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We study the dynamics of a plasma of charged relativistic fermions at very high temperature T ≫ m,
where m is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-
hydrodynamical description of the evolution of such a plasma. We show that, compared to conventional
magnetohydronamics (MHD) for a plasma of nonrelativistic particles, the hydrodynamical description of
the relativistic plasma involves new degrees of freedom described by a pseudoscalar field originating in a
local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as
an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the
evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its
nonlinear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a
magnetized plasma and can give rise to a novel type of inverse cascade.
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I. INTRODUCTION

It was suggested [1,2], more than a decade ago, that the
chiral anomaly may be accompanied by the appearance of
some new degrees of freedom described by an effective
axion field that couples to the index density of the
electromagnetic field. More recently, it has been under-
stood [3] that this axion field plays an important role in the
dynamics of the electromagnetic field in a relativistic
plasma of charged fermions, (e.g., the plasma described
by the Standard Model at high temperature and/or large
matter density). In the spatially homogeneous case, the time
derivative of the axion field is proportional to the difference
between the chemical potentials (densities) of left-handed
and right-handed charged particles [1,2]. As a consequence
of the chiral anomaly, a left-right asymmetry, as described
by a nonvanishing time-dependent axion field, affects the
dynamics of the electromagnetic field (see also [4–7]) and
gives rise to an instability of solutions of the coupled
Maxwell-axion equations [1].
This kind of instability is encountered in different

physical systems exhibiting a left-right asymmetry. For
example, it has recently also appeared in the electrody-
namics of topological insulators (see, e.g., [8]). Instabilities
leading to the growth of helical magnetic fields in the
plasma of relativistic charged particles, as discussed in this
paper, are expected to have played an important role in the
dynamics of the early Universe, assuming that a potent
source of chiral asymmetry was present (see, e.g., [1,3,5,
9–11]). Magnetic fields pervading the primordial plasma at
early times would have had significant effects on many
processes, such as baryogenesis [12], primordial nucleo-
synthesis [13,14], physics of cosmic microwave

background (see [15] for a review), the growth of various
inhomogeneities (see [16], and refs. therein), etc. Thus,
understanding the dynamics of primordial magnetic fields
in the presence of sources of left-right asymmetries, as
described by time-dependent effective axion fields, is
essential in attempts to describe the evolution of the early
Universe.
An important question in cosmology is whether traces of

primordial magnetic fields could have served as seeds for
galactic magnetic fields [17,18] or given rise to the large-
scale magnetic fields observed in voids [19–21]. The
astrophysical origin of the magnetic fields in voids is still
under active investigation; (see e.g. [22,23]). If their origin
turned out to be primordial then the difficulty that causally
independent homogeneous magnetic fields survive [24–26]
would have to be faced. To cope with this difficulty one
might argue that the mechanism of generation of those
fields is “super-horizon”, presumably related to inflation
[27,28]. However, the generation and survival of somewhat
sizeable magnetic fields during inflation is difficult to
reconcile with slow-roll conditions [29–32].
In an expanding Universe filled with Standard-Model

particles, chirality flipping reactions, which erase chiral
asymmetries, are in thermal equilibrium at temperatures
below ∼80 TeV [33]. It has therefore been expected that an
initial growth of magnetic fields, as derived from the chiral
anomaly, could only have taken place at such truly enor-
mous temperatures (if they ever existed in the early
Universe). In an expanding Universe, the wavelength of
any perturbation grows like the scale factor aðtÞ ∝ tα (with
α < 1, for any noninflationary expansion), and the distance,
RH, to the horizon in the Universe increases linearly in time,
RH ∝ t. As a result, even if a magnetic field were generated
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during some very early epoch, with correlations extending
over a horizon-size scale (maximal scale possible for any
causal generation mechanism), it would soon become
stronger at subhorizon scales. But it is known that subhor-
izon-scale magnetic fields die out because of dissipation
caused by resistivity and viscosity effects [24,34–38]. It has
been argued that the only way for causally generated
magnetic fields to survive is the turbulence-driven inverse
cascade [24,25,39,40] of helical magnetic fields—a process
that makes the characteristic scale of the magnetic fields
grow faster than redshifting does. At present, the efficiency
of this type of mechanism is actively discussed.
We have demonstrated previously [3] that there exists

another (new) mechanism for the transfer of magnetic
helicity from short wavelengths to long wavelengths. This
mechanism is not related to magnetohydrodynamical tur-
bulence, but has its root in the chiral anomaly. We have then
argued that, because of their coupling to the effective axion
field (which describes chiral asymmetries), helical mag-
netic fields may survive down to rather low temperatures of
a fewMeV, even though chirality flipping reactions (caused
by mass terms for the charged particles) are in thermal
equilibrium. It has also been argued in [41] that, as a
consequence of the parity-violating nature of weak inter-
actions and the chiral anomaly, quantum corrections in
states of finite lepton- or baryon number density may give
rise to an asymmetry between left-handed and right-handed
particles. A time-dependent effective axion field is then
generated, which, in turn, excites a magnetic field [1]. One
concludes that a homogeneous, isotropic stationary state of
the Standard-Model plasma might be unstable. Thus, one
has to study dynamical features of this system, in order to
identify its true equilibrium state.
Large-scale electromagnetic fields in the plasma excite

macroscopic flows of matter consisting of charged par-
ticles. The dynamics of low-energy modes of the plasma
can be described with the help of the equations of
relativistic magnetohydrodynamics (RMHD). One might
expect that the hydrodynamical description of a magnetized
relativistic plasma does not differ in an essential way from
the one of its nonrelativistic cousin, the only important
difference being a different relation between energy den-
sity, ρ, and pressure, p (for reviews see, e.g., [24,42,43]).
However, the chiral anomaly actually leads to an important
modification of the Navier-Stokes equation; see e.g. [44–47]
for the approach based on relativistic hydrodynamics with
symmetries or [48,49] and Refs. therein for the anomalous
fluid dynamics description based on a co-adjoint orbit
description of relativistic point-particles. Furthermore,
helical electromagnetic fields affect the evolution of the
difference of chemical potentials of left- and right-handed
particles, which becomes (space- and) time-dependent [3].
As a result, not only the Navier-Stokes equations, but also
the connection between the electric current density and the
magnetic field are modified in accordance with the chiral

anomaly, and an equation of motion for an effective axion
field must be added. For a spatially homogeneous state, the
time derivative of this axion field is nothing but the chiral
chemical potential, (i.e., the difference of chemical potentials
for left- and right-handed particles).
A magnetohydrodynamical description of a chiral rela-

tivistic plasma of charged massive particles, as studied in
this paper, provides an approximate description of the
Standard-Model plasma at high temperatures and positive
matter density; (additional effects not related to the chiral
anomaly must, however, be taken into account, too). We
expect that our magnetohydrodynamical description of the
plasma is a useful and reliable tool to determine properties
of (local) thermal equilibrium of the plasma at nonvanish-
ing lepton- and baryon densities.
Apart from applications in studies of the early Universe,

our magnetohydrodynamical approach may lead to a
reasonably accurate description of astrophysical systems,
such as relativistic jets, and of heavy ion collisions [45].
Moreover, it may change our current views of the origin
and evolution of primordial magnetic fields and their
relationship to the presently observed large-scale cosmic
magnetic fields [19–21]. Our results and the effect reported
in [41] could affect our current understanding of cold but
very dense systems, such as neutron stars. The effects of
anomalous currents in neutron stars has been previously
explored in [50–52].
Last but not least, our magnetohydrodynamical approach

may be useful in the analysis of models of beyond-the-
Standard-Model particle physics, such as theνMSM[53–55].
We stress that the effects studied in this paper do not

involve any “new physics”; they can be described within the
StandardModel. The axion field introduced belowmight not
be a fundamental field but, rather, an emergent one that
appears in the description of certain states of the Standard-
Model plasma. If instead a fundamental axion does exist,
then the high-temperature states of the Standard Model
plasma, augmented by this new field (as in [1,2]) can also be
described by the chiral RMHD and the effects, discussed in
this paper could be encountered in a wider class of states.

A. Main goals of the paper

The physical system of primary interest in this paper is a
relativistic plasma of very light charged particles at a
temperature T large enough that the masses of the lightest
charged particles, the electrons and positrons, can be
neglected, (i.e., set to 0). For simplicity, one may consider
a plasma consisting only of electrons and positrons, with a
charge-neutralizing background of protons (and neutrons).
But our analysis readily extends to more general systems.
Let Jμ5ðxÞ denote the usual axial vector current density,

where x ¼ ðt; ~xÞ are coordinates of a space-time point; ~EðxÞ
and ~BðxÞ denote the electric field and magnetic induction,
respectively. (In our notations, we will not distinguish the
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quantized electromagnetic field from its expectation value

in physically interesting states.) Furthemore, AðxÞ ¼
ðA0ðxÞ≡ ϕðxÞ; ~AðxÞÞ is the electromagnetic gauge field,

with ϕ the electrostatic potential and ~A the vector potential.
The chiral anomaly says that Jμ5 is not a conserved current;
more precisely that

∂μJ
μ
5ðxÞ ¼

2α

π
~E · ~BðxÞ; ð1Þ

where α is the fine structure constant. Introducing the
current density

~Jμ5 ≡ Jμ5 −
α

2π
ϵμνρσAνFρσ; ð2Þ

where Fρσ are the components of the electromagnetic field
tensor, we find that

∂μ
~Jμ5 ¼ 0; ð3Þ

i.e. that ~Jμ5 is a conserved current density. Unfortunately, it
is not invariant under electromagnetic gauge transforma-
tions, Aμ → Aμ − ∂μη, where η is an arbitrary function on
space-time. However, the charge

~Q5 ≡
Z
t¼const

d3~x~J05ð~x; tÞ ð4Þ

is not only conserved but also gauge invariant. In order to
describe thermal equilibrium states of the plasma, we are
advised to introduce an “axial chemical potential,” μ5,
conjugate to ~Q5. The chemical potential conjugate to the
conserved total electric charge is tuned in such a way that the
system is neutral (i.e., the charge density of electrons and
positrons in the system is canceled, in average, by the one of
the heavy charged hadrons, in particular the protons).
We introduce the pseudoscalar density

ρ5ð~x; tÞ≡ hJ05ð~x; tÞiT;μ5
and its spatial average

q5 ≡ ρ5ð~x; tÞ;
where we denote by hð·ÞiT;μ5 the equilibrium state of the
system at temperature T and axial chemical potential μ5,
and by ð·Þ we indicate spatial averaging. As one would
expect, there is a response equation relating the average
axial charge density, q5, to the axial chemical potential μ5
of the form

q5ðT; μ5Þ ≈ μ5
∂q5
∂μ5

����
μ5¼0

≈
μ5
6
T2; ð5Þ

with q5ðT; μ5 ¼ 0Þ ¼ 0. The last equality in (5) holds for
relativistic particles in the weak magnetic field, T2 ≫ eB,
and with T ≫ μ5. We will comment on a more general case

in Sec. III below. A “derivation” of this relation can be
found in cosmology text books.1

Using the chiral anomaly, we see that Eq. (5) implies the
equation

_μ5 ¼
6

T2
_q5ðT; μ5Þ ¼

12α

πT2
~E · ~B; ð6Þ

a relation derived and explained in [3]. (The dot indicates a
derivative with respect to time, and we neglect terms ∝ _T) It
has been shown in [1,7] that, in the presence of a non-
vanishing magnetic induction ~BðxÞ, a nonzero axial chemi-
cal potential, μ5 ≠ 0, induces an electric current density
given by α

π μ5
~BðxÞ, so that the complete expression for the

electric current density, ~j, of the plasma is given by

~jðxÞ ¼ h~JðxÞiT;μ5 ¼
α

π
μ5 ~BðxÞ þ σ ~EðxÞ; ð7Þ

where σ is the Ohmic conductivity.2 In [1,7], the term α
π μ5

~B
on the right side of (7) has been derived from the chiral
anomaly using current algebra (see [57]).
Inserting (7) in Ampère’s law and applying Faradey’s

induction law, one readily finds the equation3

∂ ~B
∂t ¼ 1

σ
□ ~Bþ α

π

μ5
σ

~∇ ∧ ~B: ð8Þ

As shown in [1,5], the term proportional to μ5 in Eq. (8) is
responsible for an instability of the solutions of (8), namely
an exponential growth of the magnetic induction ~B, which
leads to a nonvanishing ~E · ~B, (i.e., to a nonvanishing helicity
of the electromagnetic field). By Eq. (6), this, in turn, leads to
a temporal variation of the axial chemical potential μ5 and,
hence, to a change in time of the pseudoscalar density q5 that
describes the asymmetry between the charge densities of
left-handed and right-handed charged particles. (We note
that the electric field is damped by Ohmic losses, which
affects the time dependence of ~E · ~B.)
Equation (6) implies that, in general, μ5 depends on time.

The anomaly equation (1) shows that the chiral density
ρ5ð~x; tÞ usually not only depends on time, but also on
space, ~x. It is therefore necessary to generalize relation (5)
to one where μ5 not only depends on t, but also on space ~x;
to then derive the correct form of the Maxwell equations in
the presence of a space- and time-dependent axial chemical
potential, μ5ð~x; tÞ, and to derive the equations of motion for
this field. To find such a generalization is one of the main

1It is assumed that in processes such as eþ þ e− ↔ γ þ γ and
e� þ γ ↔ e� þ γ the rates of direct and inverse reactions are
identical; see, e.g., [56], Sec. 3.4 and Chap. 5.

2For simplicity, the state of the plasma is assumed to be
isotropic and homogeneous.

3The standard approximation made in MHD is to neglect
Maxwell’s displacement current and hence the second derivative,
∂2 ~B
∂t2 , on the right side of (8); see, e.g., [58].
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goals of this paper. We will also study how to couple our
system of equations to the equations of motion of a
relativistic fluid, thereby deriving the correct equations
of RMHD. In Sec. IV, we discuss some simple solutions of
these equations and sketch possible applications to plasma
physics, astrophysics and cosmology.
As was pointed out already in [1], electrodynamics

coupled to an axion field, θ5, can be used to describe
the dynamics of a homogeneous system (with θ5 ¼ θ5ðtÞ
independent of ~x) in the presence of an axial chemical
potential μ5ðtÞ≡ _θ5ðtÞ satisfying Eq. (6). In this work, we
show that, for an inhomogeneous chemical potential
μ5ð~x; tÞ (defined below, Sec. II), equations analogous to
Eqs. (6) and (8) can be written as local field equations for
the electromagnetic field and for an effective axion field
θ5ðxÞ, with _θ5ð~x; tÞ ¼ μ5ð~x; tÞ, [rather than in terms of the
axial chemical potential μ5ð~x; tÞ], as already pointed out in
[1]. The axion field θ5ð~x; tÞ interacts with the electromag-

netic field in the form of a term θ5 ~E · ~B in the Lagrangian
density, but its dynamics is not necessarily described by a
relativistic wave equation, but might be governed by an
inhomogeneous diffusion equation.
So far, the effective axion field θ5 has been treated as a

classical field. The role played be the axial chemical
potential μ5ð~x; tÞ in the description of inhomogeneous
local thermal equilibrium (LTE) states suggests that μ5
(and hence the axion field θ5) does not describe
Hamiltonian degrees of freedom that have to be quantized,
but that they should be understood as c-number fields
labeling a family of generally inhomogeneous nonsta-
tionary states of the quantum-mechanical plasma—as in
the case of the local temperature (field) TðxÞ.
One could also consider a system with an axion field that

does describe dynamical (Hamiltonian) degrees of free-
dom, which must then be quantized. In order to shed new
light on this important issue, we show, in Appendix A,
how an effective axion field emerges in theories with
extra dimensions. In particular, we consider a model of
(quantum) electrodynamics on a slab in five-dimensional
Minkowski space in the presence of a five-dimensional
Chern-Simons term. In this theory, the axion appears as a
component of the electromagnetic gauge field (in the fifth
direction transversal to the boundaries of the slab), and the
state function TðxÞ has an interpretation as the inverse
width of the slab and is therefore related to the geometry of
five-dimensional space-time (see also [59]). Comparing
this five-dimensional formulation with the analysis pre-
sented in Secs. II and III, one may wonder whether, in the
end, space-time geometry might merely encode properties
of the state of quantum-mechanical degrees of freedom,
rather than being described by dynamical quantum fields
(in particular, a quantized metric field). These fundamental
questions deserve further study with a view towards
applications in cosmology.

II. EXPRESSION FOR THE ELECTRIC
CURRENT DENSITY IN THE RESENCE

OF AN INHOMOGENEOUS AXIAL
CHEMICAL POTENTIAL

A. States describing local thermal equilibrium

In order to account for the local nature of the asymmetry
between left-handed and right-handed particles, we pro-
pose to introduce a space- and time-dependent axial
chemical potential, μ5ðxÞ, and generalize Eq. (5) to a local
relation between the pseudoscalar density ρ5 and μ5, valid
in the regime where μ5 ≪ T. We assume that LTE is
reached at length scales small as compared to the scale of
spatial variations of μ5ðxÞ, i.e., lLTE ≪ μ5ðxÞ=j∇μ5ðxÞj),
and that the scale of variation of electromagnetic fields and
matter flows is much larger than lLTE, too.
A quantum-mechanical system in LTE can be described

similarly as one in perfect equilibrium (see, e.g., [60]). Its
state is tentatively described by the density matrix

ϱLTE ≡ Z−1 exp

�
−
H −

R
y μ5ðyÞ ~J05ðyÞ
T

�
: ð9Þ

Here H is the Hamiltonian of the system, and Z is the
partition function (chosen such that trðϱLTEÞ≡ 1); ~J05 is as
in Eqs. (2) and (4), and T is the temperature (here assumed
to be constant throughout space-time).
The integration in the exponent on the right side of (9)

extends over a spatial hyperplane at fixed time. Expression
(9) may be generalized as follows: Let (uμðxÞ) be the
hydrodynamical 4-velocity field of the plasma; (the con-
dition that u0ðxÞ≡ 1, uiðxÞ≡ 0, for i ¼ 1, 2, 3 means that
we are working in a comoving coordinate frame). Let
(TμνðxÞ) denote the components of the energy-momentum
tensor of the system, and let βðxÞ≡ ðTðxÞÞ−1 be a (possibly
slowly space- and time-dependent) inverse-temperature
field; (we set the Boltzmann constant kB to 1). Let Σ be
some spacelike hypersurface, and letdσμðxÞ denote the (dual
of the) surface element at a point x ∈ Σ. The covariant form
of expression (9) is given by (see, e.g., [[60], Chap. 24]):

ρLTE ¼ Z−1
Σ exp

�
−
Z
Σ
½uμðxÞTμνðxÞ

− μ5ðxÞ ~J5νðxÞ�βðxÞdσνðxÞ
�
: ð10Þ

An equivalent expression is given in Sec. II B, Eq. (32).
Expectationvalues of operators in the state introduced in (10)
are denoted by hð·ÞiLTE. We recall from Eq. (2) that

~Jμ5 ¼ Jμ5 −
α

2π
εμνρσAνFρσ;

which, by Eq. (1) (chiral anomaly), is conserved but
not gauge invariant. Under a gauge transformation,
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Aν → Aν − ∂νη, where η is an arbitrary (smooth) function on
space-time, the termZ

Σ
βðxÞμ5ðxÞ ~J5νðxÞdσνðxÞ ¼

Z
Σ
βðxÞμ5ðxÞ ~Jν5ðxÞdσνðxÞ

changes by

−
α

2π

Z
Σ
ενμρλ∂μðβðxÞμ5ðxÞÞFρλðxÞηðxÞdσνðxÞ;

as follows by integration by parts; using that ∂ ½μFρλ� ≡ 0.
Requiring that expression (10) be gauge-invariant (i.e.,
independent of the gauge function η, for arbitrary η), we
find the constraint

εμνρσ∂νðβðxÞμ5ðxÞÞFρσ½dσμðxÞ�Σ ≡ 0; ð11Þ

or, in the language of differential forms,

dðβμ5Þ ∧ FjΣ ≡ 0: ð12Þ

If βðxÞ≡ β is constant and Σ is a hyperplane at fixed time
then (11) implies that

~BðxÞ · ~∇μ5ðxÞ≡ 0; ð13Þ

i.e., gauge invariance implies that the gradient of the axial
chemical potential is orthogonal to the magnetic induction.
Condition (13) has a simple physical interpretation discussed
in Sec. II C, below.
Let JμðxÞ denote the electric (vector) current density, and

let Jμ5 be as in Sec. I A [see Eq. (1)]. We set

jμðxÞ ¼ hJμðxÞiLTE; jμ5ðxÞ ¼ hJμ5ðxÞiLTE; ð14Þ

for μ ¼ 0, 1, 2, 3. In [1,2], the equal-time commutation
relations between J0 and J05,

½J05ð~y; tÞ; J0ð~x; tÞ� ¼
α

π
~Bð~y; tÞ · ~∇yδð~x − ~yÞ; ð15Þ

(see [57]) have been used to derive expression (7) for the ~B

dependence of the electric current density ~j:

~jðxÞ ¼ α

π
μ5 ~BðxÞ; ð16Þ

assuming that μ5 does not depend on ~x and that σ ~E≡ 0. We
sketch how (16) is derived from (15) and then propose a
generalization of (16) where μ5 may depend on space
and time.
The conservation of the vector current density JμðxÞ

implies that there exists a “current vector potential,” ~ΦðxÞ,
with

J0ðxÞ ¼ − ~∇ · ~ΦðxÞ; ~JðxÞ ¼ ∂t
~ΦðxÞ: ð17Þ

These expressions are invariant under the transformations
~Φ → ~Φþ ~∇ ∧ ~X, for an arbitrary vector field ~X indepen-

dent of time. The commutation relations of the field ~Φ with
the axial charge density J05 are then given by

½J05ð~y; tÞ; ~Φð~x; tÞ� ¼
α

π
~Bð~y; tÞδð~x − ~yÞ þ ~∇x ∧ ~Πð~x; ~y; tÞ;

ð18Þ

where the second term on the right side of (18) is an
“integration constant.” Let ~π denote the expectation value

of ~Π in the state hð·ÞiLTE of the plasma. If this state is

homogeneous (in particular, h ~BiLTE ¼ 0) then ~πð~x; ~y; tÞ≡
~πð~x − ~y; tÞ must be space-translation invariant. It is plau-

sible that ~π is independent of ~B, so that ~π is space-

translation invariant even if h ~BiLTE ≠ 0. In the following,

we will write ~B for h ~BiLTE, as above, in order to shorten our
notation. Taking the expectation value of both sides of (18)
in the state

hð·Þi≡ hð·ÞiLTE
of the plasma and integrating over ~y, we find that

h½Q5; ~ΦðxÞ�i ¼
α

π
~BðxÞ; ð19Þ

because the expectation of the second term on the right side

of (18) integrates to 0 if ~π ¼ h ~Πi is translation-invariant.
Since ~Φ commutes with the electric charge operator Q,

Eq. (19) implies that

h½QL=R; ~ΦðxÞ�i ¼ � α

2π
~BðxÞ;

where QL=R ¼ 1
2
ðQ�Q5Þ.

Next, we observe that

~jðxÞ ¼ h _~ΦðxÞi ¼ i trðρLTE½H; ~ΦðxÞ�Þ; ð20Þ

where ρLTE is given by (9), with μ5ðxÞ≡ μ5 independent
of x.
Formally, the right side of (20) appears to vanish for a

constant μ5, because ~jμ5 is a conserved current. However,

the field ~Φ is so singular in the infrared that the formal
calculation is deceptive. The right side of (20) must be
regularized in the infrared by adding a mass term to the
Hamiltonian, H → Hmass. Then ~jμ5 is not conserved, any-
more, and ½Hmass; Q5� ≠ 0. However ρLTE continues to
commute with Hmass − μ5

R
~j05ð~yÞd3y! Thus
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~jðxÞ ¼ h _~ΦðxÞi ¼ i tr

�
ρLTE

�
Hmass − μ5

Z
~j05ð~y; tÞd3y

þ μ5

Z
~j05ð~y; tÞd3y; ~Φð~x; tÞ

��
¼ μ5h½Q5; ~ΦðxÞ�i ¼

α

π
μ5 ~BðxÞ; ð21Þ

by Eq. (19).
Next, we consider the general situation where μ5 may

depend on time and space. Let ~πð~x; ~y; tÞ ≔ h ~Πð~x; ~y; tÞi,
where ~Π is as in Eq. (18). Then Eq. (21) generalizes to

~jðxÞ ¼ α

π
μ5ðxÞ ~BðxÞ þ ~∇x ∧

Z
~πð~x; ~y; tÞμ5ð~y; tÞd3y;

ð22Þ

Note that the current ~j in (22) is conserved as a conse-
quence of Eq. (13); (gauge invariance of ρLTE). If μ5 is
independent of spatial coordinates and the distribution ~π is
translation-invariant, the second term in Eq. (22) vanishes,
and this equation reduces to (21).

B. Axial chemical potential and axion field

The second term in the expression (22) is nonlocal and
the distribution ~πð~x; ~y; tÞ has not been defined, yet. We
attempt to find a local expression for the four-current
density jμ. This current density should be proportional to
ðFμνÞ and linear in ðμ5Þ; and it should be conserved, (i.e.,
satisfy the continuity equation). By introducing a pseudo-
scalar field, θ5ðxÞ, indeed an axion field, related to the axial
chemical potential μ5ðxÞ, we arrive at the following ansatz
for jμ:

jμaxion ≡ α

2π
ϵμνρσð∂νθ5ÞðxÞFρσðxÞ; ð23Þ

with _θ5 proportional to μ5 in comoving coordinates. The
current jμaxion defined by Eq. (23) is automatically con-
served; (jμaxion is dual to the 3-form α

2π dθ5 ∧ F, which is
closed, because d2 ¼ 0 ¼ dF). For jμaxion to transform as a
vector under parity and time reversal, θ5 must be a
pseudoscalar field.
To define its relation to μ5 let us separate the 0

components from the spatial components:

j0axion ¼
α

π
~∇θ5 · ~B; ~jaxion ¼

α

π
ð_θ5 ~Bþ∇θ5 ∧ ~EÞ: ð24Þ

Comparing these equations with Eq. (16) [see also Eq. (7)],
we argue that μ5ðxÞ ¼ _θ5ðxÞ. The identification of the axial
chemical potential with an axion field (_θ5) has first been
proposed in [1,2]; (later it also appeared in the context of
the quark-gluon plasma in Refs. [47,61–67], with the

pseudoscalar field being identified with a variable QCD
theta angle).
We wish to explain the relation between an inhomo-

geneous μ5ðxÞ and θ5ðxÞ. Equation (24) holds in any
coordinate system, if we define Ei ¼ F0i and Bi ¼
1
2
ϵijkFjk. However, in plasma physics, it is convenient to

express Fμν in terms of electric and magnetic fields in
comoving coordinates:

Fμν ¼ ϵμνλρuλBρ þ ðuμEν − uνEμÞ; ð25Þ

where Eμ;Bμ are four-vectors of electric and magnetic
fields orthogonal to the 4-velocity field uμ, (i.e.,
Eμuμ ¼ Bμuμ ¼ 0). For details see, e.g., the review [68]).
Taking Fμν in the form (25) and plugging it into Eq. (23),
we find that

~jaxion ¼
α

π
½ð_θ5 þ ~v · ~∇θ5Þ ~BðxÞ þ ð ~∇θ5 þ ~v_θ5Þ ∧ ~EðxÞ�

þOðv2Þ ð26Þ

[it should be stressed that in Eq. (26) the axion current is
measured in the coordinate system where flow velocities

are nonzero, while ~E; ~B are the spatial components of the
comoving four-vectors Eμ;Bμ, Eq. (25)]. Comparing
Eq. (26) with (22) gives us the desired relation between
μ5 and θ5,

μ5ð~x; tÞ≡ uμ∂μθ5ð~x; tÞ: ð27Þ

We note that if the relation μ5ðtÞ ¼ _θ5ðtÞ holds in comoving
coordinates, then Eq. (27) follows by transformation to the
laboratory frame.
Equations (27), (26), and (24) provide a local expression

for the electric four-current density jμ involving the axion
field θ5. Our expression for jμ explains why the electric
current density ~j in (22) is nonlocal in the axial chemical
potential μ5. The current density ~j is odd under time
reversal, T . The combination μ5 ~B is T -odd, too, because
~B is T -odd and μ5 is T -even. The electric field ( ~E) is
T -even, hence a term proportional to (spatial derivatives of)
μ5 and ~E would have the wrong transformation properties
under time reversal. However, when introducing the axion
field θ5, it is easy to write a local combination of (spatial
derivatives of) θ5 and ~E that transforms correctly under

time reversal, namely ~∇θ5 · ~E, which is odd under T ,
because the axion field is T -odd, (as the expression in (27)

shows). Clearly, ~∇θ5 is a nonlocal functional of μ5. (Thus,
introducing an axion field enables one to find a local
expression for the electric current, instead of the nonlocal
one on the right hand side of Eq. (22), and the second
equation in (24) is the correct generalization of Eq. (21) to a
spatially inhomogeneous plasma.
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An alternative route towards understanding the origin
of the axion field θ5 is the following one (see [1,2]):
We consider a system of massless fermions coupled to the
electromagnetic field in a state corresponding to a non-
vanishing axial chemical potential μ5. The action of this
system is given by

S½A;ψ � ¼
Z

d4x

�
−
1

4
F2
μν þ ψ̄ð∂ þ eAÞψ

þ μ5ðψ̄†
LψL − ψ̄†

RψRÞ
�

ð28Þ

One can remove the term proportional to μ5 by performing
a “chiral redefinition” of the fermion fields

ψ → eiθ5ðtÞγ5χ ð29Þ

where _θ5 ¼ μ5 [see (27)]. This transformation yields a
Fujikawa Jacobian [69]

J ½Aμ; θ5� ¼ exp

�
i
α

4π
θ5ϵ

μνλρFμνFλρ

�
ð30Þ

in the functional integral, yielding the modified action

S½A; χ; θ5�

¼
Z

d4x

�
−
1

4
F2
μν þ

α

4π
θ5ϵ

μνλρFμνFλρ þ χ̄ð∂ þ AÞχ
�
:

ð31Þ

We see that if the axial chemical potential is spatially
homogeneous then it can be re-expressed in terms of a
pseudoscalar field, θ5, that has an axionlike interaction with
the electromagnetic field.
Equation (27) enables us to present the general expres-

sion for the density matrix describing local thermal
equilibrium of an inhomogeneous plasma in an arbitrary
coordinate system.

ρLTE ¼ Z−1
Σ exp

�
−
Z
Σ
½uμðxÞðTμνðxÞ

− ∂μθ5ðxÞ ~J5νðxÞÞ�βðxÞdσνðxÞ
�
; ð32Þ

where uμ is the 4-velocity field of the plasma and the
expression uμ∂μθ5 plays the role of a local axial chemical
potential μ5ðxÞ. Expression (32) generalizes (10) to an
arbitrary coordinate system.
In Sec. III we will search for the correct dynamics of the

axion field. But, before addressing this problem, we
propose to clarify the significance of the constraint (13).

C. Constraints on θ5
In this subsection, we tentatively interpret θ5 as a

classical field, more precisely as a generalized thermody-
namic parameter that labels states describing LTE with
left-right (chiral) asymmetry. As discussed in Secs. II A and
II B, the requirement that the density matrix ρLTE, supposed
to describe LTE [see (10), (32)], be gauge invariant yields
the constraint

dðβμ5Þ ∧ FjΣ ≡ 0; ð33Þ
with

μ5 ¼ uμ∂μθ5; ð34Þ

where uμðxÞ is the 4-velocity field of the plasma appearing
in expressions (10) and (32) for ρLTE. Equation (33) is
identical to (11)–(12), and Eq. (34) follows from comparing
expressions (10) in Sec. II A and (32) in Sec. II B. In
comoving coordinates, u0ðxÞ≡ 1, ~uðxÞ≡ 0. Choosing Σ to
be a hyperplane at fixed time (in comoving coordinates),
and assuming that the temperature T is independent of
x ¼ ð~x; tÞ, (33) becomes

~BðxÞ · ~∇μ5ðxÞ ¼ ~BðxÞ · ~∇_θ5ðxÞ≡ 0; ð35Þ

which is Eq. (13).
It may be somewhat surprising that the constraint (35)

must be imposed on the choice of μ5. In order to illustrate
the origin of this constraint, we consider a plasma in a
homogeneous magnetic field ~B ≠ 0. We choose an initial
state where all left-handed (spin parallel to momentum)
charged particles are located in the half-space x1 < 0, while
the right-handed ones (spin antiparallel to momentum) are
located at x1 > 0. We assume that the particles are non-
interacting. Then the one-particle states are labeled by the
quantum number of a Landau level and the component of

the momentum parallel to ~B. If ~∇μ5 is perpendicular to the
field ~B then the densities of left-handed and right-handed

particles are independent of time. But if ~B · ~∇μ5 ≠ 0 then
left-handed and right-handed particles start to mix, as they
move in the direction of ~B. As a result, the chiral charge
density changes in time, which implies that LTE is lost;
see Fig. 1.
As a second example, we choose μ5ðxÞ to be nonzero and

constant in the slab defined by 0 ≤ x1 ≤ L and μ5ðxÞ≡ 0,

elsewhere. We consider a ~B-field parallel to the x1 axis. An
electric current then flows from x1 ¼ 0 to x1 ¼ L, thus
creating charge densities proportional to −Bδðx1Þ and
Bδðx1 − LÞ, respectively, on the two boundary planes of
the slab. These surface charges create a nonvanishing
electric field ~EðxÞ inside the slab, which is parallel to
the x1 axis. Hence, ~EðxÞ · ~BðxÞ ≠ 0, in the region where
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μ5ðxÞ ≠ 0, i.e., inside the slab. By Eq. (6) (Sec. I A), jμ5j
then decreases in time, with μ5ð~x; tÞ → 0, as t → ∞.
Obviously, LTE is then only approached in the limit where
t → ∞.

D. Chiral asymmetry and electroneutrality

To conclude this section, we discuss consequences of
electroneutrality in a high-temperature plasma and in the
presence of an axion field. Electroneutrality means that the
total electric charge density, j0totðxÞ, vanishes. According to
Eq. (24), the light charged particles (electrons and posi-
trons, with T ≫ me) make a contribution

j0axion ¼
α

π
~∇θ5 · ~B ð36Þ

to the electric charge density. In a plasma containing only
electrons and positrons, electroneutrality implies the
absence of matter-antimatter asymmetry, and j0axion must
vanish identically. If j0axion ≡ 0 then the 3-divergence of
~jaxion must vanish, i.e.,

0 ¼ ~∇ · ~jaxion ¼
α

π
ð ~∇_θ5 · ~Bþ ~∇θ5 · _~BÞ ¼ α

π
∂tð ~∇θ5 · ~BÞ;

ð37Þ

by (36). Expression (22) for the current density ~j implies

that ~∇ · ~j ¼ 0, as a consequence of Eq. (35). As a
consequence, electroneutrality, i.e., j0axion ¼ 0 follows.
If the plasma contains several types of charged particles

(for example, e� and p; p̄) then electroneutrality does not
imply any symmetry between matter and antimatter, and
there is no reason to expect that j0axion, as given in (36),
vanishes identically. One must then introduce electric four-
vector current densities for leptons and baryons and axial
chemical potentials for all species of very light, charged
particles. For simplicity, we consider a plasma consisting of

electrons, positrons, protons and antiprotons only. Let Jμp
denote the electric current density of protons and anti-
protons, and let

jμp ¼ hJμpiLTE ð38Þ

Electroneutrality then implies that

j0p ¼ −j0axion ¼ −
α

π
~∇θ5 · ~B ð39Þ

Let JμL be the total lepton vector current density, and let JμB
denote the total baryon vector current density. These vector
currents are separately conserved; hence,

JμB − JμL ð40Þ

is conserved. In order to describe the matter-antimatter
asymmetry observed in the Universe, we introduce a
chemical potential μB-L ¼ _θB-L conjugate to QL −QB,
where

QL=B ¼
Z
t¼const

J0L=Bð~x; tÞd3x ð41Þ

are the conserved lepton and baryon electric charges. If the
distribution of asymmetry between matter and antimatter in
the Universe turned out to be inhomogeneous the scalar
quantity θB-L would have to be taken to depend on time and
space, and a termZ

Σ
uμðxÞ∂μθB-LðxÞðJνBðxÞ − JνLðxÞÞβðxÞdσνðxÞ ð42Þ

must be added in the exponent of the expression for the
density matrix that describes LTE, on the right side of
Eq. (32) (see Sec. II B). To complete the picture we will
have to find an equation of motion for the scalar field θB-L.
We note that there are no constraints on θB-L similar to (33),

FIG. 1 (color online). The simplest configuration with a nonzero gradient of μ5ðxÞ. The region x1 < 0 has only left-handed particles

and the region x1 > 0 has only right-handed particles. If we consider a configuration where the magnetic field ~B has a nonvanishing one-
component, B1, the left-handed particles drift to the right, while the right-handed particles drift to the left, (because their state is

parametrized by a nonzero p1). Thus, the state is not on equilibrium state. But if ~B is perpendicular to the x axis the particles move
parallel to the boundary plane fx ¼ 0g, and the state is an equilibrium state.
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(35), but there is an equation analogous to (5) discussed in
the next section. Before we turn our attention to the
dynamics of θB-L, we study the dynamics of θ5.

III. SEARCH FOR THE DYNAMICS
OF THE AXION FIELD

Having introduced a time-dependent axial chemical
potential μ5, it is necessary to specify its dynamics.
Equations (23) and (24) suggest that it may be convenient
to derive the dynamics of μ5 from the one of the axion
field θ5.
In the homogeneous case, i.e., when μ5ðtÞ ¼ _θ5ðtÞ,

Eq. (1) can be rewritten as

Λ2θ̈5 ¼
α

4π
ϵμνλρFμνFλρ; ð43Þ

where Λ is a constant with the dimension of an “energy”
(the field θ5 is dimensionless, because μ5 ¼ _θ5 must be an
“energy”). By Eqs. (1)–(6), we have that

Λ2 ¼ T2

6
; ð44Þ

where T is the temperature of the plasma. (We have used
that ϵμνλρFμνFλρ ¼ 8 ~E · ~B, and ð·Þ indicates spatial averag-
ing.) In (43), (Fμν) is the expectation value of the electro-
magnetic field tensor in the state hð·ÞiLTE. The parameter Λ
has the meaning of a susceptibility. Its exact relation to the
thermodynamic variables depends on the density of states.
The relation (44) holds in the weak magnetic field regime,
eB ≪ T2 (we restrict ourselves to the massless fermions
and so the Landau levels are given by E2

n ¼ p2
z þ 2neB,

where n ¼ 0; 1; 2…). In the regime of large magnetic field,
the particles are confined to the lowest Landau level where

the density of states is eB dpz

ð2πÞ2 rather than
dpxdpydpz

ð2πÞ3 . In this

regime Λ becomes B dependent. As the magnetic field
continues to grow, the interaction of θ5 with the electro-
magnetic field (proportional to Λ−1) becomes weaker and
weaker, effectively turning off the coupling.
We should ask what the correct equation of motion of θ5

is that, upon taking spatial averages, yields Eq. (43). The
axion field θ5 has been introduced in order to describe
plasmas exhibiting a chiral asymmetry; in other words, θ5
may label states of a plasma—as do other thermodynamic
parameters, in particular the temperature. For this reason,
the equation of motion of θ5 has no reason to be relativistic;
(i.e., to preserve its form under arbitrary coordinate trans-
formations). It may therefore be plausible to consider a
diffusion equation for _θ5, which we discuss below.
The chiral anomaly tells us that

∂μJ
μ
5 ¼

2α

π
~E · ~B;

see Eq. (1), Sec. I A. Taking the expectation in the state of
the plasma (and viewing ~E and ~B as classical fields) yields

∂μj
μ
5 ¼

2α

π
~E · ~B; ð45Þ

with jμ5 ¼ hJμ5iT;μ5 . On the basis of Eqs. (43) and (45), one
argues that

∂μj
μ
5 ¼ Λ2θ̈5 þ ε½θ5�;

�
with Λ2 ¼ T2

6

�
; ð46Þ

where ε is a term whose spatial average vanishes,
i.e., ε½θ5� ¼ 0.
If θ5 is interpreted as a kind of thermodynamic parameter

labeling an inhomogeneous state of the plasma in LTE then
the following ansatz for jμ5 as a function of θ5 in comoving
coordinates is reasonable:

j05 ¼ Λ2 _θ5; ~j5 ¼ Λ2D ~∇ð_θ5Þ; ð47Þ
and

Λ2 ¼
�∂j05
∂μ5

�����
μ5¼0

; with j05jμ5¼0 ¼ 0: ð48Þ

Note that these equations imply that

D ~∇j05 ¼ ~j5; ð49Þ
a relation that can also be confirmed by direct computations
(see, e.g., [70]). In comoving coordinates, (45) and (47)
then yield the equations of motion

Λ2ðθ̈5 −DΔ_θ5Þ ¼ ∂μj
μ
5 ¼

2α

π
~E · ~B; ð50Þ

which imply (46). Together with Eq. (27) we find that

Λ2ð_μ5 −DΔμ5Þ ¼
2α

π
~E · ~B; ð51Þ

in accordance with Eq. (6), which is an inhomogeneous
diffusion equation for μ5. This diffusion equation can also
be obtained from a more formal first-order expansion of the
constitutive equation for the global current jμ5; (see, e.g.,
[71,72], or the book [73]). Taking into account chirality
flips due to small masses of the charged particles, Eq. (51)
should be generalized to the equation

Λ2ð _μ5 −DΔμ5Þ þ Γfμ5 ¼
2α

π
~E · ~B: ð52Þ

Furthermore, LTE imposes the constraint

~∇μ5 · ~B ¼ 0 ð53Þ
[see (13)]. The electric vector current density is
given by
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j0tot ¼ j0axion þ j0p ¼ α

π
~∇θ5 · ~Bþ j0p ¼ 0; ð54Þ

~jtot ¼ ~jaxion þ ~jp ¼ ~jaxion þ ~jOhm

¼ α

π
ðμ5 ~Bþ ~∇θ5 ∧ ~EÞ þ σ ~E; ð55Þ

with j~jpj ≪ j~jlj, because protons are much heavier than
electrons and positrons.
Of course, we also require the Maxwell equations, with

jμ ¼ jμtot given by (54) and (55).
Assuming that the baryonic current ~jp can be incorpo-

rated in ~jOhm ¼ σ ~E, as we have done in (55), we have

arrived at a complete system of field equations for θ5; ~E

and ~B.
The conductivity (tensor) σ must be calculated from

transport equations for the plasma. Apparently, the equa-
tion of motion for the scalar field θB-L that determines the
matter-antimatter asymmetry is not needed here; although it
is of considerable interest to derive one, (as will be
discussed elsewhere).
Equations (52)–(55) are supposed to be valid in comov-

ing coordinates. In general coordinate systems equa-
tions (53) and (54) must be replaced by

μ5 ¼ uμ∂μθ5 ≈ _θ5 þ ~u · ~∇θ5 ð56Þ
and

j0tot þ ~u · ~jtot ¼ 0 ð57Þ
[see Eq. (27)].
The analogue of Eq (5) for the field θB-L is the relation

j0B − j0L ¼ ε2 _θB-L; ð58Þ
where ð·Þ denotes spatial averaging, and ε is a constant with
the dimension of an energy. Since jμB − jμL is a conserved
current, it follows that

θ̈B-L ¼ 0: ð59Þ

A relativistic equation compatible with (59) is

□θB-L ¼ 0; ð60Þ

which describes a free, massless scalar field. As in our
discussion of the equation of motion of θ5, one could also
envisage an equation of the form

_μB-L −DΔμB-L ¼ 0; ð61Þ

with μB-L ¼ _θB-L in comoving coordinates. Choosing the
hyperplane Σ appearing in Eq. (42) to correspond to a
constant time t (in comoving coordinates, with u0 ¼
1; ~u ¼ 0) and imposing the condition that expression

(42) is independent of t (i.e., the matter-antimatter asym-
metry does not change in time, anymore, in the old
Universe), we find the constraint

ðJαB − JαLÞ∂αμB-L ¼ 0: ð62Þ

A. Dynamics of a fundamental axion field

It is advisable to also consider the possibility that θ5 is a
fundamental field evolving in time according to some
relativistic Hamiltonian dynamics. The equations of motion
for θ5 can then be derived from an action principle, the
action of θ5 being denoted by

Seff ½A; θ5�; ð63Þ
where A is the electromagnetic four-vector potential. In
order for the action (63) to reproduce the desired expres-
sions for jμaxion given in (23)–(24) (Sec. II B), it must have
the form

Seff ½A; θ5� ¼ S0½θ5� þ
α

4π

Z
d4xθ5ðxÞεμνρσFμνFρσ: ð64Þ

The equation of motion for θ5 derived from (64) is
given by

δSeff ½A; θ5�
δθ5

¼ 0; ð65Þ

or

δSeff ½A; θ5�
δθ5

−
δS0½θ5�
δθ5

¼ α

2π
εμνρσFμνFρσ

¼ 2α

π
~E · ~B ð66Þ

By (45), this implies that

δSeff ½A; θ5�
δθ5

−
δS0½θ5�
δθ5

¼ ∂μj
μ
5 ð67Þ

A reasonable ansatz for Seff ½A; θ5� is

Seff ½A; θ5� ¼
Z

d4x

�
Λ2ð∂μθ5ÞðxÞð∂μθ5ÞðxÞ þ Uðθ5ðxÞÞ

−
α

4π
θ5ðxÞεμνλρFμνðxÞFλρðxÞ

�
ð68Þ

This action yields the equations of motion

Λ2
□θ5 þU0ðθ5Þ ¼

α

4π
ϵμνρσFμνFρσ: ð69Þ

If θ5 is spatially homogeneous andU ¼ 0 this field equation
reduces to (43). Equation (69) has the form (46), provided
U0ðθ5Þ ¼ 0 (e.g., if U≡ 0). Equation (69), with a term Γf

_θ5
added on the left side, represents an alternative to Eq. (52).
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We conclude that, in a system with a fundamental axion
field, the chiral MHD description of the plasma can be
expected to be applicable even if the fermions are not
ultrarelativistic. For example, if an axionlike particle exists
and represents a contribution to dark matter, then the
production of dark matter in such a system may be
accompanied by the generation of magnetic fields (see
for example [74]). The phenomenological viability of this
scenario will be discussed elsewhere.
If Eq. (69) is the correct equation of motion it is tempting

to argue that not only Fμν corresponds to a quantized field,
but the axion field θ5 must be quantized, too. Furthermore,
the action (68), with U ¼ 0, suggests to unify the electro-
magnetic gauge potential A and θ5 to a gauge potential,
A ¼ ðA;Λθ5Þ, on a slab of width ∝ Λ−1 ¼ constβ in five-
dimensional space-time, with β the inverse temperature [see
(44)]. Then the term

R
d4xfΛ2ð∂μθ5ÞðxÞð∂μθ5ÞðxÞg origi-

nates from a contribution to the five-dimensional Maxwell
term, after dimensional reduction. These ideas are dis-
cussed in more detail in Appendix A.

IV. DYNAMICS OF CHIRAL MHD IN THE
INHOMOGENEOUS CASE

It was demonstrated in [3] that the presence of a
dynamical field μ5ðtÞ in the Maxwell-axion equations leads
to the generation of an “inverse cascade”—i.e., to the
transport of magnetic energy and helicity from shorter to
longer scales. In what follows we present a preliminary
analysis of the inhomogeneous equations derived in Sec. III
and show that the behavior of solutions is qualitatively
similar to that of spatially homogeneous solutions, as
discussed in [3]. In our analysis, we neglect
(1) the diffusion term Δμ5 in Eq. (52), assuming that the

timescales are much longer than typical diffusion
times

(2) the coupling to the velocity field ~u of the plasma, as
in Eqs. (56)–(57); i.e., we set ~u ≈ 0; we also neglect,
as usual, Maxwell’s displacement current propor-

tional to
_~E

(3) the chirality flipping term in Eq. (52); i.e., we set
Γf ¼ 0.

We thus analyze the following simplified system of
equations:

~∇ ∧ ~B ¼ σ ~Eþ α

π
ð_θ5 ~Bþ∇θ5 × ~EÞ;

Λ2θ̈5 ¼
2α

π
~E · ~B;

~B · ∇_θ5 ¼ 0; ð70Þ

with μ5 ¼ _θ5. In the analysis below we will assume that
Λ ∝ T and is independent of the magnetic field, B (see the
discussion after Eq. (44) in Sec. III). That is, we ignore the
backreaction of the magnetic field on the θ5 coupling.

A. Exact single-mode solution

In this section, we set out to find the simplest (but
nontrivial) exact solutions of Eqs. (70). These solutions can
be considered to be direct generalizations of the “single-
mode” solutions, considered in Ref. [3], to the inhomo-
geneous case.
We start with the following ansatz for the magnetic

induction ~B:

~BðxÞ ¼ BðtÞðsinðkzÞ; cosðkzÞ; 0Þ ð71Þ

For this choice of ~B, we have that

~∇ ∧ ~B ¼ k ~B; ð72Þ

which is a special case of the force-free configuration first
described in [75] (see also [76,77]). A general force-free
configuration (72) is given by the following expression [77]:

~B ¼ k−1 ~∇ ∧2 ð~eψÞ þ ~∇ ∧ ð~eψÞ ð73Þ

where ~e is an arbitrary unit vector and ψ is a solution of the
Helmholtz equation:

Δψ þ k2ψ ¼ 0: ð74Þ

The configuration (71) corresponds to the choice ~e ¼
ð1; 0; 0Þ and ψ ¼ sinðkzÞ. Therefore, a tracking solution,
found in [3], 8>><

>>:
_θ5 ¼ μ5 ¼ α

π k

~E ¼ 0

~B ¼ B0ðsinðkzÞ; cosðkzÞ; 0Þ
; ð75Þ

is also a solution of the inhomogeneous Maxwell equa-
tions (70) for any value of the constant B0. However, if one

starts with nonzero ~Eð0Þ or with μ5 ≠ α
π k (or if the initial

conditions are not monochromatic, see the next subsection)
the value B∞, to which the solution BðtÞ arrives at late times,
will depends nontrivially on the initial conditions as we
demonstrate below.
By the Bianchi identity, the electric field corresponding

to the configuration (71) is given by

~E ¼ −
1

k
_BðtÞðsinðkzÞ; cosðkzÞ; 0Þ; ð76Þ

hence

~EðxÞ · ~BðxÞ ¼ −
1

2k
∂
∂t B

2ðtÞ is space-independent: ð77Þ

Next, we plug this ansatz into the system of Eqs. (70).
This yields
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Λ2
∂μ5
∂t ¼ −

α

2πk
∂B2ðtÞ
∂t ð78Þ

or

μ5ðtÞ ¼ μ05 −
α

2π

B2ðtÞ − B2
0

kΛ2
ð79Þ

where B0 ¼ Bð0Þ and μ05 ¼ μ5ð0Þ. This is the exact solution
for μ5ðtÞ, for all times t, derived from the one-mode ansatz
(71). Such a solution has been first described in [3], and we
see here that the local nature of the axial anomaly
equation (70) does not invalidate the conclusion in [3].
Equations (70) allow us to determine BðtÞ and its

asymptotic behavior for large t. This is seen by plugging
expression (79) for μ5ðtÞ into the Maxwell equations,

which then yield a closed system of equations for ~B:

~∇ ∧ ~B ¼ σ ~Eþ α

π

�
μ05 −

α

π

B2ðtÞ − B2
0

2kΛ2

�
~B: ð80Þ

Using Eq. (76), and recalling that ~∇ ∧ ~B ¼ k ~B, for ~B as in
(71), we arrive at a nonlinear ordinary differential equation
(ODE) for one scalar function BðtÞ:

kBðtÞ ¼ −
σ

k
_BðtÞ þ α

π

�
μ05 −

α

π

B2ðtÞ − B2
0

2kΛ2

�
BðtÞ ð81Þ

This equation can be integrated explicitly and yields BðtÞ as
a function of B0 and μ05 and we can write down the explicit
time-dependent solution of the system (70):8>><

>>:
BðtÞ ¼ C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þC2 expð2ðk
2−γ2Þ
σ tÞ

q ;

μ5ðtÞ ¼ μ05 −
α
2π

B2ðtÞ−B2
0

kΛ2

ð82Þ

where we have introduced a parameter γ given by

γ2 ≔
α

π
kμ05 þ

β20
2
; with β20 ≔

α2B2
0

π2Λ2
: ð83Þ

The constants C1; C2 can be expressed in terms of B0; μ05,
and k, we will not provide their explicit form.
Next, we analyze the asymptotic behavior of BðtÞ as

t → ∞. To this end we put _BðtÞ ¼ 0 and find an algebraic
equation for B∞ ≡ Bðt → ∞Þ:

kB∞ ¼ α

π

�
μ05 −

α

π

B2
∞ − B2

0

2kΛ2

�
B∞: ð84Þ

There are two distinct solutions of Eq. (84). The trivial one,
i.e., B∞ ¼ 0, is approached if

trivial solution ⇔ k2 > γ2 or

k >
αμ05
2π

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β20
2
þ
�
αμ05
2π

�
2

s
: ð85Þ

Notice that although B∞ ¼ 0, the μ5ðt → ∞Þ can still be
nontrivial. In the case of zero magnetic field, the asymptotic
form of the μ5ðtÞ is not bound to be equal to πk

α and its value
is determined by Eq. (79).
The nontrivial solution of Eq. (86) exists if k < γ. It is

given by

B2
∞ ¼ B2

0

�
1þ

�
2k2

β20

��
μ05
μ∞5

− 1

��
;

where μ∞5 ≡ μ5ðt → ∞Þ ¼ πk
α
; ð86Þ

The necessary condition for the nontrivial solution (86) to
exist, i.e. B2

∞ > 0, is given by�
1þ

�
2k2

β20

��
μ05
μ∞5

− 1

��
> 0 ð87Þ

It is exactly opposite to the condition (85), as it should be.
In summary, we were able to find an exact solution of the

nonlinear system of differential equations (70) and found
condition (85) [or equivalently (87)] that relates the initial
value of μ5ðt ¼ 0Þ, Bðt ¼ 0Þ and the wave number k and
determines the ultimate fate of the single-mode solution.
Notice that if, initially, μ05 ¼ π

α k ¼ μ∞5 then the solution is
stationary, i.e.,B0 ¼ B∞. If, however, απ μ

0
5 ≠ k then bðtÞwill

increase or decrease and hence cause μ5ðtÞ to change in time,
as is seen from Eq. (79). Indeed, if α

π μ
0
5 > k then bðtÞ > 0,

and the amplitude of the ~B field grows, while, according to
(79), μ5ðtÞ decreases—as it should. But if α

π μ
0
5 < k then

bðtÞ < 0, i.e., the amplitude of the ~B field decreases, and,
according to (79), μ5ðtÞ increases towards μ∞5 . To demon-
strate this, we consider the behavior of the solution for small
times when BðtÞ ≈ B0 and μ5ðtÞ ≈ μ05. To this end we
linearize the system of Eq. (81) around some special
solutions. We set BðtÞ ¼ B0ð1þ ϵbðtÞÞ where bð0Þ ¼ 0.
To first order in ϵ we obtain the following equation for bðtÞ:�
α

π
μ05 − k

�
¼

��
α

π
μ05 − k

�
bðtÞ − β20

k
bðtÞ − σ

k
b0ðtÞ

�
þOðϵÞ: ð88Þ

The solution of Eq. (88) is given by

bðtÞ ¼ 1 − expðtðΔμk−
β2
0
2
Þ

σ Þ
1 − β2

0

2kΔμ

;

where Δμ ¼ αμ05
π

− k: ð89Þ

and it demonstrates the conclusion.
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B. Stability analysis of the helical
single-mode solution

In this section we sketch an analysis of stability of the
solution found in the previous section. To this end, we
assume that the initial configuration has reached its time-
independent form with some k, B∞ and μ∞5 . We then

perturb the vector potential ~A and the chiral chemical
potential μ5 by

μ5ð~x; tÞ ¼
πk
α

þ δμ5ð~x; tÞ

~Að~x; tÞ ¼
~B0ðzÞ
k

þ ~að~x; tÞ; ð90Þ

where ~B0ðzÞ has the form (71), with amplitude BðtÞ≡ B∞
given by Eq. (86). In (90), μ5ð~x; tÞ≡ μ∞5 if δμ5ð~x; tÞ≡ 0;
see (86).
The (equation expressing the) chiral anomaly [see

Eq. (70)], linearized around the background μ5ðxÞ≡
α−1πk and ~AðxÞ≡ k−1 ~B0ðzÞ, then yields

Λ2
∂δμ5
∂t ¼ −

2α

π
~B0ðzÞ ·

∂ ~a
∂t ; ð91Þ

which can be integrated to

δμ5ð~x; tÞ ¼ −
2α

π

1

Λ2
~B0ðzÞ · ð~að~x; tÞ − ~a0ð~xÞÞ þ δμ5ð~x; 0Þ

ð92Þ

where ~a0ð~xÞ ≔ ~að~x; t ¼ 0Þ. Below, we choose as the initial
condition δμ5ð~x; t ¼ 0Þ ¼ 0. This is obviously a special
choice. However, physically, it is the most interesting one,
because the spatial inhomogeneity of the chiral chemical
potential is then caused by fluctuations of the magnetic field.
The analysis of a more general situation will follow. Using
(92), the equation of motion for ~a is seen to be given by

−Δ~a ¼ −σ
∂ ~a
∂t þ k ~∇ ∧ ð~aÞ

−
2α2

π2
1

Λ2
ð ~B0ðzÞ · ~a − ~B0ðzÞ · ~a0Þ ~B0ðzÞ: ð93Þ

We analyze the special solution found by assuming that
~a depends only on the spatial coordinate z and on time t;
i.e., ~að~x; tÞ ¼ ðaxðz; tÞ; ayðz; tÞ; 0Þ. The equations then
reduce to

a00x ¼ σ _ax þ ka0y þ 2β2ðsin2ðkzÞðax − a0xÞ
þ sinðkzÞ cosðkzÞðay − a0yÞÞ;

a00y ¼ σ _ay − ka0x þ 2β2ðsinðkzÞ cosðkzÞðax − a0xÞ
þ cos2ðkzÞðay − a0yÞÞ; ð94Þ

where β2 is given by

β2 ≡ α2B2
∞

π2Λ2
: ð95Þ

(similar to the definition of β0 in (83), but with B0 replaced
with B∞).
We rewrite the system of equations (94) as a matrix

equation,�
σ∂t þ β2 − ∂2

z k∂z

−k∂z σ∂t þ β2 − ∂2
z

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡L̂

�
ax
ay

�

¼ −β2
�− cosð2kzÞ sinð2kzÞ

sinð2kzÞ cosð2kzÞ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡OðzÞ

�
ax − a0x
ay − a0y

�
; ð96Þ

or, schematically, as L̂ ~a ¼ −β2OðzÞð~a − ~a0Þ. Defining
U by

U ¼
�

1 1

−i i

�
; ð97Þ

we find that

U−1L̂U ¼
�
σ∂t þ β2 − ∂2

z − ik∂z 0

0 σ∂t þ β2 − ∂2
z þ ik∂z

�

¼
�
L̂þ 0

0 L̂−

�
; ð98Þ

and

U−1
�
ax
ay

�
¼ 1

2

�
ax þ iay
ax − iay

�
¼

�
aþ
a−

�
: ð99Þ

Furthermore,

U−1OðzÞU ¼
�

0 −e−2ikz

−e2ikz 0

�
: ð100Þ

We then have that

L̂þaþ ¼ β2e−2ikzða− − a0−Þ;
L̂−a− ¼ β2eþ2ikzðaþ − a0þÞ; ð101Þ

and we choose as an initial condition a plane wave:

a0− ¼ eiqz, a0þ ¼ e−iqz, hence ~∇ ∧ ~a0 ¼ q~a0. One may
attempt to solve Eqs. (101) by iteration. In zeroth approxi-
mation, we set the right side of Eqs. (101) to zero and get

L̂þa
ð0Þ
þ ¼ 0; að0Þþ ð0; zÞ ¼ e−iqz;

L̂−að0Þ− ¼ 0; að0Þ− ð0; zÞ ¼ eiqz: ð102Þ
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These equations are solved by

að0Þþ ¼ e−iqzeλt; að0Þ− 0 ¼ eiqzeλt;

λ ¼ kq − q2 − β2

σ
:

ð103Þ

The condition that perturbation grows in time, i.e. λ > 0, is
translated into

λ > 0 ⇔
k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4β2

p
2

< q <
kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 4β2

p
2

ð104Þ

That is, for β2 < k2=4 and q obeying the inequalities in
(104), a perturbation with wave number q grows in time;
(i.e., the single-mode solution of Sec. IV is unstable). We
stress that, compared to the results of Ref. [3], not every
mode, longer than 2π=k, can grow. The difference is given
by the presence of β2 term, which is a nonlinear contri-
bution from the background field, B∞. For β2 > k2=4, the
solution of the previous Sec. IVA is stable with respect to
the perturbation in the form.
To point out an important difference between the

stability analysis of Eqs. (70) and the results of [3], we
iterate Eqs. (101) again, yielding

L̂þa
ð1Þ
þ ¼ β2e−ið2k−qÞzðeλt − 1Þ; að1Þþ ð0; zÞ ¼ 0;

L̂−að1Þ− ¼ β2eið2k−qÞzðeλt − 1Þ; að1Þ− ð0; zÞ ¼ 0; ð105Þ

which is solved by (we only write the explicit expression

for að1Þþ , a− being its complex conjugate)

að1Þþ ¼ β2e−ið2k−qÞz

2kðk − qÞ
�
ðeλt − 1Þ þ λ

λ1
ðe−λ1t − 1Þ

�
;

λ1 ¼
2k2 − 3kqþ q2 þ β2

σ
> 0; ð106Þ

for q < k. We see that að1Þþ is a wave with inverse wave-
length 2k − q. If q < k (i.e., at t ¼ 0, the perturbation has a
longer wavelength than the original single-mode solution)
then 2k − q > k, i.e., a wave with shorter wavelength is
excited. This result is a consequence of the nonlinear nature
of Eqs. (70) and the coupling between the modes (i.e. the
generation of mode 2k − q starting from two modes with
the wave number k and q) is expected.
Below we show that the coefficient in front of the eλt

term in að1Þþ is always smaller than the term in front of the
e−iqz harmonic. The ratio of coefficients can be found to be
(we take times large enough so that λ1t ≫ 1 and λt ≫ 1)

jað1Þþ ðt; zÞj
jað0Þþ ðt; zÞj

����
λ1t≫1;λt≫1

¼ β2

2kðk − qÞ ≤
q
2k

<
1

2
ð107Þ

(in view of the condition that β2 < kq − q2 that follows
from λ > 0, Eq. (104) and considering only modes with
q < k). As a result at most 1

4
of the energy could be

transformed into the short wavelength mode.
Summary: Starting from the simplified system of equa-

tions of chiral electrodynamics, see Eqs. (70), we have
shown that the helical single-mode solution is stable for
sufficiently strong magnetic fields. For weak magnetic
fields, the long-wavelength perturbation grows in time.
A short-wavelength mode also gets excited, but its ampli-
tude is always parametrically smaller than the one of the
long-wavelength mode. Thus, transfer of energy and
helicity from a single helical field mode to a long-
wavelength perturbation, as described in [3], is observed
for solutions of the full system of equations with an
inhomogeneous axial chemical potential.

V. CONCLUSION AND OUTLOOK

In a relativistic plasma of charged particles, the axial
anomaly is accompanied by the appearance of new degrees
of freedom described by a pseudoscalar field θ5ðx; tÞ. This
field has the property that its time derivative is equal to the
axial chemical potential μ5 parameterizing states of local
equilibrium of the plasma. When coupled to the electro-
magnetic field and to the motion of the fluid the field θ5
appears in a system of equations that we call the “equations
of chiral magnetohydrodynamics” [see Eqs. (47) through
(54)]. If θ5 is spatially uniform and depends only on time _θ5
is nothing but the axial chemical potential μ5 of the light
charged fermions. In this paper, we have studied states of
the plasma corresponding to local equilibrium, with θ5
depending not only on time t, but also on ~x. Our analysis is
significant, because the presence of a nonzero (homo-
geneous) axial chemical potential μ5 leads to an instability
of some solutions of the Maxwell equations accompanied
by the generation of helical magnetic fields [1,2,5]. This
instability leads to the appearance of strong electromag-
netic fields that will, in turn, backreact on μ5, making it
spatially inhomogeneous.
We have analyzed special solutions of the system of

chiral MHD equations and have shown that the qualitative
conclusions reached in [3] remain valid. In particular, we
ave shown that there is a stationary solution (helical single-
mode solution) of our system of nonlinear equations with
the property that the growth caused by a nonvanishing axial
chemical potential exactly compensates the Ohmic dissi-
pation (subsection IVA). Another important property of
solutions in the presence of a homogeneous axial chemical
potential is the “inverse cascade” phenomenon, i.e., the
transfer of energy and magnetic helicity from short to large
scales, described in subsection IV B. This transfer is not
caused by turbulence in the plasma, but is an effect derived
from the chiral anomaly and caused by the chiral imbalance
in the plasma. We have shown that, under suitable
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conditions, this phenomenon appears to persist for spatially
inhomogeneous fields.
Our analysis can be expected to be relevant for the study

of various physical systems exhibiting a chiral (left-right)
imbalance, including the quark-gluon plasma and the plasma
in the early Universe. In an analysis of the plasma in the early
Universe, it might not be legitimate to neglect the coupling
of the axion field θ5 to the space-time curvature, (namely to
the term 1

2
ϵμναβRμνστRστ

αβ, where Rμνστ is the Riemann
tensor). We plan to return to this topic elsewhere.
Many elements of our analysis remain unchanged when

the axion is treated as a fundamental field with relativistic
Hamiltonian dynamics. As discussed in Sec. IV, it can
induce a left-right asymmetry in the distribution of electri-
cally charged fermions and trigger the growth of magnetic
fields.
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APPENDIX A: ELECTRODYNAMICS ON
A SLAB IN FIVE-DIMENSIONAL

MINKOWSKI SPACE

The connection between the chiral chemical potential μ5
and the axion field θ5 becomes manifest if one studies
electrodynamics on a slab R3;1 × I of five-dimensional
Minkowski space, where I is a finite interval extending
into the fifth dimension (cf. [1,2,78]). Here we briefly
review some important elements of this story. We consider
very heavy charged four-component Dirac fermions pop-
ulating the five-dimensional “bulk.” After coupling these
fermions to an external electromagnetic five-vector poten-
tial A and, subsequently, integrating them out, we obtain a
low-energy bulk effective action for the gauge field A and a
boundary effective action for boundary degrees of freedom,
which turn out to be massless chiral fermions localized on
the ð3þ 1Þ-dimensional “top” and “bottom” boundary
components of the slab (see Fig. 2).4 The effective action
is given by

Sð5Þ ¼
Z

d5x

�
−

1

4l
F2
ab þ

α

32π
ϵabcdeAaFbcFde

�
þ boundary action for chiral fermions

þ higher-order nonlocal terms; ðA1Þ

where l is the length of the interval I , α is the four-
dimensional fine-structure constant, and Fab is the five-
dimensional field strength (a; b ¼ 0, 1, 2, 3, 4). Fermions
of opposite chirality are located on opposite boundary
components, i.e., at x4 ¼ 0 and x4 ¼ l, respectively. We
turn on an electric field pointing into the fifth dimension,
i.e., F0a ¼ 0, for a ¼ 1, 2, 3, and F04 ¼ const. Then there
are nonzero charge densities, ρLðxÞ and ρRðxÞ, of chiral
fermions located on opposite boundary components of the
slab. These left- and right-chiral fermions couple to the
electromagnetic gauge field restricted to the boundary
hyperplanes. They give rise to anomalous currents on both
boundary hyperplanes. The action Sð5Þ in (A1) must,
therefore, contain the Chern-Simons term that cancels
the gauge anomalies of the chiral fermions on the two
boundary components. The bulk electric current corre-
sponding to the action Sð5Þ is given by

ja ≔
δSð5Þ

δAa
:

It has a contribution corresponding to the Chern-Simons
term,

jaCS ¼
α

8π
ϵabcdeFbcFde ðA2Þ

Note that jaCS is divergence-free in the five-dimensional
bulk. Its divergence does, however, not vanish on the
boundaries, where it is proportional to � α

8π ϵ
μνλρFμνFλρ,

respectively, and cancels the divergence of the anomalous
currents of the massless chiral fermions located on the
boundary components of the slab—a phenomenon known
as anomaly inflow.
In order to reveal the connection between this model of

five-dimensional electrodynamics and axion electro-
dynamics, we study the dimensional reduction of the

FIG. 2. Five-dimensional geometry. Light chiral fermions are
localized on the boundaries of the five-dimensional slab (x4 ¼ 0

and x4 ¼ l).

4These chiral fermions may acquire a mass through tunneling
between the two boundary components, which shows that they
may be used for purposes of reasonably realistic model building.
We will ignore this possibility in the following.
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five-dimensional theory. We define a scalar field depending
only on the coordinates x ¼ ðx0 ¼ t; x1; x2; x3Þ of a space-
time point X ∈ R3;1 × I by setting

θ5ðxÞ ¼
Z
γ
dx4A4ðXÞ; ðA3Þ

where γ is a straight path in the fifth direction connecting
the two points Xl ¼ ðx; x4 ¼ 0Þ and Xu ¼ ðx; x4 ¼ lÞ
located on opposite boundary components; see Fig. 2.
We assume that the components Aμ; μ ¼ 0, 1, 2, 3 of the
gauge field A are independent of the x4 coordinate (or are
averaged over x4). By Eq. (A3),

_θ5 ¼ −
Z
γ
dx4 _A4 ¼

Z
γ
dx4E4: ðA4Þ

The right side of this equation is the voltage drop between
the two boundary components, which is nothing but the
difference of the chemical potentials of left- and right-chiral
fermions. The dimensional reduction of the action (A1)
yields exactly the effective action given in Eq. (68) þ a
four-dimensional Maxwell term. This implies that the
axion-photon coupling constant can be identified with
the size of the interval I extending into the fifth dimension.
Comparing the equations derived in this appendix with
Eqs. (5) and (6) of Sec. I, we observe that the temperature T
can be identified with the inverse of the width l of the slab.
The theory outlined here can be viewed as a five-

dimensional cousin of the quantum Hall effect.

APPENDIX B: LINEAR ANALYSIS

1. Growth of the long-wavelength modes

Let us now perturb the stationary solution for the one-
mode (80) by a small long-wavelength mode ~B1:

~B1ðz; tÞ ¼ ϵB0b1ðtÞðsinðk1zÞ; cosðk1zÞ; 0Þ: ðB1Þ
The linearized equation does not have the simple form
Eq. (88) anymore. However the property (77) still holds for

the mode ~B1 separately. What is not true, however, is that
the overall μ5ðtÞ is now space independent. It is governed
by the following equation (where again we introduced
BðtÞ ¼ B0ð1þ ϵbðtÞÞ

f25 _μ5 ¼
2α

π

� ∂
∂t

B2ðtÞ
2k

þ ϵ2
∂
∂t

b21ðtÞ
2k1

þ ϵ

�
BðtÞ _b1ðtÞ

2k1
þ b1ðtÞ _BðtÞ

2k

�
cosððk − k1ÞzÞ

�
:

ðB2Þ

To the first order in ϵ Eq. (B2) has the following form

f25
∂μ5
∂t ¼ −ϵ

2α

π
B0

∂
∂t

�
bðtÞ
k

þ b1ðtÞ
k1

cosððk − k1ÞzÞ
�
:

ðB3Þ
We can integrate Eq. (B3) over time to get

μ5ðtÞ ¼ μ05 − ϵ
2α

π

B0

f25

�
bðtÞ
k

þ b1ðtÞ
k1

cosððk − k1ÞzÞ
�
: ðB4Þ

It is important to notice that in this order in ϵ,

∇θ5 ∝ ð0; 0; 1Þ; ðB5Þ

points in the z direction, and therefore ~B ·∇θ5 is indeed
equal to zero.
If μ5 is homogeneous in space [i.e. if we neglect the last

term in Eq. (B4)] we end us with the usual two-mode
equation:

kBðtÞ ¼ −
σ

k
_BðtÞ þ α

π
μ5ðtÞBðtÞ

k1b1ðtÞ ¼ −
σ

k1
_b1ðtÞ þ

α

π
μ5ðtÞb1ðtÞ: ðB6Þ

If instead of solving Eqs. (B6) directly we would expand
them in ϵ (in view of the subsequent nonhomogeneous
case) we would get the following.
We start with the μ05 ¼ πk

α (i.e. the one that would make a
single mode stationary). We then see that the correction to
this mode obeys an ODE [compare the last two terms in
Eq. (88)],

σb0ðtÞ ¼ −
α2

π2
B2
0

f25
bðtÞ: ðB7Þ

This equation has the solution bðtÞ ¼ 0 if one starts from
bð0Þ ¼ 0. This probably means that BðtÞ does not change
in the linear order in ϵ. In the first order in ϵ the equation for
b1ðtÞ has the form expected from (B6):

σb01ðtÞ ¼ ðkk1 − k21Þb1ðtÞ; ðB8Þ

which gives exactly the exponential solution with
μ5 ¼ πk

α .
Qualitatively one has constant amplitude for the short

wavelength solution (the nontrivial evolution appears at
the order ϵ2). The growth of the mode b1ðtÞ starts
immediately and goes on until the neglected terms become
important.

2. Two-mode inhomogeneous solution

Let us now turn to the case of the two-mode inhomo-
geneous solution. The expression for μ5 is given by
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Eq. (B4) and the following equations for the different
modes appear:
The mode with the wave vector k (short wavelength):

σb0ðtÞ ¼ −
α2

π2
B2
0

f25
bðtÞ ½identical to ð118Þ�: ðB9Þ

The mode with the wave vector k1 (long wavelength):

σb01ðtÞ¼ ðkk1−k21Þb1ðtÞþ
α2B2

0

2π2f25
ðb1ðtÞ−b1ð0ÞÞ: ðB10Þ

Due to the nonlinearity of the equations, we also have the
very short wavelength mode (2k − k1) excited. If we
assume that its initial amplitude is zero, we have

σb02ðtÞ ¼
α2B2

0ð2k − k1Þ
2π2k1f25

ðb1ðtÞ − b1ð0ÞÞ; ðB11Þ

a term similar to the last term in Eq. (B10) but with an
additional “enhancement” k=k1 ≫ 1. However, this term is
sourced by ðb1ðtÞ − b1ð0ÞÞ and will not get excited until the
mode b1 has grown significantly.
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