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Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a
stretching surface is investigated when the surface is stretched in its own plane with a velocity pro-
portional to the distance from the stagnation-point. We have discussed the uniqueness of the solution
except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic
field on the flow characteristic is explored numerically and it is concluded that the velocity at a point
decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than
the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimen-
sionless shear stress coefficient |F ′′(0)| increases with increase in power-law index n when the value of
the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the
value of this ratio further differs from 1, the variation of |F ′′(0)| with n is non-monotonic.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Flow of an incompressible viscous fluid over a stretching sur-
face has an important bearing on several technological processes. In
particular in the extrusion of a polymer in a melt-spinning process,
the extrudate from the die is generally drawn and simultaneously
stretched into a sheet which is then solidified through quenching
or gradual cooling by direct contact with water. Further, the study
of magnetohydrodynamic (MHD) flow of an electrically conducting
fluid caused by the deformation of the walls of the vessel contain-
ing this fluid is of considerable interest in modern metallurgical and
metal-working processes. Crane [1] gave an exact similarity solution
in closed analytical form for steady boundary layer flow of an incom-
pressible viscous fluid caused solely by the stretching of an elastic
flat sheet which moves in its own plane with a velocity varying lin-
early with distance from a fixed point. Pavlov [2] gave an exact sim-
ilarity solution to the MHD boundary layer equations for the steady
two-dimensional flow of an electrically conducting incompressible
fluid due to the stretching of a plane elastic surface in the pres-
ence of a uniform transverse magnetic field. Andersson [3] investi-
gated the MHD flow of a viscoelastic fluid past a stretching surface
in presence of a uniform transverse magnetic field. Andersson and
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Dandapat [4] extended the Newtonian boundary layer flow consid-
ered by Crane [1] to an important class of non-Newtonian fluids
obeying power-law model. MHD flow of a power-law fluid over a
stretching surface was examined by Andersson et al. [5]. It is known
that several electrically conducting fluids acquire non-Newtonian
properties in the presence of strong electric and magnetic fields (see
[6]). A comprehensive discussion on the potential engineering ap-
plications of non-Newtonian power-law electrically conducting flu-
ids permeated by magnetic fields was presented by Martinson and
Pavlov [7].

Recently Chiam [8] studied two-dimensional steady stagnation-
point flow of an incompressible viscous fluid towards a stretching
surface in the case when the parameter b representing the ratio of
the strain rate of the stagnation flow to that of the stretching sheet
is equal to unity. Mahapatra and Gupta [9] studied two-dimensional
orthogonal stagnation-point flow of an incompressible viscous
fluid towards a stretching surface in the general case b�1. They
found that the structure of the boundary layer depends critically
on the value of b. The corresponding problem of two-dimensional
stagnation-point flow of a power-law fluid towards a rigid surface
was investigated by Kapur and Srivastava [10]. The extension of the
same problem to the axisymmetric case was studied by Maiti [11]
and later on by Koneru and Manohar [12]. Sapunkov [13] investi-
gated the two-dimensional orthogonal stagnation-point flow of an
incompressible electrically conducting power-law fluid towards a
rigid surface in the presence of a uniform transverse magnetic field.
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Djukic [14] studied the hydromagnetic Hiemenz flow of a power-
law fluid towards a rigid plate. Mahapatra and Gupta [15] ana-
lyzed the steady two-dimensional orthogonal stagnation-point flow
of an incompressible viscous electrically conducting fluid towards a
stretching surface, the flow being permeated by a uniform transverse
magnetic field.

In this paper we investigate steady, two-dimensional orthogonal
stagnation-point flow of an electrically conducting power-law fluid
towards a stretching surface in the presence of a uniform transverse
magnetic field. The motivation for studying this problem stems from
the fact that it may arise in metal-working processes.

2. Flow analysis

Consider the steady two-dimensional stagnation-point flow of an
electrically conducting power-law fluid in the presence of a uniform
transverse magnetic field towards a flat surface coinciding with the
plane y = 0, the flow being confined to the region y >0. Two equal
and opposing forces are applied on the stretching surface along the
x-axis so that the surface is stretched keeping the origin fixed as
shown in Fig. 1.

The MHD equations for steady two-dimensional stagnation-point
flow in the boundary layer towards the stretching surface are, in the
usual notation,

�u
�x

+ �v
�y

= 0, (1)

u
�u
�x

+ v
�u
�y

= U
�U
�x

+ 1
�

��xy
�y

− �B20
�

(u − U), (2)

where the induced magnetic field is neglected (which is justified
for MHD flow at small magnetic Reynolds number [16]). It is also
assumed that the external electric field is zero and the electric field
due to polarisation of charges is negligible. Here u and v are the
velocity components along the x and y direction, respectively. Further
�,�,B0 and �xy are the density, electrical conductivity, magnetic field
and shear stress respectively. In (2), U(x) stands for the stagnation-
point velocity in the inviscid free stream. The stress tensor is defined
as [17]

�ij = 2K|2DmlDml|(n−1)/2Dij, (3)

o
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Fig. 1. A sketch of the physical problem.

where

Dij =
1
2

(
�ui
�xj

+ �uj
�xi

)
(4)

denotes the stretching tensor, K is called consistency coefficient and
n is the power-law index. Fluids obeying constitutive equation (3)
are called power-law fluid. If n<1, the fluid is called pseudoplastic
power-law fluid and if n>1, it is called dilatant power-law fluid since
the apparent viscosity decreases (shear-thinning) or increases with
the increase in shear rate (shear-thickening) accordingly as n<1 or
n>1.

In the present problem we have �u/�y <0 when a/c <1 and
�u/�y >0 when a/c >1. This gives shear stress as

�xy = −K
(

−�u
�y

)n

when a/c <1 (5)

and

�xy = K
(

�u
�y

)n

when a/c >1. (6)

Now the momentum equation (2) becomes, when a/c <1,

u
�u
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+ v
�u
�y

= U
�U
�x

− K
�

�
�y

(
−�u
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)n

− �B20
�

(u − U) (7)

and when a/c >1,

u
�u
�x

+ v
�u
�y

= U
�U
�x

+ K
�

�
�y

(
�u
�y

)n

− �B20
�

(u − U). (8)

The appropriate boundary conditions are

u = cx, v = 0 at y = 0, (9)

u → U(x) = ax, v = −ay as y → ∞, (10)

where a and c are positive constants. Under the transformations

� =
(

K/�
c1−2n

)1/(n+1)

x2n/(n+1)F(�) (11)

and

� = y

(
c2−n

K/�

)1/(n+1)

x(1−n)/(1+n), (12)

where

u = ��
�y

and v = −��
�x

(13)

define the stream function �, the governing equations (7) and (8)
become, when a/c <1,

n[−F′′(�)](n−1)F′′′(�) +
(

2n
n + 1

)
F(�)F′′(�)

− F′2 (�) − MF′(�) + M
a
c

+ a2

c2
= 0 (14)

and when a/c >1,

n[F′′(�)](n−1)F′′′(�) +
(

2n
n + 1

)
F(�)F′′(�)

− F′2 (�) − MF′(�) + M
a
c

+ a2

c2
= 0. (15)

The boundary conditions are

F(0) = 0, F′(0) = 1, F′(∞) = a/c, (16)
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where the prime denotes differentiation with respect to � and M =
�B20/(�c) is the magnetic parameter. The skin friction coefficient Cf
at the wall is given by

Cf = �w
(1/2)�(cx)2

= 2[−F′′(0)]n
[
(cx)2−nxn

K/�

]−1/(1+n)

when a/c <1 (17)

and

Cf = 2[F′′(0)]n
[
(cx)2−nxn

K/�

]−1/(1+n)

when a/c >1, (18)

where (cx)2−nxn/(K/�) is the local Reynolds number based on the
sheet velocity cx.

3. Uniqueness

We now study the uniqueness of the solution to the boundary
value problem (BVP) (14)–(16). It may be noted in this connection
that the uniqueness of the steady flow of an incompressible vis-
cous fluid past a stretching sheet in the presence of a uniform free
stream was established by McLeod and Rajagopal [18]. Further the
existence and uniqueness of the solution to steady two-dimensional
orthogonal stagnation-point flow of an incompressible electrically
non-conducting fluid in the absence of any magnetic field was in-
vestigated by Paullet and Weidman [19].

We begin by considering the governing equation for MHD
stagnation-point flow of a Newtonian fluid (n=1) which is obtained
from (14) or (15) as

F′′′(�) + F(�)F′′(�) − F′2 (�) − MF′(�) + Mb + b2 = 0, (19)

subject to boundary conditions

F(0) = 0, F′(0) = 1, F′(∞) = b, (20)

where b = a/c.

3.1. The case b >1

We first show that if b >1, then any solution to the BVP under
consideration must necessarily be monotonic. We take

F′′(0) = �, (21)

where � is a free parameter and put

v(�,�) = �F
��

. (22)

Differentiating (19) with respect to �, we get

v′′′ + Fv′′ + vF′′ − 2F′v′ − Mv′ = 0, (23)

subject to

v(0) = 0, v′(0) = 0, v′′(0) = 1, v′′′(0) = 0. (24)

Again differentiating (23) with respect to �, we get

v(iv) + Fv′′′ − (F′ + M)v′′ − F′′v′ + F′′′v = 0. (25)

Hence using (20) and (24), we have

v(iv)(0) = 1 + M>0. (26)

Now F′ can be a maximum when F′′ = 0 and F′′′ <0 at � = �max. Then
from (19) at the maximum point of F′, we have

F′′′ = F′2 + MF′ − Mb − b2 <0.
This implies (F′ − b)(F′ + b + M) <0.
Hence either (i) F′−b >0, F′+b+M<0 or (ii) F′−b <0, F′+b+M>0.
Now if F′ > b, then clearly F′ +b+M>0, which contradicts F′ +b+

M<0. Thus (i) is ruled out. Hence (ii) holds so that −(b + M) < F ′ < b.
Thus any solution that rises above b cannot be a solution to (19).

Next consider the case that F′ has a maximum below b. At such
point F′ < b, F′′ =0 and F′′′ <0. After the maximum below b, to satisfy
the boundary condition at ∞, F′ must turn concave up (F′′′ >0) and
have a minimum and then at a later point turn concave down (F ′′′ <0)
as F′ → b from below. Since F′′′ goes from negative to positive and
back to negative, F′′′ at some point must have a positive maximum.
At this point F′′′ >0, F(iv) = 0 and F(v) <0. Differentiating (19), we get

F(iv) + FF′′′ − F′F′′ − MF′′ = 0. (27)

Differentiating (27) again, we have

F(v) + FF(iv) − F′′2 − MF′′′ = 0. (28)

Hence at the above maximum point,

F(v) − F′′2 − MF′′′ = 0. (29)

This gives F(v) = F′′2 +MF′′′ >0. This is a contradiction since we have
seen that F(v) <0. Thus no solution to the BVP has a maximum below
F′ = b.

We next eliminate the possibility of a minimum of F ′. In fact at a
minimum of F′, we have from (19), F′′′ = F′2 + MF′ − Mb − b2 >0.

This implies (F′ − b)(F′ + b + M) >0.
Hence either (i) F′−b >0, F′+b+M>0 or (ii) F′−b <0, F′+b+M<0
Now minimum of F′ cannot occur above F′ = b, since F′(0)= 1 < b

(we assume b >1). In order that F′ has a minimum above F′ =b, there
ought to be a maximum of F′ above F′ =b. But we have already seen
that there cannot be any maximum of F′ above F′ = b. Hence any
minimum of F′ must occur with F′ < − (b + M).

Again F′′′(0) = (1 − b)(1 + b + M) <0 since b >1. Thus F′ starts
off concave down, must turn concave up at its minimum and then
concave down again to fulfil the boundary condition at ∞. We have
already seen from above that this is not possible. Hence if b >1, any
solution to the BVP must be monotonic.

To show uniqueness, suppose that there exist two solutions such
that F′(�,�1) and F′(�,�2) are both solutions with �2 >�1.

Lemma 1. For all � >0 and all �1����2, we have v′ >0. Also v′ is
bounded away from zero as � → ∞.

Proof. From the initial conditions on v given by (24) and (26), one
can show that there exists an interval 0 <� < � such that initially in
0 <� < �, v′ >0, v′′ >1 and v′′′ >0. Since v′′′ >0 initially, v′ is initially
positive and concave up. For v′ ever to become zero, v′-curve must
change from concave up to concave down. Thus there exists a point
�1 with v>0, v′ >0, v′′ >0, v′′′ = 0 and v(iv)�0. Until this point, v
and all its derivatives up to v′′′ are positive. Hence F and all its
derivatives through F′′′ are increasing function of �. Hence in the
interval �1����2, we must have

0 < F(�;�1)�F(�;�)�F(�;�2), (30)

1 < F′(�;�1)�F′(�;�)�F′(�;�2) < b, (31)

0 < F′′(�;�1)�F′′(�;�)�F′′(�;�2) (32)

and

F′′′(�;�1)�F′′′(�;�)�F′′′(�;�2) (33)
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for any 0 <���1. Now from (25),

v(iv)(�1) = (
F′(�1) + M

)
v′′(�1) + F′′(�1)v

′(�1)

− F′′′(�1)v(�1). (34)

It follows from (19) that if F′′′(�) = 0, then

FF′′ + (b + F′)(b − F′) + M(b − F′) = 0. (35)

Now since 1 < F′ < b, F >0, F′′ >0 for � >0, we find from (35) that for
� >0, there is a contradiction since each term in (35) is positive.
Hence F′′′ <0 for � >0.

It now follows from (34) that each term on the right-hand side
of (34) is positive, so that v(iv)(�1) >0. This contradicts the fact that
v(iv)(�1)�0. Hence v′ is positive for all � >0 and �1����2. Further
v′′′ >0 and can never vanish. Since v′(0) = 0, v′′(0) = 1, we infer that
v′ remains bounded away from zero as � → ∞. �

Using mean value theorem, we get

F′(�;�2) − F′(�;�1) =
(

�F′

��

)
�=�̄

(�2 − �1)

= v′(�, �̄)(�2 − �1), (36)

where �1 < �̄ <�2. Thus as � → ∞ in (36) we get

0 = b − b = F′(∞;�2) − F′(∞;�1)

= v′(∞; �̄)(�2 − �1) >0 for �1 ��2. (37)

Thus we arrive at a contradiction. Hence for b >1, the solution to the
BVP under consideration is unique.

3.2. The case 0 < b <1

Theorem 1. In this case there can be at most one monotonic solution
to the BVP (19) and (20).

Proof. As beforewe consider the function v(�;�)=�F/��, with F ′′(0)=
� which satisfies Eqs. (23) and (24). Now when 0 < b <1, we have
from (19) that F >0, b < F′ <1, F′′ <0, F′′′ >0 for all � >0. Note that for
0 < b <1, F′ is monotonic decreasing and hence F′′ <0.

If possible let there be two monotone solutions F(�;�3) and
F(�;�4) with �4 >�3. �

Lemma 2. For � >0, and all �3����4, one can show that v′ >0 and
bounded away from zero as � → ∞.

Proof. Since v′(0)=0 and v′′(0)=1, for � >0 and small, we must have
v′ >0 and increasing. This follows from the fact that v′′′(0) = 0 and
this gives from (25), v(iv)(0) = 1 + M>0. Thus we have v′′(�) >0 and
so v′ is increasing. Now v′ cannot be a maximum because at such a
point, v′ >0, v′′ = 0 and v′′′ �0. Then at this point, Eq. (23) implies
v′′′ = −vF′′ + 2F′v′ + Mv′ >0, since F′′ <0, v>0, F′ >0 and v′ >0. Thus
we arrive at a contradiction since v′′′ �0. Hence v′ isbounded away
from zero as � → ∞. �

Finally, by mean value theorem,

F′(�;�4) − F′(�;�3) =
(

�F′

��

)
�=�̂

(�4 − �3)

= v′(�, �̂)(�4 − �3), (38)

where �3 < �̂ <�4. Thus as � → ∞ in (38) we get

0 = b − b = F′(∞;�4) − F′(∞;�3)

= v′(∞; �̂)(�4 − �3) >0 for �3 ��4. (39)

We arrive at a contradiction. Hence for 0 < b <1, there is at most one
monotonic solution to the BVP (19) and (20).

It is to be noted that we have discussed the uniqueness of the
solution to the BVP (19) and (20) for Newtonian (n=1) case. Similar
results hold for other values of the power-law index n which are
omitted here.

4. Numerical solution method

The transformed momentum equations (14) and (15) subject to
the boundary conditions (16) are solved numerically by an efficient
Shooting method for different values of the parameters n and M.
First, however, Eqs. (14) and (15) are written as a system of three
first-order differential equations, which are solved by means of a
standard fourth-order Runge–Kutta integration technique. Then a
Newton iteration procedure is employed to assure quadratic conver-
gence of the iterations required to satisfy outer boundary condition
F′(∞) = a/c.

5. Results and discussions

The above problem of stagnation-point MHD flow towards a
stretching surface is solved numerically for five different values of
the magnetic parameter (M�2.0), for eight values of the power-law
index in the range 0.4�n�2.5 and for five values of a/c. Figs. 2 and 3
represent the variation of x-component of velocity for pseudoplastic
fluid (n=0.4) and dilatant fluid (n=2.0), respectively for several val-
ues of M and a/c. The common characteristic of these two figures is

Fig. 2. Variation of F ′(�) with � for several values of M and a/c when n = 0.4.

Fig. 3. Variation of F ′(�) with � for several values of M and a/c when n = 2.0.
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Table 1
Values of −F ′′(0) for a/c = 0.2

n M

0.0 0.5 1.0 1.5 2.0

0.4 1.1593 1.5176 1.8435 2.1474 2.4349
0.6 1.0018 1.2506 1.4725 1.6757 1.8651
0.8 0.9424 1.1356 1.3058 1.4600 1.6021
1.0 0.9181 1.0768 1.2156 1.3404 1.4546
1.2 0.9087 1.0437 1.1612 1.2662 1.3619
1.5 0.9066 1.0170 1.1127 1.1978 1.2749
2.0 0.9133 0.9983 1.0715 1.1363 1.1946
2.5 0.9223 0.9915 1.0510 1.1033 1.1502

Table 2
Values of −F ′′(0) for a/c = 0.9

n M

0.0 0.5 1.0 1.5 2.0

0.4 0.0946 0.1100 0.1247 0.1388 0.1523
0.6 0.1104 0.1253 0.1393 0.1525 0.1650
0.8 0.1314 0.1464 0.1603 0.1734 0.1857
1.0 0.1547 0.1699 0.1839 0.1969 0.2092
1.2 0.1789 0.1943 0.2084 0.2214 0.2336
1.5 0.2155 0.2309 0.2451 0.2581 0.2703
2.0 0.2739 0.2893 0.3033 0.3161 0.3280
2.5 0.3272 0.3422 0.3559 0.3683 0.3798

Table 3
Values of F ′′(0) for a/c = 1.1

n M

0.0 0.5 1.0 1.5 2.0

0.4 0.1035 0.1185 0.1328 0.1465 0.1597
0.6 0.1193 0.1337 0.1471 0.1599 0.1721
0.8 0.1407 0.1549 0.1683 0.1808 0.1927
1.0 0.1643 0.1787 0.1920 0.2045 0.2163
1.2 0.1888 0.2033 0.2167 0.2292 0.2409
1.5 0.2257 0.2402 0.2536 0.2660 0.2777
2.0 0.2844 0.2988 0.3119 0.3241 0.3355
2.5 0.3377 0.3517 0.3645 0.3763 0.3872

Table 4
Values of F ′′(0) for a/c = 1.5

n M

0.0 0.5 1.0 1.5 2.0

0.4 1.2019 1.3432 1.4789 1.6099 1.7368
0.6 1.0174 1.1169 1.2114 1.3019 1.3887
0.8 0.9434 1.0218 1.0958 1.1661 1.2333
1.0 0.9095 0.9750 1.0364 1.0946 1.1499
1.2 0.8937 0.9502 1.0030 1.0529 1.1001
1.5 0.8853 0.9325 0.9765 1.0178 1.0568
2.0 0.8871 0.9244 0.9591 0.9914 1.0218
2.5 0.8946 0.9256 0.9543 0.9810 1.0060

that the velocity parallel to the stretching surface decreases with in-
creasingMwhen a/c <1 and increases with increasingMwhen a/c >1
for both pseudoplastic and dilatant fluids. Physically this is a conse-
quence of the fact that for a given power-law fluid (pseudoplastic or
dilatant), the Lorentz force given by the last term in (2) arising out
of the magnetic field has a retarding influence on the flow.

Since F′′(0) is negative when a/c <1, the computed variation of
−F′′(0) with M and n is summarized in Tables 1 and 2 for a/c =
0.2 and 0.9, respectively. Again since F′′(0) is positive when a/c >1,
the computed variation of F′′(0) with M and n is summarized in
Tables 3, 4 and 5 for a/c=1.1, 1.5 and 2.0, respectively. It can be seen

Table 5
Values of F ′′(0) for a/c = 2.0

n M

0.0 0.5 1.0 1.5 2.0

0.4 3.7731 4.1322 4.4796 4.8166 5.1447
0.6 2.7631 2.9827 3.1933 3.3960 3.5919
0.8 2.2893 2.4445 2.5925 2.7342 2.8704
1.0 2.0175 2.1363 2.2491 2.3567 2.4597
1.2 1.8421 1.9377 2.0282 2.1142 2.1963
1.5 1.6714 1.7447 1.8139 1.8794 1.9418
2.0 1.5048 1.5571 1.6062 1.6526 1.6965
2.5 1.4062 1.4465 1.4843 1.5199 1.5536

from the above tables that for a fixed value of M, |F ′′(0)| increases
with increase in n in a small neighborhood (N, say) of a/c=1 excluding
a/c = 1. But it is interesting to note that |F′′(0)| is non-monotonic
in a region (P, say) with increase in n outside the region N up to
certain values of a/c. However for values of a/c >1 outside the region
P, |F′′(0)| decreases monotonically with increase in n. For values of
a/c <1, the variation of |F′′(0)| with n outside the region N is non-
monotonic. From the five tables it is evident that for a fixed value
of n and a/c, the value of |F′′(0)| increases with increase in M. This
non-monotonic behavior may perhaps be attributed to the change
in the character of the flow as a/c changes its values from less than
1 to greater than 1.

It is interesting to note that when the velocity of the stretching
surface is equal to the velocity of the inviscid stream (a=c), Eqs. (14)
and (15) subject to the boundary condition (16) admit of the exact
analytical solution

F(�) = �. (40)

From (13) this leads to

u = cx = ax and v = −cy = −ay, (41)

which correspond to the velocity distribution in the free stream
given by (10). From this we can infer that when a = c, the veloc-
ity distribution near the stretching surface is the same as that of
a flow away from the surface so that no boundary layer is formed
near the surface. It should be mentioned here that when a = c, the
flow is not frictionless in a strict sense. In fact in this case the
friction is uniformly distributed and does not, therefore, affect the
motion.
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