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ABSTRACT

Context. Partially ionized plasma is usually described by a single-fluid approach, where the ion-neutral collision effects are expressed
by Cowling conductivity in the induction equation. However, the single-fluid approach is not valid for time-scales less than ion-neutral
collision time. For these time-scales the two-fluid description is the better approximation.
Aims. We aim to derive the dynamics of magnetohydrodynamic (MHD) waves in two-fluid partially ionized plasmas and to compare
the results with those obtained under single-fluid description.
Methods. Two-fluid equations are used, where ion-electron plasma and neutral particles are considered as separate fluids. Dispersion
relations of linear waves are derived for the simplest case of homogeneous medium. Frequencies and damping rates of waves are
obtained for different parameters of background plasma.
Results. We found that two- and single-fluid descriptions give similar results for low-frequency waves. However, the dynamics of
MHD waves in the two-fluid approach is significantly changed when the wave frequency becomes comparable with or higher than the
ion-neutral collision frequency. Alfvén and fast magneto-acoustic waves attain their maximum damping rate at particular frequencies
(for example, the peak frequency equals 2.5 times the ion-neutral collision frequency for 50% of neutral hydrogen) in the wave
spectrum. The damping rates are reduced for the higher frequency waves. The new mode of slow magneto-acoustic wave appears for
higher frequency branch, which is connected to neutral hydrogen fluid.
Conclusions. The single-fluid approach perfectly deals with slow processes in partially ionized plasmas, but fails for time-scales
shorter than ion-neutral collision time. Therefore, the two-fluid approximation should be used for the description of relatively fast
processes. Some results of the single-fluid description should be revised in future such as the damping of high-frequency Alfvén
waves in the solar chromosphere due to ion-neutral collisions.
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1. Introduction

Astrophysical plasmas often are partially ionized. Neutral atoms
may change the plasma dynamics through collisions with
charged particles. The ion-neutral collisions may lead to differ-
ent new phenomena in the plasma, for example the damping
of magnetohydrodynamic (MHD) waves (Khodachenko et al.
2004; Forteza et al. 2007). The solar photosphere, the chro-
mosphere, and the prominences contain a significant amount of
neutral atoms, therefore the complete description of plasma pro-
cesses requires the consideration of partial ionization effects.

Braginskii (1965) gave the basic principles of transport pro-
cesses in plasma including the effects of partial ionization.
Since this review, numerous papers addressed the problem of
partial ionization in the different regions of solar atmosphere.
Khodachenko & Zaitsev (2002) studied the formation of the
magnetic flux tube in a converging flow of the solar photosphere,
while Vranjes et al. (2008) studied the Alfvén waves in weakly
ionized photospheric plasma. Leake & Arber (2005) and Arber
et al. (2007) studied the effect of partially ionized plasma on
emerging magnetic flux tubes and concluded that the chromo-
spheric neutrals may transform the magnetic tube into force-
free configuration. Haerendel (1992), De Pontieu & Haerendel
(1998), James & Erdélyi (2002), and James et al. (2004) consid-
ered the damping of Alfvén waves through ion-neutral collision

as a mechanism of spicule formation. Khodachenko el al. (2004)
and Leake et al. (2006) studied the importance of ion-neutral
collisions in the damping of MHD waves in the chromosphere
and prominences. Forteza et al. (2007, 2008), Soler et al.
(2009a, 2009b, 2010), and Carbonell et al. (2010) studied the
damping of MHD waves in partially ionized prominence plasma
with and without plasma flow.

All these papers considered the single-fluid MHD approach
when the inertial terms in the momentum equation of the rel-
ative velocity between ions and neutrals are neglected. The
partially ionized plasma effects are described by a generalized
Ohm’s law with Cowling conductivity, which leads to the mod-
ified induction equation (Khodachenko el al. 2004). Ambipolar
diffusion is more pronounced during the transverse motion of
plasma with regard to the magnetic field, therefore the Alfvén
and fast magneto-acoustic waves are more efficiently damped.
The slow magneto-acoustic waves are weakly damped in the
low plasma beta case. Moreover, Forteza et al. (2007) found
that the damping rate of slow magneto-acoustic waves derived
through a normal mode analysis is different from that estimated
by Braginskii (1965). The cause of the discrepancy between the
normal mode analysis (Forteza et al. 2007) and the energy con-
sideration (Braginskii 1965) is still an open question, and the
present study attempts to shed light on it.
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The single-fluid approach has been shown to be valid for the
time-scales that are longer than the ion-neutral collision time.
However, the approximation fails for the shorter time-scales,
therefore the two-fluid approximation, which means the treat-
ment of ion-electron and neutral gases as separate fluids, should
be considered. The two-fluid approximation is valid for time-
scales longer than the ion-electron collision time, which is sig-
nificantly shorter because of the Coulomb collision between ions
and electrons.

In this paper, we study MHD waves in two-fluid partially
ionized plasma. We pay particular attention to the wave damp-
ing through ion-neutral collisions and compare the wave dynam-
ics in single and two-fluid approximations. We derive the two-
fluid MHD equations from initial three-fluid equations and solve
the linearized equations in the simplest case of a homogeneous
plasma.

2. Main equations

We aim to study partially ionized plasma, which consists of elec-
trons, ions, and neutral atoms. We assume that each species has
a Maxwell velocity distribution, therefore they can be described
as separate fluids. Below we first write the equations in three-
fluid description and then perform the consequent transition to
two-fluid and single-fluid approaches.

2.1. Three-fluid equations

The fluid equations for each species can be derived from
Boltzmann kinetic equations, which have the forms (Braginskii
1965; Goedbloed & Poedts 2004)

∂ne

∂t
+ ∇ · (neVe) = 0, (1)

∂ni

∂t
+ ∇ · (niVi) = 0, (2)

∂nn

∂t
+ ∇ · (nnVn) = 0, (3)

mene

(
∂Ve

∂t
+ (Ve · ∇)Ve

)
= −∇pe − ∇ · πe

−ene

(
E +

1
c

Ve × B
)
+ Re, (4)

mini

(
∂Vi

∂t
+ (Vi · ∇)Vi

)
= −∇pi − ∇ · πi

+Zeni

(
E +

1
c

Vi × B
)
+ Ri, (5)

mnnn

(
∂Vn

∂t
+ (Vn · ∇)Vn

)
= −∇pn − ∇ · πn + Rn, (6)

3
2

nek

(
∂Te

∂t
+(Ve · ∇)Te

)
+pe∇ · Ve + πe :∇Ve=−∇ · qe + Qe (7)

3
2

nik

(
∂Ti

∂t
+ (Vi · ∇)Ti

)
+ pi∇ · Vi + πi : ∇Vi=−∇ · qi + Qi (8)

3
2

nnk

(
∂Tn

∂t
+(Vn · ∇)Tn

)
+pn∇ · Vn+πn :∇Vn=−∇ · qn+Qn (9)

pe = nekTe, pi = nikTi, pn = nnkTn, (10)

where ma, na, pa, Ta, Va are the mass, the density, the pressure,
the temperature and the velocity of particles a, E is the electric
field, B is the magnetic field strength, qa is the heat flux density
of particles a, Ra is the change of impulse of particles a through
collisions with other sort of particles, Qa is the heat production
through collisions of particles a with other sort of particles, πa
is the off-diagonal pressure tensor of particles a, e = 4.8 × 10−10

statcoul is the electron charge, c = 2.9979 × 1010 cm s−1 is the
speed of light and k = 1.38 × 10−16 erg K−1 is the Boltzmann
constant. The double dot indicates that a double sum over the
Cartesian components is to be taken. The plasma is supposed
to be quasi-neutral, which means ne = Zni. Below we consider
hydrogen ions and hydrogen neutral atoms that imply Z = 1. The
description of the system is completed by Maxwell equations,
which have the forms (without displacement current)

∇ × E = −1
c
∂B
∂t
, (11)

∇ × B =
4π
c

j, (12)

where

j = −ene(Ve − Vi) = −eneu (13)

is the current density.
For a Maxwell distribution in each species, Ra and Qa are

expressed as (Braginskii 1965):

Re = −αei(Ve − Vi) − αen(Ve − Vn), (14)

Ri = −αie(Vi − Ve) − αin(Vi − Vn), (15)

Rn = −αne(Vn − Ve) − αni(Vn − Vi), (16)

Qe = αei(Ve − Vi)Ve + αen(Ve − Vn)Ve, (17)

Qi = αie(Vi − Ve)Vi + αin(Vi − Vn)Vi, (18)

Qn = αne(Vn − Ve)Vn + αni(Vn − Vi)Vn, (19)

where αab = αba are the coefficients of friction between particles
a and b.

For time-scales longer than the ion-electron collision time,
the electron and ion gases can be considered as a single fluid.
This significantly simplifies the equations, taking into account
the smallness of electron mass with regard to the masses of
ion and neutral atoms. Then the three-fluid description can be
changed to the two-fluid description, where one component is
the ion-electron gas and the second component is the gas of neu-
tral atoms.

2.2. Two-fluid equations

Summing of Eqs. (4) and (5), Eqs. (7) and (8), and first two equa-
tions of Eq. (10), we obtain (after neglecting the electron inertia
and the viscosity effect expressed by the off-diagonal pressure
tensor πa)

∂ni

∂t
+ ∇ · (niVi) = 0, (20)
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∂nn

∂t
+ ∇ · (nnVn) = 0, (21)

mini

(
∂Vi

∂t
+ (Vi · ∇)Vi

)
= −∇pie +

1
c

j × B +
αen

ene
j

−(αin + αen)(Vi − Vn), (22)

mnnn

(
∂Vn

∂t
+ (Vn · ∇)Vn

)
= −∇pn − αen

ene
j

+(αin + αen)(Vi − Vn), (23)
∂pie

∂t
+ (Vi · ∇)pie + γpie∇ · Vi = (γ − 1)

αei

e2n2
e

j2

+(γ − 1)αin(Vi − Vn) · Vi + (γ − 1)αen(Ve − Vn) · Ve

+
( j · ∇)pe

ene
+ γpe∇ · j

ene
− (γ − 1)∇ · (qi + qe), (24)

∂pn

∂t
+ (Vn · ∇)pn + γpn∇ · Vn = −(γ − 1)αin(Vi − Vn) · Vn

+(γ − 1)αen(Vn − Ve) · Vn − (γ − 1)∇ · qn, (25)

where pie = pi + pe is the pressure of ion-electron gas and γ =
Cp/Cv = 5/3 is the ratio of specific heats.

Ohm’s law is obtained from the electron equation (Eq. (4))
after neglecting the electron inertia (i.e. the left-hand side terms)
and it has the form

E +
1
c

Vi × B +
1

ene
∇pe =

αei + αen

e2n2
e

j − αen

ene
(Vi − Vn)

+
1

cene
j × B. (26)

The Maxwell equation (Eq. (11)) and Ohm’s law (Eq. (26)) lead
to the induction equation

∂B
∂t
=∇×(Vi × B) + ∇×

(
c∇pe

ene

)
− ∇× (η∇ × B)

−∇×
(

j × B
ene

)
+ ∇×

(
cαen(Vi − Vn)

ene

)
, (27)

where

η =
c2

4πσ
=

c2(αei + αen)

4πe2n2
e

(28)

is the coefficient of the magnetic diffusion.
The coefficient of friction between ions and neutrals (if they

have the same temperature) is calculated as (Braginskii 1965)

αin = ninnminσin
4
3

√
8kT
πmin
, (29)

where min = mimn/(mi + mn) is the reduced mass and σin =
π(ri + rn)2 = 4πr2

i is the collision cross section between ions and
neutrals.

The collision frequency between ions and neutrals is then

νin=
αin

mini + mnnn
=

16πr2
i

3
ninnmin

mini + mnnn

√
8kT
πmin

=
32πr2

i

3
√
π

ninn

ni + nn

√
kT
mi
≈ 5 × 10−12 ninn

ni + nn

√
T s−1, (30)

where the atomic cross section πr2
i = 8.7974×10−17 cm2 is used

and T is normalized by 1 K. The chromospheric temperature of
104 K and hydrogen ion and neutral number densities of 2.3 ×
1010 cm−3 and 1.2×1010 cm−3 (Fontenla et al. 1990, model FAL-
3) give the collision frequency as 4 s−1.

For time-scales longer than ion-neutral collision time (1/νin),
the system can be considered as a single fluid (the full equations
of single-fluid MHD including neutral hydrogen are presented
in Appendix A). However, when the time-scales are near to or
shorter than the ion-neutral collision time, the single-fluid de-
scription is not valid and the two-fluid equations should be con-
sidered. Below, in what follows we study the linear MHD waves
in a two-fluid description.

3. Linear MHD waves

We consider the simplest case of static and homogeneous plasma
with a homogeneous unperturbed magnetic field. Then the lin-
earized two-fluid equations following from Eqs. (20)–(25) and
(27) are (neglecting the Hall term and the collision between neu-
trals and electrons i.e. αen � αin)

∂ρ′i
∂t
+ ρi0∇ · ui = 0, (31)

∂ρ′n
∂t
+ ρn0∇ · un = 0, (32)

ρi0
∂ui
∂t
= −∇p′ie −

1
4π
∇(B0 · b) +

1
4π

(B0 · ∇)b

+
αenc

4πene
∇ × b − αin(ui − un), (33)

ρn0
∂un
∂t
= −∇p′n −

αenc
4πene

∇ × b + αin(ui − un), (34)

∂b
∂t
= (B0 · ∇)ui − B0∇ · ui + η∇2 b +

cαen

ene
∇×(ui − un), (35)

∂p′ie
∂t
+ γpie∇ · ui = 0, (36)

∂p′n
∂t
+ γpn∇ · un = 0, (37)

where ρ′i (ρ′n) are perturbations of the ion (neutral) density, ui
(un) are the perturbations of ion (neutral) velocity, p′ie (p′n) are
the perturbations of ion-electron (neutral) gas pressure, b is
the perturbation of the magnetic field, and ρi0 = mini0, ρn0 =
mnnn0, pie, pn, B0 are their unperturbed values, respectively.
Equations (31)–(32) and Eqs. (36)–(37) lead to the expressions

p′ie = c2
siρ
′
i , p′n = c2

snρ
′
n, (38)

where csi =
√
γpie/ρi0 and csn =

√
γpn/ρn0 are the sound speeds

of ion-electron and neutral gases, respectively.
Below we consider the unperturbed magnetic field, Bz, di-

rected along the z axis and the wave propagation in xz plane
i.e. ∂/∂y = 0. Then Eqs. (31)–(37) can be split into Alfvén and
magneto-acoustic waves.

3.1. Alfvén waves

Let us assume that the Alfvén waves are polarized along y axis.
We intend to study the damping of Alfvén waves through the
collision between ions and neutrals. Therefore, we neglect the
magnetic diffusion for simplicity. Then, Eqs. (31)–(37) give

∂viy

∂t
=

Bz

4πρi0

∂by
∂z
− αin

ρi0
(viy − vny), (39)

∂vny

∂t
=
αin

ρn0
(viy − vny), (40)

∂by
∂t
= Bz
∂viy

∂z
· (41)
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Fourier analyses assuming disturbances to be proportional to
exp[i(kzz − ωt)] give the dispersion relation

aξiξn�
3 + i�2 − aξn� − i = 0, (42)

where

�=
ω

kzvA
, a =

kzvA
νin
, ξi =

ρi

ρ0
, ξn =

ρn

ρ0
, vA =

Bz√
4πρ0

,

νin=
αin

ρ0
, ρ0 = ρi0 + ρn0. (43)

The same dispersion relation can be obtained from linear single-
fluid equations by retaining the inertial term in Eq. (A.6). The
dispersion relation of the Alfvén waves in linear single-fluid
equations without the inertial term can be easily derived as

�2 + iaξ2n� − 1 = 0. (44)

The solution of Eq. (44) is

� =
−iaξ2n ±

√−a2ξ4n + 4
2

, (45)

which for aξ2n < 2 gives the damping rate

2ωi =
ξ2n B2

z

4παin
k2

z (46)

in full coincidence with Braginskii (1965). In contrast, the con-
dition aξ2n > 2 in Eq. (46) retains only the imaginary part, which
gives the cut-off wave number

kc =
2νin
ξ2nvA
· (47)

The value of the cut-offwave number has been obtained recently
by Barcélo et al. (2010). Hence, the waves with a higher wave
number than kc are evanescent. However, it might be an incom-
plete conclusion because the complete treatment requires the in-
clusion of inertial terms, and therefore dealing with Eq. (42) in-
stead of Eq. (44). The first term in Eq. (42) is important for the
high-frequency part of the wave spectrum and could not be ne-
glected. We demonstrate it by the solutions of Eqs. (44) and (42).

Figure 1 displays the solutions of the single-fluid (Eq. (44),
blue lines) and two-fluid (Eq. (42), red asterisks) dispersion re-
lations for ξn = 0.5. We see that the frequencies and damping
rates of Alfvén waves are the same in the single-fluid and two-
fluid approaches for the low-frequency branch of the spectrum
(small a). But the behavior is dramatically changed when the
wave frequency becomes comparable with or higher than the
ion-neutral collision frequency, νin, i.e. for a > 1. The damp-
ing time linearly increases with a and the wave frequency be-
comes zero at some point in the single-fluid case (blue lines).
The point where the wave frequency becomes zero corresponds
to the cut-off wave number kc of Barcélo et al. (2010). However,
there is no cut-off wave number in solutions of two-fluid disper-
sion relation (red asterisks): Eq. (42) always has a solution with
a real part. Therefore, the occurrence of the cut-off wave number
in the single-fluid description is the result of neglecting the iner-
tial terms in the momentum equation of relative velocity between
ions and neutrals. Therefore, Eq. (42) is the correct dispersion
relation for the whole spectrum of waves. But the dispersion re-
lation (44) is still a good approximation for the lower frequency
part of spectrum. Another interesting point of the two-fluid
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Fig. 1. Alfvén wave frequency vs. normalized wave number. The top
(bottom) panel shows the real (imaginary) part of the normalized fre-
quency � = ω/kzvA vs. the normalized wavenumber a = kzvA/νin. The
blue line corresponds to the solution of the single-fluid dispersion re-
lation, i.e. Eq. (44) and red asterisks are the solutions of the two-fluid
dispersion relation, Eq. (42). The values are calculated for 50% of neu-
tral hydrogen, ξn = 0.5.

approach is that the damping rate (i.e. ωI) attains its maximal
value at some wave-lengths for which a ≈ 2.5. The damping rate
decreases for smaller and larger a. This means that the waves,
which have the frequency in the interval νin < ω < 10 νin, have
stronger damping than other harmonics of the spectrum. This is
totally different from the single-fluid solutions, which show the
linear increase of damping rate with increasing wave number
(lower panel, blue line).

Figure 2 displays the same solutions as in the Fig. 1, but for
ξn = 0.1. The solutions have basically the same properties as
those with ξn = 0.5. However, the wave length with the maximal
damping rate is now shifted to a ≈ 10.

3.2. Magneto-acoustic waves

Now let us turn to magneto-acoustic waves. We consider the
waves and wave vectors polarized in xz plane. Then Eqs. (31)–
(37) are written as (magnetic diffusion is again neglected)

∂ρ′i
∂t
+ ρi0

(
∂vix
∂x
+
∂viz
∂z

)
= 0, (48)

∂ρ′n
∂t
+ ρn0

(
∂vnx

∂x
+
∂vnz

∂z

)
= 0, (49)

∂vix
∂t
= − 1
ρi0

∂p′ie
∂x
− Bz

4πρi0

∂bz

∂x
+

Bz

4πρi0

∂bx

∂z
− αin

ρi0
(vix − vnx), (50)

∂viz
∂t
= − 1
ρi0

∂p′ie
∂z
− αin

ρi0
(viz − vnz), (51)

∂vnx

∂t
= − 1
ρn0

∂p′n
∂x
+
αin

ρn0
(vix − vnx), (52)
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Fig. 2. Same as in Fig. 1, but for 10% of neutral hydrogen, ξn = 0.1.

∂vnz

∂t
= − 1
ρn0

∂p′n
∂z
+
αin

ρn0
(viz − vnz), (53)

∂bx

∂t
= Bz
∂vix
∂z
, (54)

∂p′ie
∂t
+ γpie

(
∂vix
∂x
+
∂viz
∂z

)
= 0, (55)

∂p′n
∂t
+ γpn

(
∂vnx

∂x
+
∂vnz

∂z

)
= 0. (56)

A Fourier analysis with exp[i(kxx + kzz − ωt)] and some algebra
give the dispersion relation

ν2inω
[
ω4 − k2(c2

siξi + c2
snξn + V2

A)ω2 + (c2
siξi + c2

snξn)k2k2
z V2

A

]
−ξiξ2nω(ω2 − c2

snk2)
[
ξiω

4 − k2V2
Aω

2 + c2
sik

2(k2
z V2

A − ξiω2)
]

−iνinξn[(ξn − 2)k2V2
Aω

4 + 2ξiω6 + c2
snk2ω2

(
k2V2

A + (ξ2n − 1)ω2
)

+c2
siξik

2
(
2k2

z V2
Aω

2 + (ξn − 2)ω4 + c2
snk2(ω2 − k2

z V2
A)

)
] = 0, (57)

where k =
√

k2
x + k2

z .

The dispersion relation (57) is a seventh order equation with
ω, therefore it has seven different solutions. For smaller wave
numbers (or lower frequencies) four of the solutions represent
the usual magneto-acoustic waves, while three other solutions
are purely imaginary and are probably connected to the vortex
modes (with Re(ω) = 0) that damped through ion neutral col-
lisions. The vortex modes are solutions of fluid equations and
they correspond to the fluid vorticity. The vortex modes have
zero frequency in the ideal fluid, but may gain a purely imag-
inary frequency if dissipative processes are evolved. The two
vortex modes are transformed into oscillatory modes for shorter
wavelengths (see the next paragraph). Then we have two fast
magneto-acoustic modes, four slow magneto-acoustic modes,
and one vortex solution with a purely imaginary part. Below we
consider that the temperatures of all three species are equal i.e.
Ti = Te = Tn, which gives c2

si = γpie/ρi0 = γ(pi + pe)/ρi0 =

γk(Ti + Te)/mi = 2γkTn/mn = 2γpn/ρn0 = 2c2
sn.

Figure 3 displays all oscillatory solutions of the two-fluid
dispersion relation for ξn = 0.5 (only the modes with posi-
tive frequencies are shown). The wave propagation is parallel
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Fig. 3. Frequency and damping rate of different wave modes in two-
fluid MHD vs. the normalized wavenumber a = kzvA/νin. Frequencies
and damping rates are normalized by kvA. Red asterisks correspond to
the fast magneto-acoustic mode and green diamonds correspond to the
usual slow magneto-acoustic mode. The mode with the blue squares
is the new sort of slow magneto-acoustic wave (“neutral” slow mode),
which arises for larger wave numbers. This mode has only an imaginary
frequency for small wave numbers, which is not shown in this figure.
Frequencies and damping rates are calculated for the waves propagating
along the magnetic field. The neutral hydrogen is taken to be 50% (ξn =
0.5). Here we consider csn/vA = 0.5.

to the magnetic field and we use csn/vA = 0.5, where csn is
the sound speed of neutral hydrogen. For smaller wave num-
bers, k < 3.5 νin/vA, there are two normal magneto-acoustic
modes, fast (red asterisks) and slow (green diamonds). However,
for larger wave-numbers, k > 3.5 νin/vA one additional sort of
slow magneto-acoustic mode with a strong damping rate (blue
squares) arises. The “neutral” slow mode is connected with neu-
tral atoms. For the higher frequency range, i.e. for a higher
than ion-neutral collision frequency, the neutral gas does not
feel the ions, therefore it supports the propagation of the addi-
tional oscillatory wave mode. This mode obviously disappears
for lower frequencies because the collisions couple ions and
neutrals and they behave as a single fluid. In other words, for
lower frequencies (or small wave numbers) this mode has a zero
real part, but a non-zero imaginary part (not shown in the fig-
ure). Therefore, the more correct statement is that the oscillatory
mode transforms into non-oscillatory vortex mode for smaller
wave numbers. The fast magneto-acoustic modes decouple from
the slow waves for the parallel propagation and show the same
behavior as Alfvén waves. Therefore, the plot of fast magneto-
acoustic waves is similar to that of Alfvén waves (see Fig. 1).

It is useful to compare the solutions of two-fluid dis-
persion relation with those obtained in the single-fluid ap-
proach. The damping of fast and slow magneto-acoustic waves
has been derived from the energy equation by Braginskii
(1965), Khodachenko et al. (2004), Khodachenko & Rucker
(2005), and through a normal mode analysis by Forteza et al.
(2007). Damping rates are the same in both considerations
for fast magneto-acoustic waves, but they disagree for slow
magneto-acoustic waves (Forteza et al. 2007). Namely, slow
magneto-acoustic waves show damping for purely parallel prop-
agation in the case of Braginskii, while the damping is absent
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Fig. 4. Damping rate of the fast (upper panel) and slow (lower panel)
magneto-acoustic waves, i.e. with the imaginary part of ω normalized
by kvA, vs. the normalized wavenumber a = kzvA/νin. The blue solid
lines correspond to the solution of the single-fluid dispersion relation
and the dashed line corresponds to the slow magneto-acoustic damp-
ing rate of Braginskii (the expressions used are from Forteza et al.
2007). Red asterisks are the solutions of the two-fluid dispersion re-
lation, Eq. (57). The values are calculated for 10% of neutral hydrogen,
ξn = 0.1, and for csn/vA = 0.1. The damping rates are calculated for
waves propagating with a 45◦ angle with regard to the magnetic field.

in Forteza et al. (2007). Our Figs. 4 and 5 show the damping
rates of fast and slow magneto-acoustic waves vs. a (i.e. k) for
the propagation angles of 45◦ and 0◦, respectively. Red asterisks
are the solutions of the two-fluid dispersion relation – Eq. (57).
The blue solid lines correspond to the solutions of the single-
fluid dispersion relation from Forteza et al. (2007). The dashed
line corresponds to the slow magneto-acoustic damping rate of
Braginskii (1965). Here we use csn/vA = 0.1 so the plasma β is
small enough. The neutral hydrogen concentration is taken to be
10%. The fast magneto-acoustic waves have essentially the same
dynamics as the Alfvén waves. For the smaller wave numbers
(or lower frequencies) the two-fluid and single-fluid approaches
give the same results, but for the larger wave numbers the damp-
ing rate is decreased in the two-fluid description as in the case
of Alfvén waves. In contrast, the slow magneto-acoustic waves
have similar damping rates in both approaches. There is a small
discrepancy between the damping rates for the waves propagat-
ing with 45◦ degree about the magnetic field, but all three cases
(two-fluid waves, single-fluid waves, and energy consideration)
yield similar results. The parallel propagation reveals an interest-
ing result: the two-fluid solutions are exactly the same as those
obtained by Braginskii (the damping rate obtained by Forteza
et al. 2007 is zero for the parallel propagation). Therefore, the
discrepancy between the damping rates of the slow magneto-
acoustic waves obtained by Forteza et al. 2007) and Braginskii
(1965) is again caused by neglecting the inertial terms in the
momentum equation of relative velocity (Eq. (A.6)). Braginskii
(1965) used the energy equation to calculate the damping rate,
therefore his solution agrees with that obtained in our two-fluid
approach.

Figure 6 shows the comparison of the damping rates in the
two-fluid approach and those obtained by Braginskii (1965) for
ξn = 0.5, csn/vA = 0.1 and parallel propagation. The fast
magneto-acoustic waves have the same behavior as the Alfvén
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Fig. 5. The same as in Fig. 4 but for the parallel propagation, i.e. kx = 0.
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Fig. 6. Damping rate (the imaginary part of the normalized frequency
� = ω/kzvA) of fast (upper panel) and slow (lower panel) magneto-
acoustic waves vs. the normalized wavenumber a = kzvA/νin. Red as-
terisks are the solutions of the two-fluid dispersion relation. Blue lines
correspond to the solutions of Braginskii. The values are calculated for
50% of neutral hydrogen and csn/vA = 0.1. The damping rates are cal-
culated for the waves that propagate along the magnetic field.

waves (see lower panel of Fig. 1), which is significantly different
from Braginskii (1965) and Forteza et al. (2007). But the slow
magneto-acoustic waves have the same damping rate as those of
Braginskii (1965). On the other hand, the damping rate of slow
magneto-acoustic waves becomes different from the solution of
Braginskii (1965) for higher plasma β. Figure 7 shows the same
as Fig. 6, but for csn/vA = 0.5. The damping rate of the slow
magneto-acoustic waves now begins to deviate from the solu-
tion of Braginskii for higher wave numbers. The behavior of fast
magneto-acoustic waves remains the same.

4. Discussion

Some parts of the solar atmosphere contain a large number of
neutral atoms: most of the atoms are neutral at the photospheric
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level, but the ionization degree rapidly increases with height ow-
ing to the increased temperature. Solar prominences also con-
tain neutral atoms. Neutral atoms may change the dynamics of
the plasma through collision with charged particles. For time-
scales longer than the ion-neutral collision time, the partially
ionized plasma can be considered as one fluid, because colli-
sions between neutrals and charged particles lead to the rapid
coupling of the two fluids. Then the equation of motion is written
for the center-of-mass velocity, and the motion of the species
is considered as diffusion with a low velocity compared with
the velocity of the center-of-mass. The corresponding collision
terms appear in the equation of motion for the relative veloc-
ity (between ions and neutrals) and in the generalized Ohm’s
law. Neglecting the inertial term in the equation of motion for
the relative velocity, one simplifies the equations, and a tradi-
tional induction equation with Cowling conductivity is obtained
(Braginskii 1965; Khodachenko et al. 2004). The inertial terms
(left-hand side terms in Eq. (A.6)) are smaller than the collision
term (the last term in the same equation), but become compara-
ble for time-scales near the ion-neutral collision time. Therefore,
it can be neglected only for longer time-scales.

But for the time-scales of less than the ion-neutral collision
time, both fluids may behave independently and the single-fluid
approximation is not valid any more. Accordingly the two-fluid
approximation, when ion-electron and neutral atom gases are
treated as separate fluids, should be considered when one tries
to model the processes in partially ionized plasmas.

The normal mode analysis of the two-fluid partially ion-
ized plasma shows that frequencies and damping rates of low-
frequency MHD waves agree well with those found in the single-
fluid approach. However, the waves with higher frequency than
the ion-neutral collision frequency show a significantly different
behavior. Alfvén and fast magneto-acoustic waves have maximal
damping rates in a particular frequency interval, which peaks, for
example, at the frequency ω = 2.5 νin, (νin is the ion-neutral col-
lision frequency) for ξn = 0.5 and at the frequencyω = 10 νin for
ξn = 0.1. The damping rates are reduced for the higher frequency
part of wave spectrum (note that the damping rates are linearly
increased in the single-fluid approach). Therefore, the statements
concerning the damping of high-frequency Alfvén waves in the
solar chromosphere through ion-neutral collisions should be re-
vised. A careful analysis is needed to study the damping of
high-frequency Alfvén waves for a realistic height profile of the
ionization degree in the chromosphere.

Another important point concerning the Alfvén waves in par-
tially ionized plasma is the cut-off wave-number, which appears
in the single-fluid approach (Barcélo et al. 2010). Barcélo et al.
(2010) found that the Alfvén waves with larger wave numbers
than the cut-off value are evanescent in partially ionized and re-
sistive plasmas. However, our two-fluid analysis shows that there
is no cut-off wave number owing to ambipolar diffusion (see
Fig.1, red asterisks). Therefore, the appearance of a cut-offwave
number in the single-fluid approach is the result of neglecting
of the inertial term in the equation of motion for the relative ve-
locity. It is possible that the cut-off wave number that arises be-
cause of an usual magnetic resistivity is caused by neglecting the
electron inertia, therefore the cut-off may completely disappear
in a three-fluid approach. The cut-off wave numbers also appear
for fast magneto-acoustic waves in partially ionized and resistive
plasmas (Barcélo et al. 2010). We suggest that this may also be
caused by neglecting the inertial term. However, this point needs
further study.

The two-fluid approach reveals two different slow magneto-
acoustic modes when the slow wave time-scale becomes shorter
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Fig. 7. The same as in Fig. 6, but for csn/vA = 0.5.

than the ion-neutral collision time (Fig. 3). The different slow
modes correspond to ion-electron and neutral fluids. But only
one slow magneto-acoustic mode remains at the lower frequency
range as in the commonly used single-fluid approach. This is
easy to understand physically. If the wave frequency is lower
than the ion-neutral collision frequency, the two fluids are cou-
pled through collisions and only one slow magneto-acoustic
wave appears. The mode connected with the neutral fluid (“neu-
tral” slow mode) has only an imaginary frequency in this range
of the wave spectrum (not shown in Fig. 3). This means that
any slow wave-type change (density, pressure) in the neutral
fluid is damped faster than the wave period owing to collisions
with ions. The “neutral” slow magneto-acoustic wave has similar
properties as the ion magneto-acoustic waves.

The two-fluid approach of partially ionized plasma clarifies
the uncertainty concerning the damping rate of slow magneto-
acoustic waves found in the single-fluid approach. We found
that the normal mode analysis and energy consideration method
(used by Braginskii 1965) leads to different expressions for the
damping rate of slow waves (Forteza et al. 2007). We found that
the damping rate obtained in the two-fluid approach agrees well
with the damping rate of Braginskii, which is derived from the
energy treatment (see lower panels of Figs. 5–6). Therefore, it
seems that the discrepancy is again caused by neglecting the in-
ertial terms in the equation of motion for the relative velocity
in the single-fluid approach. Braginskii (1965) used the general
energy method for the estimation of damping rates, and this is
probably the reason why his results agree with those found in
the two-fluid approach.

Here we have considered only neutral hydrogen as a compo-
nent of partially ionized plasma. However, other neutral atoms,
for example neutral helium, may have important effects in the
MHD wave damping processes. Soler et al. (2010) made the
first attempt to include the neutral helium in the single-fluid
description of prominence plasma. They concluded that the
neutral helium has no significant influence on the damping of
MHD waves. However, the two-fluid approach may give some
more details about the effects of neutral helium on MHD waves,
therefore it is important to study this point in the future.
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5. Conclusions

Frequencies and damping rates of low-frequency MHD waves
in the two-fluid description are similar to those obtained in the
single-fluid approach. But high-frequency waves (with a higher
frequency than the ion-neutral collision frequency) have a com-
pletely different behavior.

Alfvén and fast magneto-acoustic waves have maximal
damping rates at some frequency interval that peaks at a par-
ticular frequency. The peak frequency is 2.5 νin, where νin is the
ion-neutral collision frequency, for 50% of neutral hydrogen. For
10% of neutral hydrogen, the peak frequency is shifted to10 νin.
The damping rate is reduced for higher frequencies, therefore
the damping of high-frequency Alfvén waves in the solar chro-
mosphere with a realistic height profile of the ionization degree
needs to be revised in future.

There are two types of slow magneto-acoustic waves in the
high-frequency part of the wave spectrum: one connected with
the ion-electron fluid and another with the fluid of neutrals.

There is no cut-off frequency of Alfvén waves because of
ambipolar diffusion. The cut-off frequency found in the single-
fluid approach is caused by neglecting the inertial terms in the
momentum equation of relative velocity.

The damping rate of slow magneto-acoustic waves is similar
to Braginksii (1965) in low plasma β approximation. The de-
viation from the Braginskii formula found by the normal mode
analysis in the single-fluid approach (Forteza et al. 2007) is prob-
ably caused by neglecting the inertial terms.
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Appendix A: Single-fluid equations

We use the total velocity (i.e. velocity of center of mass)

V =
ρiVi + ρnVn

ρi + ρn
, (A.1)

the relative velocity

w = Vi − Vn. (A.2)

and the total density

ρ = ρi + ρn. (A.3)

Equation (20)–(25) and (27) lead to the system

∂ρ

∂t
+ ∇ · (ρV) = 0, (A.4)

ρ
∂V
∂t
+ ρ(V · ∇)V = −∇p +

1
c

j × B − ∇ · (ξiξnρww), (A.5)

∂w

∂t
+ (V · ∇)w + (w · ∇)V + ξn(w · ∇)w − (w · ∇)ξiw

= −
(∇pie

ρξi
− ∇pn

ρξn

)
+

1
cρξi

j × B +
αen

eneρξiξn
j − αn

ρξiξn
w, (A.6)

∂p
∂t
+ (V · ∇)p + γp∇ · V − ξi(w · ∇)p − γp∇ · (ξiw)

+(w · ∇)pie + γpie∇ · w = (γ − 1)
αei + αen

e2n2
e

j2 + (γ − 1)αnw
2

−(γ − 1)
2αen

ene
jw +

1
ene

( j · ∇)pe + γpe∇ · j
ene

−(γ − 1)∇ · (qi + qe + qn), (A.7)

∂B
∂t
= ∇×(V × B) + ∇×

(
c∇pe

ene

)
− ∇× (η∇ × B)

−∇×
(

j × B
ene

)
+ ∇×

(
cαenw

ene

)
+ ∇× (ξnw × B) , (A.8)

where p = pe + pi + pn, ξi = ρi/ρ, ξn = ρn/ρ and αn = αin + αen.
Ohm’s law is now

E +
1
c

V × B +
1

ene
∇pe =

αei + αen

e2n2
e

j − αen

ene
w +

1
cene

j × B

−ξn
c
w × B. (A.9)

Neglecting the inertia terms, i.e. all left hand side terms in
Eq. (A.6), we have

w = − G
αn
+
ξn

cαn
j × B +

αen

eneαn
j.

Then the induction equation takes the form

∂B
∂t
=∇×(V × B) +

c
e
∇×

(∇pe − εG
ne

)
− ∇× (ηT∇ × B)

− c
4πe
∇×

(
1 − 2εξn

ne
(∇ × B) × B

)
− ∇×

(
ξn
αn

G × B
)

+∇×
(
ξ2n

4παn
((∇ × B) × B) × B

)
, (A.10)

where ε = αen/αn, G = ξn∇pei − ξi∇pn and

ηT =
c2

4πσ
=

c2

4πe2n2
e

(
αei + αen − α

2
en

αn

)
· (A.11)

These equations are traditionally used for the description of par-
tially ionized plasmas.
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