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Magnetometer calibration using inertial sensors
Manon Kok, Student Member, IEEE, and Thomas B. Schön, Senior Member, IEEE

Abstract—In this work we present a practical algorithm
for calibrating a magnetometer for the presence of magnetic
disturbances and for magnetometer sensor errors. To allow for
combining the magnetometer measurements with inertial mea-
surements for orientation estimation, the algorithm also corrects
for misalignment between the magnetometer and the inertial
sensor axes. The calibration algorithm is formulated as the
solution to a maximum likelihood problem and the computations
are performed offline. The algorithm is shown to give good results
using data from two different commercially available sensor units.
Using the calibrated magnetometer measurements in combination
with the inertial sensors to determine the sensor’s orientation is
shown to lead to significantly improved heading estimates.

Index Terms—Magnetometers, calibration, inertial sensors,
maximum likelihood, grey-box system identification, sensor fu-
sion.

I. INTRODUCTION

NOWADAYS, magnetometers and inertial sensors (gy-

roscopes and accelerometers) are widely available, for

instance in dedicated sensor units and in smartphones. Mag-

netometers measure the local magnetic field. When no mag-

netic disturbances are present, the magnetometer measures

a constant local magnetic field vector. This vector points to

the local magnetic north and can hence be used for heading

estimation. Gyroscopes measure the angular velocity of the

sensor. Integration of the gyroscope measurements gives in-

formation about the change in orientation. However, it does

not provide absolute orientation estimates. Furthermore, the

orientation estimates suffer from integration drift. Accelerom-

eters measure the sensor’s acceleration in combination with

the earth’s gravity. In the case of small or zero acceleration,

the measurements are dominated by the gravity component.

Hence, they can be used to estimate the inclination of the

sensor.

Inertial sensors and magnetometers have successfully been

used to obtain accurate 3D orientation estimates for a wide

range of applications. For this, however, it is imperative that

the sensors are properly calibrated and that the sensor axes

are aligned. Calibration is specifically of concern for the

magnetometer, which needs recalibration whenever it is placed

in a (magnetically) different environment. When the magnetic

disturbance is a result of the mounting of the magnetometer

onto a magnetic object, the magnetometer can be calibrated

to compensate for the presence of this disturbance. This is the

focus of this work.
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Fig. 1. Example calibration results with an ellipsoid of magnetometer data
before calibration (red) and a unit sphere of data after calibration (blue).

Our main contribution is a practical magnetometer calibra-

tion algorithm that is designed to improve orientation estimates

when combining calibrated magnetometer data with inertial

data. The word practical refers to the fact that the calibration

does not require specialized additional equipment and can

therefore be performed by any user. More specifically, this

means that the orientation of the sensor is not assumed to be

known. Instead, the calibration problem is formulated as an

orientation estimation problem in the presence of unknown pa-

rameters and is posed as a maximum likelihood (ML) problem.

The algorithm calibrates the magnetometer for the presence

of magnetic disturbances, for magnetometer sensor errors and

for misalignment between the magnetometer and the inertial

sensor axes. Using the calibrated magnetometer measurements

to estimate the sensor’s orientation is experimentally shown to

lead to significantly improved heading estimates. We aggregate

and extend the work from [1] and [2] with improvements on

the implementation of the algorithm. Furthermore, we include

a more complete description and analysis, more experimental

results and a simulation study illustrating the heading accuracy

that can be obtained with a properly calibrated sensor.

To perform the calibration, the sensor needs to be rotated in

all possible orientations. A perfectly calibrated magnetometer

would in that case measure rotated versions of the local

magnetic field vector. Hence, the magnetometer data would lie

on a sphere. In practice, however, the magnetometer will often

measure an ellipsoid of data instead. The calibration maps

the ellipsoid of data to a sphere as illustrated in Fig. 1. The

alignment of the inertial and magnetometer sensor axes deter-

mines the orientation of the sphere. Since we are interested

in improving the heading estimates, the actual magnitude of

the local magnetic field is of no concern. Hence, we assume

without loss of generality that the norm is equal to 1, i.e. the

sphere in Fig. 1 is a unit sphere.

http://users.isy.liu.se/en/rt/manko/
http://users.isy.liu.se/en/rt/manko/
http://user.it.uu.se/~thosc112/
http://user.it.uu.se/~thosc112/
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II. RELATED WORK

Traditional magnetometer calibration approaches assume

that a reference sensor is available which is able to provide

accurate heading information. A well-known example of this

is compass swinging [3]. To allow for any user to perform the

calibration, however, a large number of approaches have been

developed that remove the need for a source of orientation

information. One class of these magnetometer calibration

algorithms focuses on minimizing the difference between the

magnitude of the measured magnetic field and that of the local

magnetic field, see e.g. [4]. This approach is also referred to as

scalar checking [5]. Another class formulates the calibration

problem as an ellipsoid fitting problem, i.e. as the problem

of mapping an ellipsoid of data to a sphere, see e.g. [6]–

[8]. The benefit of using this formulation, is that there is a

vast literature on solving ellipsoid fitting problems, see e.g.

[9], [10]. Outside of these two classes, a large number of

other calibration approaches is also available, for instance [11],

where different formulations of the calibration problem in

terms of an ML problem are considered.

The benefit of the approaches discussed above is that they

can be used with data from a magnetometer only. Our interest,

however, lies in calibrating a magnetometer for improved

heading estimation in combination with inertial sensors. Align-

ment of the sensor axes of the inertial sensors and the

magnetometer is in this case crucial. This alignment can be

seen as determining the orientation of the blue sphere of

calibrated magnetometer data in Fig. 1. Algorithms that only

use magnetometer data can map the red ellipsoid of data to a

sphere, but without additional information, the rotation of this

sphere remains unknown.

A number of recent approaches include a second step in

the calibration algorithm to determine the misalignment [6],

[12]–[14] between different sensor axes. A common choice

to align the magnetometer and inertial sensor axes, is to

use accelerometer measurements from periods of fairly small

accelerations [12], [13]. The downside of this approach is that

a threshold for using accelerometer measurements needs to be

determined. Furthermore, data from the gyroscope is hereby

omitted. In [15] on the other hand, the problem is reformulated

in terms of the change in orientation, allowing for direct use

of the gyroscope data.

In our algorithm we instead formulate the magnetometer

calibration problem as a problem of estimating the sensor’s

orientation in the presence of unknown (calibration) parame-

ters. This formulation naturally follows from the fact that the

problem of orientation estimation and that of magnetometer

calibration are inherently connected: If the magnetometer is

properly calibrated, good orientation estimates can be ob-

tained. Reversely, if the orientation of the sensor is known

accurately, the rotation of the sphere in Fig. 1 can accurately

be determined, resulting in a good magnetometer calibration.

In this formulation, data from the accelerometer and the

gyroscope is used to aid the magnetometer calibration.

Our formulation of the calibration problem requires solving

a non-convex optimization problem to obtain ML estimates

of the calibration parameters. To obtain good initial values of

the parameters, an ellipsoid fitting problem and a misalignment

estimation problem are solved. Solving the calibration problem

as a two-step procedure is similar to the approaches in [12],

[13]. We analyze the quality of the initial estimates and of

the ML estimates in terms of their heading accuracy, both for

experimental and simulated data. Based on this analysis, we

show that significant heading accuracy improvements can be

obtained by using the ML estimates of the parameters.

III. PROBLEM FORMULATION

Our magnetometer calibration algorithm is formulated as a

problem of determining the sensor’s orientation in the presence

of unknown model parameters θ. It can hence be considered

to be a grey-box system identification problem. A nonlinear

state space model on the following form is used

xt+1 = ft(xt, ωt, eω,t, θ), (1a)

yt =

(
ya,t

ym,t

)
=

(
ha,t(xt)
hm,t(xt, θ)

)
+ et(θ), (1b)

where the state xt represents the sensor’s orientation at time t.

We use the change in orientation, i.e. the angular velocity ωt,

as an input to the dynamic model ft(·). The angular velocity

is measured by the gyroscope. However, the measurements

yω,t are corrupted by a constant bias δω and Gaussian i.i.d.

measurement noise with zero mean and covariance Σω , i.e.

eω,t ∼ N (03×1,Σω).
The measurement models ha,t(·) and hm,t(·) in (1b) describe

the accelerometer measurements ya,t and the magnetometer

measurements ym,t, respectively. The accelerometer measure-

ment model assumes that the acceleration of the sensor is

small compared to the earth gravity. Since the magnetometer

is not assumed to be properly calibrated, the magnetometer

measurement model hm,t(·) depends on the parameter vector

θ. The exact details of the magnetometer measurement model

will be introduced in Section IV. The accelerometer and

magnetometer measurements are corrupted by Gaussian i.i.d.

measurement noise

et =

(
ea,t

em,t

)
∼ N

(
06×1,

(
Σa 03×3

03×3 Σm

))
. (2)

The calibration problem is formulated as an ML problem.

Hence, the parameters θ in (1) are found by maximizing the

likelihood function pθ(y1:N ),

θ̂ML = argmax
θ∈Θ

pθ(y1:N ), (3)

where y1:N = {y1, . . . , yN} and Θ ⊆ R
nθ . Using conditional

probabilities and the fact that the logarithm is a monotonic

function we have the following equivalent formulation of (3),

θ̂ML = argmin
θ∈Θ

−
N∑

t=1

log pθ(yt | y1:t−1), (4)

where we use the convention that y1:0 , ∅. The ML estima-

tor (4) enjoys well-understood theoretical properties including

strong consistency, asymptotic normality, and asymptotic effi-

ciency [16].

The state space model (1) is nonlinear, implying that there

is no closed form solution available for the one step ahead
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predictor pθ(yt | y1:t−1) in (4). This can systematically be

handled using sequential Monte Carlo methods (e.g. particle

filters and particle smoothers), see e.g. [17], [18]. However, for

the magnetometer calibration problem it is sufficient to make

use of a more pragmatic approach; we simply approximate

the one step ahead predictor using an extended Kalman filter

(EKF). The result is

pθ(yt | y1:t−1) ≈ N
(
yt ; ŷt|t−1(θ), St(θ)

)
, (5)

where the mean value ŷt|t−1(θ) and the covariance St(θ)
are obtained from the EKF [19]. Inserting (5) into (4) and

neglecting all constants not depending on θ results in the

following optimization problem,

min
θ∈Θ

1

2

N∑

t=1

‖yt − ŷt|t−1(θ)‖
2
S−1

t (θ)
+ log detSt(θ), (6)

which we can solve for the unknown parameters θ. The

problem (6) is non-convex, implying that a good initial value

for θ is required.

IV. MAGNETOMETER MEASUREMENT MODEL

In the case of perfect calibration, a magnetometer measures

the local magnetic field and its measurements will therefore

lie on a sphere with a radius equal to the local magnetic

field. Since we are interested in using the magnetometer

measurements to improve the orientation estimates from the

state space model (1), the actual magnitude of the local

magnetic field is of no concern. Hence, we assume without

loss of generality that its norm is equal to one. We denote the

normalized local magnetic field by mn. Ideally, the magne-

tometer measurements then lie on a sphere with radius equal

to one as

hm,t = mb
t = Rbn

t m
n, (7)

where hm,t is defined in (1b). The explicit dependence on xt
and θ has been omitted for notational simplicity. The matrix

Rbn
t is the rotation matrix representation of the orientation at

time t. The superscript bn denotes that the rotation is from

the navigation frame n to the body frame b. The body frame

b is aligned with the sensor axes. The navigation frame n is

aligned with the earth’s gravity and the local magnetic field.

In case the coordinate frame in which a vector is defined

can be ambiguous, we explicitly indicate in which coordinate

frame the vector is expressed by adding a superscript b or

n. Hence, mn denotes the normalized local magnetic field

in the navigation frame n while mb
t denotes the normalized

local magnetic field in the body frame b. The latter is time-

dependent and therefore also has a subscript t. Note that the

rotation from navigation frame to body frame is denoted Rnb
t

and Rbn
t = (Rnb

t )T.

In outdoor environments, the local magnetic field is equal

to the local earth magnetic field. Its horizontal component

points towards the earth’s magnetic north pole. The ratio

between the horizontal and vertical component depends on

the location on the earth and can be expressed in terms of the

dip angle δ. In indoor environments, the magnetic field can

locally be assumed to be constant and points towards a local

magnetic north. This is not necessarily the earth’s magnetic

north pole. Choosing the navigation frame n such that the x-

axis is pointing towards the local magnetic north, mn can be

parametrized in terms of its vertical component mn
z

mn =
(√

1− (mn
z)

2
0 mn

z

)T

, (8a)

or in terms of the dip angle δ

mn =
(
cos δ 0 − sin δ

)T
. (8b)

Note that the two parametrizations do not encode exactly the

same knowledge about the magnetic field; the first component

of mn in (8a) is positive by construction while this is not true

for (8b). However, both parametrizations will be used in the

remainder. It will be argued that no information is lost by

using (8b) if the parameter estimates are properly initialized.

The main need for magnetometer calibration arises from the

fact that a magnetometer needs recalibration each time it is

placed in a magnetically different environment. Specifically, a

magnetometer measures a superposition of the local magnetic

field and of the magnetic field due to the presence of magnetic

material in the vicinity of the sensor. In case this magnetic

material is rigidly attached to the magnetometer, it is possible

to calibrate the magnetometer measurements for this. The

magnetic material can give rise to both hard and soft iron

contributions to the magnetic field. Hard iron effects are due

to permanent magnetization of the magnetic material and lead

to a constant 3× 1 offset vector ohi. Soft iron effects are due

to magnetization of the material as a result of an external

magnetic field and therefore depend on the orientation of the

material with respect to the local magnetic field. We model

this in terms of a 3× 3 matrix Csi. Hence, the magnetometer

measurements do not lie on a sphere as in (7), but instead,

they lie on a translated ellipsoid as

hm,t = CsiR
bn
t m

n + ohi. (9)

As discussed in Section II, when calibrating the magne-

tometer to obtain better orientation estimates, it is important

that the magnetometer and the inertial sensor axes are aligned.

Let us now be more specific about the definition of the body

frame b and define it to be located in the center of the

accelerometer triad and aligned with the accelerometer sensor

axes. Furthermore, let us assume that the accelerometer and

gyroscope axes are aligned. Defining the rotation between the

body frame b and the magnetometer sensor frame bm as Rbmb,

the model (9) can be extended to

hm,t = CsiR
bmbRbn

t m
n + ohi. (10)

Finally, the magnetometer calibration can also correct for

the presence of sensor errors in the magnetometer. These

errors are sensor-specific and can differ for each individual

magnetometer. They can be subdivided into three components,

see e.g. [6]–[8]:

1) Non-orthogonality of the magnetometer axes, represented

by a matrix Cno.

2) Presence of a zero bias or null shift, implying that the

magnetometer will measure a non-zero magnetic field

even if the magnetic field is zero, defined by ozb.
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Algorithm 1 Magnetometer and inertial calibration

1) Determine an initial parameter estimate D̂0, ô0, m̂n
0, δ̂ω,0,

Σ̂ω,0, Σ̂a,0, Σ̂m,0 using three steps

a) Initialize δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0.

b) Obtain an initial D̃0 and ô0 based on ellipsoid fitting

(see Section VI-A).

c) Obtain initial D̂0, ô0 and m̂n
0 by initial determination

of the sensor axis misalignment (see Section VI-B).

2) Set i = 0 and repeat,

a) Run the EKF using the current estimates D̂i, ôi, m̂
n
i ,

δ̂ω,i, Σ̂ω,i, Σ̂a,i, Σ̂m,i to obtain {ŷt|t−1(θ̂i), St(θ̂i)}
N
t=1

and evaluate the cost function in (6).

b) Determine θ̂i+1 using the numerical gradient of the

cost function in (6), its approximate Hessian and a

backtracking line search algorithm.

c) Obtain D̂i+1, ôi+1, m̂n
i+1, δ̂ω,i+1, Σ̂ω,i+1, Σ̂a,i+1,

Σ̂m,i+1 from θ̂i+1.

d) Set i := i + 1 and repeat from Step 2a until conver-

gence.

3) Difference in sensitivity of the three magnetometer axes,

represented by a diagonal matrix Csc.

We can therefore extend the model (10) to also include the

magnetometer sensor errors as

hm,t = CscCno

(
CsiR

bmbRbn
t m

n + ohi

)
+ ozb. (11)

To obtain a correct calibration, it is fortunately not nec-

essary to identify all individual contributions of the different

components in (11). Instead, they can be combined into a 3×3
distortion matrix D and a 3× 1 offset vector o where

D = CscCnoCsiR
bmb, o = CscCnoohi + ozb. (12)

The resulting magnetometer measurement model in (1b) can

be written as

ym,t = DRbn
t m

n + o+ em,t. (13)

In deriving the model we have made two important assump-

tions:

Assumption 1. The calibration matrix D and offset vector

o in (12) are assumed to be time-independent. This implies

that we assume that the magnetic distortions are constant

and rigidly attached to the sensor. Also, the inertial and the

magnetometer sensor axes are assumed to be rigidly attached

to each other, i.e. their misalignment is represented by a

constant rotation matrix. Additionally, in our algorithm we will

assume that their misalignment can be described by a rotation

matrix, i.e. that their axes are not mirrored with respect to each

other.

Assumption 2. The local magnetic field mn is assumed to be

constant. In outdoor environments, this is typically a physically

reasonable assumption. In indoor environments, however, the

local magnetic field can differ in different locations in the

building and care should be taken to fulfill the assumption.

V. CALIBRATION ALGORITHM

In our magnetometer calibration algorithm we solve the

optimization problem (6) to estimate the parameter vector θ.

In this section we introduce the resulting calibration algorithm

which is summarized in Algorithm 1. In Section V-A, we

first discuss our optimization strategy. A crucial part of this

optimization strategy is the evaluation of the cost function.

Some details related to this are discussed in Section V-B.

Finally, in Section V-C we introduce the parameter vector θ

in more detail.

A. Optimization algorithm

The optimization problem (6) is solved in Step 2 of Algo-

rithm 1. Standard unconstrained minimization techniques are

used, which iteratively update the parameter estimates as

θi+1 = θi − αi [H(θi)]
−1 G(θi), (14)

where the direction of the parameter update at iteration i is

determined by [H(θi)]
−1 G(θi). The step length of the update

at iteration i is denoted by αi.

Typical choices for the search direction include choosing

G(θi) to be the gradient of the cost function in (6) and H(θi) to

be its Hessian. This leads to a Newton optimization algorithm.

However, computing the gradient and Hessian of (6) is not

straightforward. Possible approaches are discussed in [20],

[21] for the case of linear models. In the case of nonlinear

models, however, they only lead to approximate gradients, see

e.g. [22], [23]. For this reason we make use of a numerical

approximation of G(θi) instead and use a Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method with damped updating [24]

to approximate the Hessian. Hence, the minimization is per-

formed using a quasi-Newton optimization algorithm. A back-

tracking line search is used to find a good step length αi.

Proper initialization of the parameters is crucial since the

optimization problem (6) is non-convex. Step 1 summarizes

the three-step process used to obtain good initial estimates of

all parameters.

B. Evaluation of the cost function

An important part of the optimization procedure is the

evaluation of the cost function in (6). This requires running an

EKF using the state space model (1) to estimate the orientation

of the sensor. This EKF uses the angular velocity ωt as an

input to the dynamic model (1a). An estimate of the angular

velocity is obtained from the gyroscope measurements yω,t

which are modeled as

yω,t = ωt + δω + eω,t. (15)

The measurement model (1b) entails the accelerometer mea-

surements and the magnetometer measurements. The mag-

netometer measurement model can be found in (13). The

accelerometer measurements ya,t are modeled as

ya,t = Rbn
t (an

t − gn) + ea,t ≈ −Rbn
t g

n + ea,t, (16)

where an
t denotes the sensor’s acceleration in the navigation

frame and gn denotes the earth’s gravity. The rotation matrix

Rbn
t has previously been introduced in Section IV.
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The state in the EKF, which represents the sensor orienta-

tion, can be parametrized in different ways. In previous work

we have used a quaternion representation as a 4-dimensional

state vector [1]. In this work we instead use an implementa-

tion of the EKF, which is sometimes called a multiplicative

EKF [25]–[27]. Here, a 3-dimensional state vector represents

the orientation deviation from a linearization point. More

details on this implementation can be found in [28].

The EKF returns the one step ahead predicted measurements

{ŷt|t−1(θ)}
N
t=1 and their covariance {St(θ)}

N
t=1 which can be

used to evaluate (6). The cost function needs to be evaluated

for the current parameter estimates in Step 2a but also needs

to be evaluated once for each component of the parameter

vector θ to compute the numerical gradient. Hence, each

iteration i requires running the EKF at least nθ + 1 times.

Note that the actual number of evaluations can be higher since

the backtracking line search algorithm used to determine αi

can require a varying number of additional evaluations. Since

nθ = 34, computing the numerical gradient is computationally

rather expensive. However, it is possible to parallelize the

computations.

C. The parameter vector θ

As apparent from Section IV, our main interest lies in

determining the calibration matrix D and the offset vector o,

which can be used to correct the magnetometer measurements

to obtain more accurate orientation estimates. To solve the

calibration problem, however, we also estimate a number of

other parameters.

First, the local magnetic field mn introduced in Section IV

is in general scenarios unknown and needs to be estimated. In

outdoor environments, mn is equal to the local earth magnetic

field and is accurately known from geophysical studies, see

e.g. [29]. In indoor environments, however, the local magnetic

field can differ quite significantly from the local earth magnetic

field. Because of that, we treat mn as an unknown constant.

Second, the gyroscope measurements that are used to describe

the change in orientation of the sensor in (1a) are corrupted by

a bias δω . This bias is slowly time varying but for our relatively

short experiments it can be assumed to be constant. Hence, it

is treated as part of the parameter vector θ. Finally, we treat

the noise covariance matrices Σω , Σa and Σm as unknown. In

summary, the parameter vector θ consists of

D ∈ R
3×3, (17a)

o ∈ R
3, (17b)

mn ∈ {R3 : ||mn||22 = 1,mn
x > 0,mn

y = 0}, (17c)

δω ∈ R
3, (17d)

Σω ∈ {R3×3 : Σω � 0,Σω = ΣT

ω}, (17e)

Σa ∈ {R3×3 : Σa � 0,Σa = ΣT

a }, (17f)

Σm ∈ {R3×3 : Σm � 0,Σm = ΣT

m}, (17g)

where mn
x and mn

y denote the x- and y- component of mn,

respectively. The notation Σ � 0 denotes the assumption that

the matrix Σ is positive semi-definite.

Although (17c) and (17e) – (17g) suggest that constrained

optimization is needed, it is possible to circumvent this via

suitable reparametrizations. The covariance matrices can be

parametrized in terms of their Cholesky factorization, leading

to only 6 parameters for each 3×3 covariance matrix. The local

magnetic field can be parametrized using only one parameter

as in (8). Note that in our implementation we prefer to use

the representation (8b) for the ML problem (6). Although

this latter parametrization does not account for the constraint

mn
x > 0, this is of no concern due to proper initialization. The

procedure to obtain good initial estimates of all parameters is

the topic of the next section.

VI. FINDING GOOD INITIAL ESTIMATES

Since the optimization problem is non-convex, the parame-

ter vector θ introduced in Section V needs proper initialization.

An initial estimate θ̂0 is obtained using a three-step method. As

a first step, the gyroscope bias δω and the noise covariances of

the inertial sensors, Σω , Σa, and of the magnetometer, Σm, are

initialized. This is done using a short batch of stationary data.

Alternatively, they can be initialized based on prior sensor

knowledge. As a second step, described in Section VI-A, an

ellipsoid fitting problem is solved using the magnetometer

data. This maps the ellipsoid of data to a sphere but can not

determine the rotation of the sphere. The rotation of the sphere

is determined in a third step of the initialization procedure.

This step also determines an initial estimate of the normalized

local magnetic field mn.

A. Ellipsoid fitting

Using the definition of the normalized local magnetic field

mn, we would expect all calibrated magnetometer measure-

ments to lie on the unit sphere,

‖mn‖22 − 1 = ‖Rbn
t m

n‖22 − 1

= ‖D−1 (ym,t − o− em,t) ‖
2
2 − 1 = 0. (18)

In practice, the measurements are corrupted by noise and

the equality (18) does not hold exactly. The ellipsoid fitting

problem can therefore be written as

yTm,tAym,t + bTym,t + c ≈ 0, (19)

with

A , D−TD−1, b , −2oTA, c , oTAo. (20)

Assuming that the matrix A is positive definite, this can be

recognized as the definition of an ellipsoid with parameters A,

b and c (see e.g. [9]). We can rewrite (19) as a linear relation

of the parameters as

Mξ ≈ 0, (21)

with

M =




ym,1 ⊗ ym,1 ym,1 1
ym,2 ⊗ ym,2 ym,2 1

...
...

...

ym,N ⊗ ym,N ym,N 1


 , ξ =



vecA
b

c


 , (22)

where ⊗ denotes the Kronecker product and vec denotes the

vectorization operator. This problem has infinitely many solu-

tions and without constraining the length of the vector ξ, the
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trivial solution ξ = 0 would be obtained. A possible approach

to solve the ellipsoid fitting problem is to make use of a

singular value decomposition [2], [9]. This approach inherently

poses a length constraint on the vector ξ, assuming that its

norm is equal to 1. It does, however, not guarantee positive

definiteness of the matrix A. Although positive definiteness

of A is not guaranteed, there are only very few practical

scenarios in which the estimated matrix A will not be positive

definite. A non-positive definite matrix A can for instance be

obtained in cases of very limited rotation of the sensor. The

problem of allowing a non-positive definite matrix A can be

circumvented by instead solving the ellipsoid fitting problem

as a semidefinite program [30], [31]

min
A,b,c

1
2‖M



vecA
b

c


 ‖22,

s.t. TrA = 1, A ∈ S3×3
++ ,

(23)

where S3×3
++ denotes the set of 3×3 positive definite symmetric

matrices. By constraining the trace of the matrix A, (23)

avoids the trivial solution of ξ = 0. The problem (23) is

a convex optimization problem and therefore has a globally

optimal solution and does not require an accurate initial guess

of the parameter vector ξ. The optimization problem can easily

be formulated and efficiently solved using freely available

software packages like YALMIP [32] or CVX [33].

Initial estimates of the calibration matrix D and the offset

vector o can be obtained from the estimated Â, b̂, ĉ as

β =
(

1
4 b̂

TÂ−1b̂− ĉ
)−1

, (24a)

D̃T

0 D̃0 = βÂ−1, (24b)

ô0 = 1
2 Â

−1b̂, (24c)

where ô0 denotes the initial estimate of the offset vector o.

From (24b) it is not possible to uniquely determine the

initial estimate of the calibration matrix D. We determine an

initial estimate of the calibration matrix D using a Cholesky

decomposition, leading to a lower triangular D̃0. However, any

D̃0U where UUT = I3 will also fulfill (24b). As discussed

in Assumption 1 in Section IV, we assume that the sensor

axes of the inertial sensors and the magnetometers are related

by a rotation, implying that we restrict the matrix U to be

a rotation matrix. The initial estimate D̂0 can therefore be

defined in terms of D̃0 as

D̂0 = D̃0RD. (25)

The unknown rotation matrix RD will be determined in Sec-

tion VI-B.

B. Determine misalignment of the inertial and magnetometer

sensor axes

The third step of the initial estimation aims at determining

the misalignment between the inertial and the magnetometer

sensor axes. It also determines an initial estimate of the

normalized local magnetic field m̂n
0. These estimates are

obtained by combining the magnetometer measurements with

the inertial sensor measurements. The approach is based on

the fact that the inner product of two vectors is invariant

under rotation. The two vectors considered here are mn and

the vertical vn =
(
0 0 1

)T
. Hence, it is assumed that the

inner product of the vertical vb
t in the body frame b,

vb
t = Rbn

t v
n, (26a)

and the normalized local magnetic field mb
t in the body frame,

mb
t = RT

DD̃
−1
0 (ym,t − ô0) , (26b)

is constant. The matrix RD in (26b) denotes the rotation

needed to align the inertial and magnetometer sensor axes. The

rotation matrix Rnb
t in (26a) is a rotation matrix representation

of the orientation estimate at time t obtained from an EKF.

This EKF is similar to the one described in Section V-B. It

does not use the magnetometer measurements, since they have

not properly been calibrated yet and can therefore not result in

accurate heading estimates. However, to determine the vertical

vb
t , only the sensor’s inclination is of concern, which can be

determined using the inertial measurements only.

The inner product between mn and vn is equal to mn
z (see

also (8a)). Since this inner product is invariant under rotation,

we can formulate the following minimization problem

min
RD,mn

z,0

1
2

N∑

t=1

‖mn
z,0 − (vn)

T
Rnb

t R
T

DD̃
−1
0 (ym,t − ô0) ‖

2
2,

s.t. RD ∈ SO(3). (27)

The rotation matrix RD can be parametrized using an ori-

entation deviation from a linearization point similar to the

approach described in Section V-B. Hence, (27) can be solved

as an unconstrained optimization problem.

Based on these results and (25) we obtain the following

initial estimates

D̂0 = D̃0R̂D, (28a)

m̂n
0 =

(√
1−

(
m̂n

z,0

)2
0 m̂n

z,0

)T

. (28b)

Hence, we have obtained an initial estimate θ̂0 of the entire

parameter vector θ as introduced in Section V.

VII. EXPERIMENTAL RESULTS

A. Experimental setup

Experiments have been performed using two commer-

cially available inertial measurements units (IMUs), an

Xsens MTi-100 [34] and a Trivisio Colibri Wireless IMU [35].

The experimental setup of both experiments can be found in

Fig. 2. The experiment with the Xsens IMU was performed

outdoors to ensure a homogeneous local magnetic field. The

experiment with the Trivisio IMU was performed indoors.

However, the experiment was performed relatively far away

from any magnetic materials such that the local magnetic field

is as homogenous as possible. The Xsens IMU was placed

in an aluminum block with right angles which can be used

to rotate the sensor 90◦ to verify the heading results. For

both sensors, inertial and magnetometer measurements were

collected at 100Hz.



7

Fig. 2. Top: experimental setup where a calibration experiment is performed
outdoors. An Xsens MTi-100 IMU (orange box) together with a magnetic
disturbance is placed in an aluminum block. Bottom: experimental setup using
a Trivisio Colibri Wireless IMU (black box). A phone is used as a source of
magnetic disturbance. To avoid saturation of the magnetometer, the phone is
not attached directly to the IMU.

−1 0 1

−1

0

1

Fig. 3. Calibration results from the experiment with the Trivisio IMU. The
ellipsoid of magnetometer data (red) lies on a unit sphere after calibration
(blue).

B. Calibration results

For calibration, the IMU needs to be slowly rotated such

that the assumption of zero acceleration is reasonably valid.

This leads to an ellipsoid of magnetometer data as depicted in

red in Figs. 1 and 3. Note that for plotting purposes the data

has been downsampled to 1Hz. To emphasize the deviation

of the norm from 1, the norm of the magnetometer data is

depicted in red in Fig. 4 for both experiments.

For the experiment with the Xsens IMU, the following

calibration matrix D̂ and offset vector ô are found

D̂ =




0.74 −0.13 0.01
−0.12 0.68 0.01
−0.03 0.43 1.00


 , ô =




1.36
1.22
−0.94


 (29)
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Fig. 4. Norm of the magnetic field measurements before (red) and after (blue)
calibration for (top) the experiment with the Xsens IMU and for (bottom) the
experiment with the Trivisio IMU.

using Algorithm 1. Applying the calibration result to the

magnetometer data leads to the unit sphere of data in blue in

Fig. 1. The norm of the magnetometer data after calibration

can indeed be seen to lie around 1, as depicted in blue in

Fig. 4.

As a measure of the calibration quality, we analyze the

normalized residuals S
−1/2
t (yt− ŷt|t−1) after calibration from

the EKF. For each time t, this is a vector in R
6. In the

case of correctly calibrated parameters that sufficiently model

the magnetic disturbances, we expect the stacked normalized

residuals {S
−1/2
t (yt − ŷt|t−1)}

N
t=1 ∈ R

6N to be normally

distributed with zero mean and standard deviation 1. The

histogram and a fitted Gaussian distribution can be found in

Fig. 5a. The residuals resemble a N (0, 1) distribution except

for the large peak around zero and – not visible in the plot

– a small amount of outliers outside of the plotting interval.

This small amount of outliers is due to the fact that there

are a few measurement outliers in the accelerometer data.

Large accelerations can for instance be measured when the

setup is accidentally bumped into something and violate our

assumption that the acceleration of the sensor is approximately

zero. We believe that the peak around zero is due to the fact

that the algorithm compensates for the presence of the large

residuals.

To analyze if the calibration is also valid for a different

(validation) data set with the same experimental setup, the

calibrated parameters have been used on a second data set.

Figures of the ellipsoid of magnetometer data and the sphere of

calibrated magnetometer data are not included since they look

very similar to Figs. 1 and 4. The residuals after calibration of

this validation data set can be found in Fig. 5b. The fact that

these residuals look very similar to the ones for the original

data suggests that the calibration parameters obtained are also

valid for this validation data set.
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−4 −2 0 2 4

(a) Xsens IMU, estimation data

−4 −2 0 2 4

(b) Xsens IMU, validation data

Fig. 5. Histogram of the normalized residuals S
−1/2
t (yt − ŷt|t−1) from the

EKF after calibration for the estimation data set (left) and for a validation data
set (right) for the experiments performed with the Xsens IMU. A Gaussian
distribution (red) is fitted to the data.

−4 −2 0 2 4

(a) Trivisio IMU, estimation data

−4 −2 0 2 4

(b) Trivisio IMU, validation data

Fig. 6. Histogram of the normalized residuals S
−1/2
t (yt − ŷt|t−1) from the

EKF after calibration for the estimation data set (left) and for a validation data
set (right) for the experiments performed with the Trivisio IMU. A Gaussian
distribution (red) is fitted to the data.

The Trivisio IMU outputs the magnetometer data in mi-

crotesla. Since our algorithm scales the calibrated measure-

ments to a unit norm, the obtained D̂ and offset vector ô from

Algorithm 1 are in this case of much larger magnitude,

D̂ =




61.74 0.59 0.09
−1.01 60.74 0.23
−0.39 0.06 60.80


 , ô =



−19.77
−1.68
−6.98


 . (30)

The sphere of calibrated data and its norm can be found

in blue in Figs. 3 and 4. Note that for plotting purposes,

the magnetometer data before calibration is scaled such that

its mean lies around 1. The obtained D̂ and ô are scaled

accordingly to plot the red ellipsoid in Fig. 3. The normalized

residuals S
−1/2
t (yt − ŷt|t−1) of the EKF using both the

estimation and a validation data set are depicted in Fig. 6.

For this data set, the accelerometer data does not contain any

outliers and the residuals resemble a N (0, 1) distribution fairly

well.

From these results we can conclude that Algorithm 1 gives

good magnetometer calibration results for experimental data

from two different commercially available IMUs. A good

fit of the ellipsoid of data to a sphere is obtained and the

algorithm seems to give good estimates analyzed in terms

of its normalized residuals. Since magnetometer calibration

is generally done to obtain improved heading estimates, it is

important to also interpret the quality of the calibration in

terms of the resulting heading estimates. In Section VII-C

this will be done based on experimental results. The heading

performance will also be analyzed based on simulations in

Section VIII.

C. Heading estimation

An important goal of magnetometer calibration is to fa-

cilitate good heading estimates. To check the quality of the

heading estimates after calibration, the block in which the

Xsens IMU was placed (shown in Fig. 2) is rotated around

all axes. This block has right angles and it can therefore

be placed in 24 orientations that differ from each other by

90 degrees. The experiment was conducted in Enschede, the

Netherlands. The dip angle δ at this location is approximately

67◦ [29]. Hence, we expect the calibrated magnetometer mea-

surements to resemble rotations of the normalized magnetic

field mn =
(
0.39 0 −0.92

)T
(see also (7) and (8b)). The

calibrated magnetometer data from the experiment is shown

in Fig. 7 and consists of the following stationary time periods:

z-axis up During the period 0 − 105s, the magnetometer

is flat with its z−axis pointing upwards. Hence, the z-

axis (red) of the magnetometer measures the vertical

component of the local magnetic field mn
z . During this

period, the sensor is rotated by 90◦ around the z-axis into

4 different orientations and subsequently back to its initial

orientation. This results in the 5 steps for measurements

in the x- (blue) and y-axis (green) of the magnetometer.

z-axis down A similar rotation sequence is performed with

the block upside down at 110−195s, resulting in a similar

pattern for measurements in the x- and y-axis of the

magnetometer. During this time period, the z-axis of the

magnetometer measures −mn
z instead.

x-axis up The procedure is repeated with the x-axis of the

sensor pointing upwards during the period 200 − 255s,

rotating around the x-axis into 4 different orientations and

back to the initial position. This results in the 5 steps for

measurements in the y- and z-axis of the magnetometer.

x-axis down A similar rotation sequence is performed with

the x-axis pointing downwards at 265− 325 seconds.

y-axis down Placing the sensor with the y-axis downwards

and rotating around the y-axis results in the data at

350−430 seconds. The rotation results in the 5 steps for

measurements in the x- and z-axis of the magnetometer.

y-axis up A similar rotation sequence is performed with the

y-axis pointing upwards at 460− 520 seconds.

Since the experimental setup was not placed exactly vertical, it

is not possible to compare the absolute orientations. However,

it is possible to compare the difference in orientation which is

known to be 90◦ due to the properties of the block in which

the sensor was placed. To exclude the effect of measurement

noise, for each of the stationary periods in Fig. 7, 500 samples

of magnetometer and accelerometer data are selected. Their

mean values are used to estimate the orientation of the sensor.

Here, the accelerometer data is used to estimate the inclination.

The heading is estimated from the horizontal component of the

magnetometer data. This procedure makes use of the fact that
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Fig. 7. Calibrated magnetometer data of an experiment rotating the sensor into
24 different sensor orientations where the blue, green and red lines represent
the data from the x-, y- and z-axis of the magnetometer, respectively.

the orientation of the sensor can be determined from two lin-

early independent vectors in the navigation frame – the gravity

and the direction of the magnetic north – and in the body frame

– the mean accelerometer and magnetometer data. It is referred

to as the TRIAD algorithm [36]. Table I reports the deviation

from 90◦ between two subsequent rotations. Note that the

metal object causing the magnetic disturbance as shown in

Fig. 2 physically prevents the setup from being properly placed

in all orientations around the y-axis. Rotation around the y-

axis with the y-axis pointing upwards has therefore not been

included in Table I.

Our experiment investigates both the heading errors and the

improvement of the heading estimates over the ones obtained

after the initial calibration, i.e. Step 1 in Algorithm 1. In

Table I we therefore include both the heading errors using

the initial parameter estimates D̂0 (28a) and ô0 (24c) and the

heading errors using ML parameter estimates D̂ and ô (29)

obtained using Algorithm 1. As can be seen, the deviation from

90◦ is small, indicating that good heading estimates are ob-

tained after calibration. Also, the heading estimates using the

initial parameter estimates are already fairly good. The mean

error is reduced from 1.28◦ for the initial estimate to 0.76◦ for

the ML estimate. The maximum error is reduced from 4.36◦

for the initial estimate to 2.48◦ for the ML estimate. Note that

the results of the ML estimate from Algorithm 1 are slightly

better than the results previously reported by [1]. This can be

attributed to the fact that we now use orientation error states

instead of the quaternion states in the EKF (see Section V-B).

This results in slightly better estimates, but also in a smoother

convergence of the optimization problem. The quality of the

heading estimates is studied further in Section VIII based on

a simulation study.

VIII. SIMULATED HEADING ACCURACY

Magnetometer calibration is typically performed to improve

the heading estimates. It is, however, difficult to check the

heading accuracy experimentally. In Section VII-C, for in-

stance, we are limited to doing the heading validation on a

different data set and we have a limited number of available

data points. To get more insight into the orientation accuracy

that is gained by executing all of Algorithm 1, compared

to just its initialization phase (Step 1 in the algorithm), we

engage in a simulation study. In this study we focus on the

root mean square (RMS) heading error for different simulated

sensor qualities (in terms of the noise covariances and the

gyroscope bias) and different magnetic field disturbances (in

terms of different values for the calibration matrix D and offset

vector o).

In our simulation study, we assume that the local magnetic

field is equal to that in Linköping, Sweden. The calibration

matrix D, the offset vector o and the sensor properties in

terms of the gyroscope bias and noise covariances are all

sampled from a uniform distribution. The parameters of the

distributions from which the sensor properties are sampled are

chosen as physically reasonable values as considered from the

authors’ experience. The noise covariance matrices Σω , Σa and

Σm are assumed to be diagonal with three different values on

the diagonal. The calibration matrix D is assumed to consist

of three parts,

D = DdiagDskewDrot, (31)

where Ddiag is a diagonal matrix with elements D11, D22, D33

and Drot is a rotation matrix around the angles ψ, θ, φ. The ma-

trix Dskew models the non-orthogonality of the magnetometer

axes as

Dskew =




1 0 0
sin ζ cos ζ 0
− sin η cos η sin ρ cos η cos ρ


 , (32)

where the angles ζ, η, ρ represent the different non-

orthogonality angles. The exact simulation conditions are

summarized in Table II.

The simulated data consists of 100 samples of stationary

data and subsequently 300 samples for rotation around all three

axes. It is assumed that the rotation is exactly around the origin

of the accelerometer triad, resulting in zero acceleration during

the rotation. The first 100 samples are used to obtain an initial

estimate of the gyroscope bias δ̂ω,0 by computing the mean

of the stationary gyroscope samples. The covariance matrices

Σ̂ω,0, Σ̂a,0 and Σ̂m,0 are initialized based on the covariance

of these first 100 samples. The initial estimate then consists

of these initial estimates δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0 and the initial

calibration matrix D̂0 (28a), the initial offset vector ô0 (24c)

and the initial estimate of the local magnetic field mn
0 (28b).

To study the heading accuracy, the EKF as described in

Section V-B is run with both the initial parameter values θ̂0
and their ML values θ̂ML. The orientation errors ∆qt, encoded

as a unit quaternion are computed using

∆qt = q̂nb
t ⊙

(
qnb

ref,t

)c
, (33)

where ⊙ denotes a quaternion multiplication and the super-

script c denotes the quaternion conjugate (see e.g. [27]). It is

computed from the orientation q̂nb
t estimated by the EKF and

the ground truth orientation qnb
ref,t. Computing the orientation

errors in this way is equivalent to subtracting Euler angles

in the case of small angles. However, it avoids subtraction

problems due to ambiguities in the Euler angles representation.

To interpret the orientation errors ∆qt, they are converted to

Euler angles. We focus our analysis on the heading error, i.e.

on the third component of the Euler angles.
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TABLE I
DIFFERENCE IN ESTIMATED HEADING BETWEEN TWO SUBSEQUENT ROTATIONS AROUND THE SENSOR AXES USING CALIBRATED MAGNETOMETER DATA.
THE VALUES REPRESENT THE DEVIATION IN DEGREES FROM 90◦ . INCLUDED ARE BOTH THE RESULTS USING THE ML ESTIMATES FROM ALGORITHM 1

AND THE RESULTS USING INITIAL ESTIMATES FROM STEP 1 IN THE ALGORITHM.

z-axis x-axis y-axis

z up z down x up x down y down

ML init ML init ML init ML init ML init

0.11 0.36 0.69 1.34 0.22 0.16 0.86 1.01 0.18 1.57
0.22 0.90 2.48 4.36 0.07 0.20 1.57 1.45 0.29 0.76
0.46 1.52 1.53 3.57 0.97 0.94 0.61 0.71 0.20 0.78
0.30 0.94 1.92 2.40 0.29 0.59 1.78 1.70 0.50 0.45

TABLE II
SETTINGS USED IN THE MONTE CARLO SIMULATION.

Ddiag Dskew Drot o δω Σω Σa Σm

D11, D22, D33 ζ, η, ρ ψ, θ, φ o1, o2, o3 δω,1, δω,2, δω,3 Σω,1,Σω,2,Σω,3 Σa,1,Σa,2,Σa,3 Σm,1,Σm,2,Σm,3

∼ U(0.5, 1.5) ∼ U(−30◦, 30◦) ∼ U(−10◦, 10◦) ∼ U(−1, 1) ∼ U(−1, 1) ∼ U(10−3, 10−2) ∼ U(10−3, 10−1) ∼ U(10−3, 10−1)
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Fig. 8. Histogram of the heading RMSE using the ML parameter estimate
from Algorithm 1 (left, blue) and the initial parameter estimate from Step 1
in the algorithm (right, red). Note the different scales in the two plots.

The RMS of the heading error is plotted for 150 Monte

Carlo simulations in Fig. 8. As can be seen, the heading

root mean square error (RMSE) using the estimate of the

calibration parameters from Algorithm 1 is consistently small.

The heading RMSE based on the initialization phase in Step 1

of the algorithm, however, has a significantly larger spread.

This clearly shows that orientation accuracy can be gained by

executing all of Algorithm 1. Note that in all simulations, anal-

ysis of the norm of the calibrated magnetometer measurements

as done in Fig. 4 does not indicate that the ML estimate is

to be preferred over the estimate from the initialization phase.

Hence, analysis of the norm of the calibrated magnetometer

measurements does not seem to be a sufficient analysis to

determine the quality of the calibration in the case when the

calibration is performed to improve the heading estimates.

IX. CONCLUSIONS

We have developed a practical algorithm to calibrate a mag-

netometer using inertial sensors. It calibrates the magnetometer

for the presence of magnetic disturbances, for magnetometer

sensor errors and for misalignment between the inertial and

magnetometer sensor axes. The problem is formulated as an

ML problem. The algorithm is shown to perform well on

real data collected with two different commercially available

inertial measurement units.

In future work the approach can be extended to include

GPS measurements. In that case it is not necessary to assume

that the acceleration is zero. The algorithm can hence be

applied to a wider range of problems, like for instance the

flight test example discussed in [2]. The computational cost

of the algorithm would, however, increase, since to facilitate

the inclusion of the GPS measurements, the state vector in the

EKF needs to be extended.

Another interesting direction for future work would be to

investigate ways of reducing the computational cost of the

algorithm. The computational cost of the initialization steps

is very small but actually solving the ML problem in Step 2

of Algorithm 1 is computationally expensive. The algorithm

both needs quite a large number of iterations and each iteration

is fairly expensive due to the computation of the numerical

gradients. Interesting lines of future work would either explore

different optimization methods or different ways to obtain

gradient estimates.

Finally, it would be interesting to extend the work to online

estimation of calibration parameters. This would allow for a

slowly time-varying magnetic field and online processing of

the data.
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