�]
,Θ�+1 = [B�+1,0, B�+1,1, − −−, B�+1,�]
, and Φ�+1 = [C�+1,0, C�+1,1, − − −, C�+1,�, ]
 are
vectors of sizes (K + 1) × 1, diag(⋅ ⋅ ⋅ ) represents a diagonal
matrix of vectors, and O is a zero vectors of size (K + 1) ×(K + 1).

�e suitable initial approximations that satisfy the gov-
erning boundary conditions of the boundary layer equations
(13)-(17) are

A0 (:) = : − 1 + N−�,
A�0 (:) = 1 − N−�
B0 (:) = C0 (:) = N−�

(32)

4. Results and Discussion

Numerical solutions are obtained using SQLM for the veloc-
ity, temperature, and concentration pro�les across the bound-
ary layer for di
erent values of the governing parameters.�e
number of collocation points in the space � variable used
to generate the results is K = 40 in all cases. To ensure
the numerical accuracy of the numerical method used, the
skin friction coe�cient −A��(0) and local Nusselt number−B�(0) have been calculated for di
erent values of Falkner-
Skan power-lawparameter3. FromTable 1, it is observed that
the data produced by the SQLM code and those reported by
Ashwini and Eswara [20],Watanaba [21], andUllah et al. [22]
are excellent agreement. �us, we are very much con�dent
that the present results are accurate.

Table 2 illustrates the in	uence of nondimensional gov-
erning parameters on the skin friction coe�cient, local
Nusselt, and local Sherwood numbers. �e skin friction
coe�cient enhances with increase in pressure gradient, per-
meability, andmagnetic parameter.�e local Nusselt number

is a decreasing function and a local Sherwood number is
an increasing function of the pressure gradient parameter,
magnetic parameter, Permeability parameter, Prandtl num-
ber, Lewis number, thermophoresis parameter, and Eckert
number.

Figure 2(a) shows the variation of velocity pro�les for
di
erent values of pressure gradient parameter 4. It clearly
demonstrates that the velocity pro�le increases with an
increase in pressure gradient parameter. Because of the
increment of wedge angle, the 	uid moves much slower
and decreases velocity boundary layer thickness. Figure 2(b)
shows the e
ect of permeability parameter G on the velocity
pro�le. It is observed that increase in G leads to increase the
velocity of the nano	uid on the porous surface and decrease
its boundary layer thickness. It is also noticed that both
pressure gradient parameter 4 and permeability parameter G
have no signi�cant e
ect on both nano	uid temperature and
concentration.

Figures 3(a), 3(b), and 4(a) illustrate the in	uences of
magnetic parameter M on the velocity, temperature, and
concentration pro�les, respectively. Figure 3(a) reveals that
the velocity boundary layer thickness decreases with an
increase in magnetic parameter. �is is due to the fact that
the presence of transverse magnetic �eld sets in Lorentz
force, which results in retarding force on the velocity �eld.
Consequently, as the values of magnetic parameter increase,
so does the retarding force and hence the velocity pro�le
increase. Figure 3(b) shows that the thermal boundary layer
thickness decreases with an increase in magnetic parameter.
�is is due to additional work expended in dragging the 	uid
in the boundary layer against the action of the Lorentz force
and energy is dissipated as thermal energy which heats the
	uid. �is reduces the temperature. It is also observed that
the concentration pro�le and its boundary layer thickness
decrease with an increase in magnetic parameter as shown in
Figure 4(a). Figure 4(b) descries the concentration pro�le for
di
erent values of Lewis number Le. It is clearly observed that
the concentration pro�le and its boundary layer thickness
reduce considerably as the Lewis number increases.

�e e
ect of the Prandtl number on the temperature and
concentration is shown in Figures 5(a) and 5(b), respectively.
It is depicted that the temperature and concentration pro�les
and their boundary layer thickness reduce signi�cantly as
the Prandtl number increase. Because increasing the Prandtl
number tends to reduce the thermal di
usivity of the 	uid
and causesweak penetration of heat inside the 	uid.However,
in the region near to the boundary surface, the heat transfer
rate increases with an increase in Pr. �is is due to the fact
that the temperature gradient at the surface increase.

�e e
ect of viscous dissipation parameter Ec on the
temperature and concentration pro�les is presented in Fig-
ures 6(a) and 6(b), respectively.�e Eckert number expresses
the conversion of kinetic energy into internal energy by
work done against the viscous 	uid stress. It is observed that
the temperature increases signi�cantly from the surface and
attains a peak value around : = 0.5 and then decreases in
the rest of the region as given in Figure 6(a).�is implies that
the thermal boundary layer becomes thickerwith large Eckert
number.�e concentration pro�le gradually reduces near the
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Table 1: Comparison of the SQLM results of skin friction coe�cient −A��(0) and local Nusselt number −B�(0) for various values of3 for the
case of G = 0, M=0, Ec=0, Pr=0.73, Nb=10−5, Nt=0, and Le=0.

−A��(0) −B�(0)3 Present Ashwini [20] Watanaba [21] Ullah [22] Present Watanaba [21]

0.0000 0.46960 0.4696 0.46960 0.4696 0.42016 0.42015

0.0141 0.50461 0.5046 0.50461 0.5046 0.42578 0.42578

0.0435 0.56898 0.5690 0.56898 0.5690 0.43548 0.43548

0.0909 0.65498 0.6550 0.65498 0.6550 0.44730 0.44730

0.1429 0.73200 0.7320 0.73200 0.7320 0.45694 0.45693

0.2000 0.80213 0.8021 0.80213 0.8021 0.46503 0.46503

0.3333 0.92765 0.9277 0.92765 0.9277 0.47814 0.47814

1.0000 1.23258 1.2326 1.2326

Table 2: Computations of the skin friction coe�cient −A��(0), local Nusselt number −B�(0) and local Sherwood number −C�(0) for various
parameters.

4 F G HI �J KL K� MN −A��(0) −B�(0) −C�(0)
0.25 2.0 0.5 0.5 0.5 0.4 0.2 1.5 1.64283184 0.20409760 0.56485047

0.5 1.64925659 0.20245352 0.56792266

1.0 1.66202020 0.19918041 0.57392554

0.25 1.0 1.35213817 0.22650827 0.52246831

3.0 1.88981423 0.18295134 0.60015609

5.0 2.30622396 0.14414670 0.65848609

2.0 0.2 1.56122953 0.21069258 0.55304965

0.5 1.64283184 0.20409760 0.56485047

0.8 1.72061427 0.19761936 0.57603379

0.5 0.1 1.64283184 0.24670503 0.31761537

0.5 1.64283184 0.20409760 0.56485047

1.0 1.64283184 0.09226748 0.81573784

0.5 0.1 1.64283184 0.35278900 0.49744039

0.5 1.64283184 0.20409760 0.56485047

1.0 1.64283184 0.01794788 0.64924507

0.5 0.2 1.64283184 0.22555655 0.58070313

0.4 1.64283184 0.20409760 0.56485047

0.8 1.64283184 0.16405080 0.55624299

0.4 0.1 1.64283184 0.21129537 0.54685694

0.2 1.64283184 0.20409760 0.56485047

0.4 1.64283184 0.19012517 0.60871601

0.2 1.0 1.64283184 0.20846325 0.47924548

1.5 1.64283184 0.20409760 0.56485047

2.0 1.64283184 0.20105976 0.63575168

surface up to : = 1 and then it increases with an increase
in the viscous dissipation parameter Ec as highlighted in
Figure 6(b).

�e in	uence of the Brownian motion parameter Nb
on the nano	uid temperature and concentration pro�les is
presented in Figures 7(a) and 7(b), respectively. Figure 7(a)
reveals that the temperature pro�le increases with an increase
in Nb, particularly in the region close to the surface. �e
physics behind this phenomenon is that the increased Nb
increases the thickness of thermal boundary layer, which

�nally enhances the temperature. Figure 7(b) remarks that
an increase in the values of Nb tends to decrease the
concentration pro�le near the surface. Figures 8(a) and 8(b),
respectively, reveal the usual temperature and concentration
pro�les for various values of thermophoresis parameter Nt.
�e thermophoresis force generated by the temperature
gradient produces a fast 	ow and more 	uid is heated away
from the surface. Consequently, the higher the value of Nt
increase temperature pro�le and its boundary layer thickness
as given in Figure 8(a). Figure 8(b) reveals that concentration
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Figure 2: (a) Velocity pro�les for various values of 4. (b) Velocity pro�les for various values of G.
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Figure 3: (a) Velocity pro�les for various values of M. (b) Temperature pro�les for various values of M.

pro�le declines near the boundary surface until : = 0.5
and aerward it increases with an increase in thermophoresis
parameter Nt.

5. Conclusions

�e problem of two-dimensional steady laminar MHD
boundary layer wedge 	ow with heat and mass transfer
of nano	uid past a porous media with viscous dissipation,
Brownian motion, and thermophoresis e
ects has been stud-
ied. Using suitable similarity transformations, the governing
equations are transformed to a system of nonlinear ordinary
di
erential equations and solved numerically employing
spectral quasilinearization method. From the above discus-
sions the following conclusions are given:

(1) �e thickness of velocity boundary layer reduces with
an increase in pressure gradient, permeability, and
magnetic parameters.

(2) �ermal boundary layer thicker with an increase in
Eckert number, Brownianmotion, and thermophore-
sis parameters.

(3) Greater values of Prandtl number, Lewis number,
Brownian motion, and magnetic parameter reduce
the nano	uid concentration pro�le.

(4) �e skin-friction coe�cient at the surface enhances
with an increase in pressure gradient, permeability,
and magnetic parameters.

(5) �e localNusselt number is a decreasing function, but
a local Sherwood number is an increasing function of
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Figure 4: (a) Concentration pro�les for various values of M. (b) Concentration pro�les for various values of Le.
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Figure 5: (a) Temperature pro�les for various values of Pr. (b) Concentration pro�les for various values of Pr.
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Figure 6: (a) Temperature pro�les for various values of Ec. (b) Concentration pro�les for various values of Ec.
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Figure 7: (a) Temperature pro�les for various values of Nb. (b) Concentration pro�les for various values of Nb.
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Figure 8: (a) Temperature pro�les for various values of Nt. (b) Concentration pro�les for various values of Nt.

the pressure gradient parameter, magnetic parameter,
permeability parameter, thermophoresis parameter,
and Eckert number.

Nomenclature

�0: Magnetic �eld strength��: Local Skin friction coe�cient��: Speci�c heat capacity��: Concentration at the surface of the wall�∞: Ambient concentration%: Chebyshev Di
erentiation matrix%	: Brownian di
usion coe�cient%
: �ermophoresis di
usion coe�cient

�J: Eckert numberA: Dimensionless stream function
�: Conduction current�: Permeability of porous medium�: �ermal conductivityM: Characteristic lengthMN: Lewis numberF: Magnetic parameter3: Falkner-Skan power-law parameterF�: Wall mass 	uxKL: Brownian motion parameterK�: �ermophoresis parameterK: Local Nusselt numberHI: Prandtl number
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S�: Wall heat 	ux
Re: Local Reynolds number��: General source term�ℎ: Local Sherwood number�∞: Ambient temperature': Inviscid velocity at the wedge'∞: Free stream velocity: Fluid velocity in the x direction
V: Fluid velocity in the y direction

Greek Symbols

 : �ermal di
usivity4: Pressure gradient parameterΓ: General di
usion coe�cient:: Dimensionless similarity variableB: Dimensionless temperatureG: Permeability parameterT�: Dynamic viscosity of the base 	uid

]�: Kinematic viscosity of the base 	uid��: Density of the base 	uid�: Electrical conductivity#: Ratio of e
ective heat capacity of
nanoparticle and heat capacity of base
	uid#�: Wall shear stressC: Dimensionless concentration9: Stream function�: General scalar variable

Subscripts

∞: Condition at the free stream
w: Condition at the surface.

Data Availability

�e data used to support the �ndings of this study are
available from the corresponding author upon request.
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