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Recently observed magnetophonon resonances in the magnetoresistance of graphene are investigated using the

Kubo formalism. This analysis provides a quantitative fit to the magnetophonon resonances over a wide range of

carrier densities. It demonstrates the predominance of carrier scattering by low-energy transverse acoustic (TA)

mode phonons: the magnetophonon resonance amplitude is significantly stronger for the TA modes than for the

longitudinal acoustic (LA) modes. We demonstrate that the LA and TA phonon speeds and the electron-phonon

coupling strengths determined from the magnetophonon resonance measurements also provide an excellent fit

to the measured dependence of the resistivity at zero magnetic field over a temperature range of 4–150 K.

A semiclassical description of magnetophonon resonance in graphene is shown to provide a simple physical

explanation for the dependence of the magneto-oscillation period on carrier density. The correspondence between

the quantum calculation and the semiclassical model is discussed.

DOI: 10.1103/PhysRevB.100.155120

I. INTRODUCTION

In 1961, theoretical work by Gurevich and Firsov pre-

dicted that inelastic scattering of electrons by phonons can in-

duce oscillations in the magnetoresistance of semiconductors

[1]. Magnetophonon resonance (MPR) has since been used

to probe spectroscopically electron-phonon interactions in a

wide range of bulk semiconductors [2–5] and semiconductor

heterostructures in which carriers are confined in two dimen-

sions (2D) by a quantum well potential [6–10].

Early studies of MPR focused mostly on carrier scattering

between Landau levels (LLs), induced by weakly dispersed

longitudinal optical (LO) phonons with a well-defined energy,

h̄ωLO, and a high density of states. The resonant condition is

given by h̄ωLO = ph̄ωc, where ωc = eB/m∗ is the cyclotron

frequency, B is the applied magnetic field amplitude, m∗ is

the carrier effective mass, and p is an integer. Absorption

or emission of a phonon can induce a shift of the electron’s

cyclotron orbit center. This causes it to drift in the presence

of an applied voltage and give rise to an enhancement of the

magnetoconductance when the resonant condition is satisfied.

The result is a series of oscillations in the magnetoconduc-

tance that are observable over a wide range of temperatures,

are periodic in inverse magnetic field, and are independent of

carrier density.

A different type of MPR was observed at low temperatures

in the magnetoresistance of a modulation doped (AlGa)As-

GaAs heterostructure [8–10]. Under these conditions MPR

was shown to arise from scattering of the two-dimensionally

*m.t.greenaway@lboro.ac.uk
†laurence.eaves@nottingham.ac.uk

confined electrons by linearly dispersed acoustic phonons.

The oscillatory period, �(B−1), had a square-root dependence

on carrier sheet density.

Here we present a theoretical model to investigate large-

amplitude acoustic phonon-induced magnetoresistance oscil-

lations that were observed recently in wide, gated Hall bars of

monolayer graphene encapsulated in hexagonal boron nitride

(hBN) [11]. The spectroscopic nature of MPR complements

the extensive literature on the effects of electron-phonon

interactions on the carrier mobility of graphene [12–27] and

recent measurements of phonon-assisted tunneling in stacked

graphene-hBN-graphene devices [28,29]. Figure 1 compares

the results of our calculation with the experimental data [11].

The peaks in magnetoresistance are periodic in 1/B with a

frequency BF that is linearly dependent on the carrier density

ns of the Dirac fermions. The dependence of BF on ns allows

us to determine the speeds of the linearly dispersed transverse

acoustic (TA) and longitudinal acoustic (LA) phonons which

give rise to the magneto-oscillations. The analysis demon-

strates that it is necessary to include scattering by both TA

and LA phonons to obtain a quantitative understanding of

graphene’s phonon-limited resistivity. We demonstrate how

electrical screening of the deformation potential accounts, in

part, for the smaller amplitude of the LA phonon resonances.

II. SEMICLASSICAL ANALYSIS

Figure 2(a) shows a schematic diagram of the coordinate

and lattice orientation used in our calculation. The measure-

ments in Fig. 1(b) were made with a negative gate voltage

applied to the device so that the charge carriers are holes

with Fermi energy EF positioned below the Dirac point of

graphene’s band structure [11]. Our analysis considers the
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FIG. 1. (a) Calculated oscillatory part of the longitudinal magne-

toresistivity ρyy(B) and (b) measured longitudinal magnetoresistance,

Ryy(B), of a 13.8-μm-wide Hall bar with top and bottom gate elec-

trodes [11] at T =70 K. The blue, red, and green curves correspond

to carrier densities ns = 6.0, 7.5, and 9.0 ×1012 cm−2 respectively

in both sets of plots. For clarity, the green and red curves in (a) are

shifted from their calculated values by 1.5 and 0.75 �.

case when EF is above the Dirac point; electron-hole sym-

metry close to the Dirac point in graphene ensures that it is

applicable to both types of charge carrier.

Application of a magnetic field, B = (0, 0,−B) where B =
|B|, perpendicular to the graphene sheet quantizes the electron

energy EN into a series of unevenly spaced LLs with index N ,

given by the relation

EN =
√

2N
h̄vF

lB
, (1)

where vF is the Fermi velocity in graphene and lB =
√

h̄/eB

is the magnetic length.

In the absence of scattering, carriers would propagate

freely in the direction perpendicular to an applied electric field

so that the magnetoconductivity σxx = 0. When a carrier scat-

ters inelastically by the emission or absorption of a phonon

with wave vector q, momentum conservation requires that

its orbit center shifts, giving rise to a dissipative current and

finite σxx, and magnetoresistivity ρyy (=ρxx due to rotational

invariance).

The amplitude of the MPR oscillations increases with

increasing temperature up to ∼100 K. Thermal excitation of

phonons and broadening of the Fermi distribution enable a

carrier at the Fermi energy EF to absorb or emit a phonon. At

higher temperatures, phonon scattering is sufficiently strong

to prevent a carrier from completing a cyclotron orbit (μB <

1, where μ is the carrier mobility). The width of the LL then

becomes comparable with the LL energy separation, and MPR

oscillations are damped out.

FIG. 2. (a) Schematic diagram of the coordinate axes and scatter-

ing of a Dirac fermion in the graphene lattice. Red and blue circles

represent the real space cyclotron orbits, radii rN+p and rN , of an

electron (filled circle) before and after scattering by a phonon with

wave vector q and the shift of its orbit center. The area between the

dashed and full circles shows schematically the width of the largest

peak of the LL wave function adjacent to its classical turning point.

(b) The horizontal lines show the energies and diameters of cyclotron

orbits in k- pace before and after scattering by a phonon with

wave vector q. Red and blue lines show magneto-acoustic-phonon

resonance between an initial state with radius κN+p, and final state

with radius κN .

Inelastic scattering between two LLs with indices differ-

ing by the integer p = 1, 2, 3, . . . occurs when the acoustic

phonon energy h̄ωa equals the difference in their energies:

EN+p − EN = ±h̄ωa. (2)

For small q, acoustic phonons have a linear dispersion relation

given by

ωa
q = vaq, (3)

where va is the phonon velocity. In semiclassical Newtonian

dynamics, a carrier with energy EN performs closed cyclotron

orbits in real space with radius rN = lB
√

2N and, since h̄k̇ =
−ev × B, in k space with radius

κN =
√

2N

lB
. (4)

Inelastic scattering by a phonon shifts the center of the cy-

clotron orbit in k space by q and its position in real space by

(�X,�Y ) = l2
B(−qy, qx ). Semiclassically, this can occur only

when the orbits of the initial and final states intersect. The

onset of inelastic scattering occurs when the cyclotron orbits

just touch, giving rise to a trajectory with a “figure-of-8” orbit

[30], see Fig. 2. Thus

κN+p + κN = q. (5)

155120-2
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To a good approximation, this semiclassical description cor-

responds to the condition for the maximum in the overlap

of the wave functions of the initial and final states. By com-

bining Eqs. (2)–(5) we obtain the magnetophonon resonance

condition:

vF (
√

N + p −
√

N ) = va(
√

N + p +
√

N ), (6)

from which we obtain the following semiclassical equation for

N = Np, when Eq. (6) is satisfied:

Np =
pva

4vF

(

vF

va

− 1

)2

≈
pvF

4va

. (7)

The approximation is valid since vF ≫ va. Our calculation

of the resonant scattering processes involves transitions be-

tween LLs with indices of up to N ∼ 100. The large energy

separation between LLs with N < Np requires a high-energy

phonon with a q that is too large to allow the semiclassical

orbits of the initial and final to intersect; scattering cannot

then occur. As will be discussed in Sec. III this condition is

relaxed in quantum mechanics. At the classical turning point

of the LL wave functions, each well-defined cyclotron orbit is

effectively broadened into a ring of width ∼lB, see dashed and

full circles in Fig. 2.

We develop the semiclassical model by considering elec-

trons within a range of ≈EF ± 2kBT . Thus we set ENp
=

h̄vF kF = EF , where kF = √
πns is the Fermi wave vector and

ns is the carrier density. We then obtain

Np =
l2
Bk2

F

2
=

h̄πns

2eBp

, (8)

where Bp is the magnetic field corresponding to a maximum

in σxx and ρyy. Using this expression in Eq. (7), we obtain

Bp =
nshvF

peva

(

vF

va

− 1

)−2

≈
nshva

pevF

. (9)

This relation describes accurately the data shown in Fig. 1(b)

and described in Kumaravadivel et al. [11]. The measured

magneto-oscillations in Fig. 1(b) reveal a strong set of peaks

labeled “TA, p = 1, 2, . . . ” that are periodic in B−1 with a

well-defined frequency, BF = pBp, that is linearly dependent

on ns. We associate these peaks with MPR due to TA phonons.

The dependence of BF on ns indicates a constant ratio between

the speed of the TA acoustic phonon, vTA, and the Fermi

velocity so that vTA/vF = 0.0128. We also observe a weaker

peak at higher B, labeled “LA, p = 1”, with a BF value

that is linearly dependent on ns. We associate this peak with

MPR due to LA phonons with speed vLA and we obtain

vLA/vF = 0.0198. With a Fermi velocity of vF = 1.06 ±
0.05 × 106 ms−1 extracted from the temperature-dependent

Shubnikov de Haas measurements on the devices reported by

Kumaravadivel et al. [11], we obtain vTA = 13.6 ± 0.7 km s−1

and vLA = 21 ± 1 km s−1. These values are in good agree-

ment with calculations of the speeds of linearly dispersed

acoustic phonons in graphene [17–19]. We note that the mea-

sured constant ratio between va/vF is fully consistent with the

constancy of both vF and va over the range of ns from 1.5 to

9 × 1016 m−2 and q from ∼0.5 to 1.0 × 109 m−1. A constant

vF is expected in graphene devices on dielectric substrates

over this range of ns [31] due to screening of electron-electron

interactions that cause velocity renormalization [32].

To conclude this section we compare relation (9) with ear-

lier work on 2D electron gases (2DEGs) in III-V heterostruc-

tures [9,10] where electrons have a parabolic dispersion and

well-defined effective mass m∗. The energy separation be-

tween LLs, h̄ωc, is then independent of N . In this case the

MPR resonant condition is given by

h̄ωc = h̄va(κN+p + κN ), (10)

so that

B2DEG
p ≈

2m∗
vakF

pe
=

2m∗
va

√
2πns

pe
. (11)

This expression is similar to relation (9) for graphene,

in particular the oscillations are periodic in 1/B. However,

in contrast to graphene, the position of the resonant peak

depends on the square root of the carrier density.

III. QUANTUM CALCULATION OF ρyy

The semiclassical model in Sec. II can be used to obtain the

resonance condition but not the amplitude and shape of the os-

cillations. We therefore present in this section a full quantum

mechanical calculation of ρyy based on the Kubo formalism

[33–35]. It is convenient to choose the Landau gauge where

A = (0,−Bx, 0). The Dirac fermion wave function in the K+

valley for |N | > 0 is given by the pseudospinor

ψN,X =
1

√
2

(

φ|N |(x − X )

−sgn(N )iφ|n|−1(x − X )

)

, (12)

where φ are simple harmonic oscillator states given by

φN (x) = AN HN

(

x

lB

)

exp

(

−
x2

2l2
B

)

exp(ikyy). (13)

A similar expression applies to carriers in the K− valley. Here,

AN = 1/
√

LlB2N N!π1/2 is a normalization constant, HN are

the Hermite polynomials [36–38], and L is the size dimension

of the Hall bar. With this choice of gauge, the wave functions

can be thought of as a series of strips along the y axis of the

Hall bar centered on X = l2
Bky and comprising plane waves

with wave vector ky along the y and Hermite polynomials

along x [39]. The magnetoconductance depends on the rate

of drift of the orbit center due to phonon scattering and is

given by

σ a
xx =

gvgsπe2

L4kBT h̄

∑

q

(

l2
Bqy

)2|Ca(q)|2Nq(Nq + 1)

×
∑

N,N ′

∑

ky,k′
y

[

f
(

EN − h̄ωa
q

)

− f (EN )
]

× δ
(

EN − h̄ωa
q − EN ′

)
∣

∣Ia
N,N ′ (ky, k′

y, q)
∣

∣

2
(14)

for the TA (a = TA) and LA (a = LA) phonons, where gv =
2 and gs = 2 are the valley and spin degeneracies, kB is the

Boltzmann constant, and T is the lattice temperature. The term

|Ca(q)|2 =
h̄

2ρva

q, (15)
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where the mass density of graphene ρ = 7.6 × 10−8 g cm−2,

Nq = (exp(h̄ωa
q/kBT ) − 1)−1 is the Bose-Einstein distribution

function for the phonons, and f (E ) = {exp[(E − EF )/kBT ] +
1}−1 is the Fermi-Dirac distribution of the electrons. The

scattering matrix element is given by

Ia =
∫

dSψ∗
N ′,k′

y
V a

q ψN,ky
, (16)

where V a
q are the electron-phonon coupling matrices for the

TA and LA phonons [13–17]:

V TA
q = eiq.r

(

0 −ggei2ϕ

gge−i2ϕ 0

)

(17)

and

V LA
q = ieiq.r

(

gd (q) ggei2ϕ

gge−i2ϕ gd (q)

)

. (18)

The terms gg and gd (q) are the electron-phonon

coupling matrix elements corresponding to “gauge”- and

“deformation”-like distortions of the graphene lattice

[13,14,17]. The off-diagonal gauge matrix elements arise

from pure shear distortions of the graphene lattice in which

the local area of the lattice remains constant and the fermion

couples to the phonon via changes in the local bond lengths.

This type of distortion can be described by a “synthetic”

gauge field in the Dirac equation [40]. It has the effect of

changing the position of the Dirac point in the Brillouin

zone and is unaffected by screening. The matrix elements

gg have been estimated using density functional theory

(DFT) to have a value in the range 1.5–4.5 eV [40]. In our

model, we obtain a good fit to the data with gg = 4 eV. The

diagonal matrix elements gd (q) arise from deformations of

the graphene lattice whereby local areas of the lattice change

in size. These terms shift the energy of the Dirac point. They

result in local redistributions in the charge density and are

consequently affected by electron screening in the layer and

also by the dielectric environment of the graphene layer. The

Thomas-Fermi screening of the deformation electron-phonon

coupling matrix element for a phonon with wave vector q is

given by

gd (q) = g̃d/ε(q). (19)

Here g̃d = 25 eV [22] is the “bare” unscreened electron-

phonon coupling constant

ε(q) = εr

(

1 +
qt f

q

)

, (20)

and qt f = 4e2√nsπ/(4π h̄ε0εrvF ) is the inverse Thomas-

Fermi screening radius. This takes into account screening

by the dielectric environment of the graphene layer with

dielectric constant εr and by the electronic charge in the

graphene layer [40,41]. When εr = 1, i.e., for free-standing

graphene, qt ∼ 8kF . Therefore, assuming that on resonance,

q ∼ 2kF , ε(q) ∼ 5, and the deformation potential is strongly

suppressed. The gd (q) term is further screened for graphene

on a substrate or when encapsulated by hBN. Therefore, the

TA phonons are unaffected by screening but, in contrast, the

on-diagonal parts of the coupling matrix for the LA phonon

can be strongly suppressed by screening.

Evaluating the summations over ky, k′
y and converting the

sum over q to an integral in polar coordinates, we obtain the

relation for the magnetoconductivity

σ a
xx =

e

4π2BkBT ρv
2
a

∑

N,N ′

∫∫

dϕdq q4 sin2(ϕ)Nq(Nq + 1)

× [ f (EN − h̄vaq) − f (EN )]δ

(

EN − EN ′

h̄va

− q

)

×
∣

∣Ia
N,N ′ (q, ϕ)

∣

∣

2
. (21)

In the high carrier density regime [11] there are no transitions

between the conduction and valence band, so that

∣

∣ITA
N,N ′ (q, ϕ)

∣

∣

2 =
∣

∣

∣

∣

igg

2
(ei2ϕ�N−1,N ′ + e−i2ϕ�N,N ′−1)

∣

∣

∣

∣

2

(22)

for the TA phonons and

∣

∣ILA
N,N ′ (q, ϕ)

∣

∣

2 =
∣

∣

1
2
[igd (q)(�N,N ′ + �N−1,N ′−1)

− gg(e−i2ϕ�N,N ′−1 − ei2ϕ�N−1,N ′ )]
∣

∣

2
(23)

for the LA phonons. Here

�N+p,N = (ie−iϕ )p

√

N!

(N + p)!

× exp

(

−
q2l2

B

4

)(

qlB√
2

)p

L
p

N

(

q2l2
B

2

)

(24)

and L
p

N are Laguerre polynomials [42]. The magnetoresistivity

components are given by ρyy = σxx/(σxxσyy + σ 2
xy) and σxy =

nse/B. Under the condition of the experiment [11], the carrier

mobility μ is high so that μB ≫ 1 even for fields of a few

tesla. Hence σxy ≫ σxx ≈ σyy. By summing the contributions

of LA and TA phonon scattering, we then obtain the following

relation for the magnetoresistivity:

ρyy =
(

B

nse

)2
(

σ LA
xx + σ TA

xx

)

. (25)

IV. DISCUSSION

The black curve in Fig. 3 shows the calculated magne-

toresistivity ρyy(B) when both TA and LA phonon scatterings

are included. The red and blue curves show the separate

contributions to ρyy(B) of the TA and LA phonons respec-

tively [ρTA
yy (B) and ρLA

yy (B)]. First we consider this calcu-

lation for free-standing graphene, εr = 1, at T = 70 K and

ns = 9 × 1016 m−2. Recent DFT calculations [17] have esti-

mated the phonon speeds to be vLA = 21.4 km s−1 and vTA =
13.6 km s−1, which we use in our calculation along with [38]

vF = 1.00 × 106 m s−1. We find that ρyy(B) has an oscillatory

form that corresponds accurately with oscillations observed

in recent experiments [11], see Fig. 1(b). The maxima in

ρTA
yy (B), and ρLA

yy (B), indicated by vertical red and blue arrows,

are periodic in 1/B and their positions correspond closely

to the resonance condition in Eq. (9). The plot shows that

the contribution of the LA phonons to the total resistivity is

relatively weak and appears only as the small peak (p = 1) in

ρyy at B ≈ 7.5 T. This is due partly to the suppression of the

155120-4
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FIG. 3. Calculated ρyy(B) (black) (off-set by 0.5 � for clarity),

ρTA
yy (B) (red), and ρLA

yy (B) (blue) with vTA = 13.6 km s−1, vLA =
21.4 km s−1, ns = 9 × 1016 m−2, and T = 70 K. Red and blue

solid arrows highlight peaks corresponding to the magnetophonon

resonance condition in Eq. (9). Dotted red arrows show additional

resonance corresponding to features in KTA
n+p,n(q), see Eq. (26).

deformation part of the electron-phonon coupling matrix by

electronic screening, see Eq. (18). In addition, the energy of

the LA phonon is larger than the energy of the TA phonon.

Hence there is a lower population of LA phonons than TA

phonons at a given temperature.

Despite the good agreement between experiment and the-

ory with regard to the line shape, the damping, and the relative

amplitudes of the TA and LA phonon peaks (see Fig. 1),

we note that there is a discrepancy between the calculated

and measured values of the magnetoresistance for the double-

gated Hall bar. The length to width ratio of this Hall bar

is ∼1.2 : 1, whereas the ratio between the measured and

calculated MPR oscillation amplitude suggests a larger value

of ∼4 : 1. In Ref. [11] we investigated the width dependence

of the measured MPR resistance oscillation amplitude and

found it was strongly nonlinear. In particular, the MPR oscil-

lations were almost completely suppressed for device widths

�9 μm, due to the dominating effect of scattering off the side

walls [11]. Our calculation of ρyy is based on a Kubo model

for a macroscopic conductor. It neglects the effects of weak

disorder-induced scattering and of scattering off the edges of

the Hall bar [43]. A further explanation for the discrepancy

noted above is the nonideal geometry of our large-area Hall

bars in which the voltage probes are close to the source and

drain contacts. This would have a significant effect on the

uniformity of the current flow down the Hall bar.

Our results support previous theoretical studies of the

electron-phonon-induced resistivity in a zero magnetic field

which show that the contribution to the resistivity by TA

phonons is larger than that due to LA phonons [17,18].

We now consider how the overlap integrals of the wave

functions of the Dirac fermions lead to small but subtle differ-

ences in the magnetophonon resonance condition compared to

FIG. 4. Calculated Ka
N+p,N (q) for LA (blue) and TA (red)

phonons when p = 1 (a) and p = 2 (b). The vertical dashed lines cor-

respond to the values of Np determined using the classical cyclotron

orbit relation in Eq. (7). (c) and (d) show the probability density of

the electron wave function before (red) and after (blue) it is scattered

by a phonon with wave vector qy = qr , for N = Np(a = LA) = 11

(c) and N = 14 (d).

the semiclassical model based on overlapping cyclotron orbits

described in Sec. II.

These differences illustrate the relaxation of the correspon-

dence principle between classical and quantum mechanics.

Figures 4(a) and 4(b) show the dependence of the function

Ka
N+p,N (qr ) =

∫

dϕIa
N+p,N (q = qr, ϕ), (26)

on n when p = 1 and 2 respectively and qr = (EN+p −
EN )/h̄va. As discussed in our semiclassical analysis

[Eq. (7)], the probability of scattering between Landau levels,

Ka
N+p,N (qr ), is nonzero for N � Np [vertical dashed lines in

Fig. 4(a) and (b)]. The maximum in Ka
N+p,N (qr ) occurs when

N is slightly larger than the semiclassical value Np given by

Eq. (7) because the peak in the probability density of the wave

function does not occur exactly at rN . The maximum overlap

between the initial and final states occurs at slightly larger q

than the classical estimate in Eq. (5), see plots of |�N+p,X=0|2
(blue) and |�N,X=l2

Bqr
|2 (red) in Fig. 4(c). This leads to a slight

systematic deviation between the position of the peaks calcu-

lated using Eq. (21) and that estimated by Eq. (9). Therefore

the ratios of the phonon speeds to the Fermi velocity deduced

from the semiclassical cyclotron orbit relation given by Eq. (9)

are slightly lower, by ∼5%, than those obtained from the

quantum calculation presented in Sec. III.

For both the LA and TA phonons there are a series of

peaks in Ka
N+p,N (qr ) for N > Np, see Figs 4(a) and 4(b).

These weaker additional peaks correspond to the overlap of

the additional antinodes in the wave function for k < κ , see

Fig. 4(d). The red dashed vertical arrows in Fig. 3 highlight

additional peaks in ρTA
yy that arise from these extra resonances

in KTA
N+p,N (qr, ϕ). These subtle features do not appear in the

experimental data due to LL broadening.
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FIG. 5. (a) Calculated ρyy(B) with broadened level carrier distri-

bution when T = 70 K and γ = 0.1 (black), 0.3 (blue), 0.5 (red), and

0.7 (green) meV T−1/2. (b) Calculated ρyy(B) when T = 70 K and

γ = 0.5 meV T−1/2 with εr=1 (blue), εr = 3.5 (red), and ε(q) = 1

(green).

To model LL broadening we replace the delta function in

Eq. (21) by

δ(E ) →
va h̄

Ŵ
√

2π
exp

(

−
E2

2Ŵ2

)

, (27)

where E = EN − EN ′ − qh̄va. We use a Gaussian function

to aid convergence of our calculation at high LL indices.

It is known that for the case of elastic short-range scatter-

ing, for example, from charged impurities or defects, the

broadening of the LLs depends on the square root of the

magnetic field [35,36,44,45]. Phonon scattering also makes

an increasing contribution to LL broadening with increasing

temperature. At sufficiently high temperatures (�150 K), a

combination of scattering-induced broadening of the LL lev-

els and broadening of the Fermi distribution quenches out the

MPR oscillations, as reported in Ref. [11]. The contribution

of phonon scattering to the LL broadening also varies with√
B, see Ref. [47]. Therefore, we set Ŵ = γ

√
B, where Ŵ and

γ are broadening parameters. Future work could include a

fully self-consistent temperature-dependent model of MPR in

graphene that includes temperature-dependent LL broadening

arising from phonon scattering; for a discussion of this point

see, for example, Refs. [5,46,47]. This could provide a more

accurate fit to the data and a detailed understanding of the

relative contributions of elastic and inelastic scattering in

these devices.

Figure 5(a) shows the calculated ρyy(B) when broadened

Landau levels with different values of γ are included in our

calculation. For values of γ > 0.3 meV T−1/2, the secondary

resonances in resistivity, which are clearly observed without

broadening, see dashed arrows in Fig. 3, are absent, which is

consistent with the measured data. The secondary resonances,

along with the p = 2 peak for the LA phonon, sum to produce

a weak shoulder-like feature of primary peak of ρyy(B) when

γ = 0.5 and 0.7 meV T−1/2 (see horizontal arrow), consistent

with the line shape of the primary peak in the measurements,

see horizontal arrow in Fig. 1(b). The best fit to the exper-

imental data is obtained when γ = 0.5 meV T−1/2, see also

Fig. 1(a).

Finally, we consider the effect of screening on the magne-

toresistance oscillations. The blue and red curves in Fig. 5(b)

are plots of ρyy(B) calculated when εr = 1 and εr = 3.5 cor-

responding to graphene suspended in free-space and graphene

encapsulated by boron nitride respectively. We find that the

total resistivity is not strongly dependent on the value of

εr . This indicates that screening by carriers in the graphene

layer is dominant at these high carrier densities. We also

calculate ρyy(B) with no screening, i.e., ε(q) = 1, green curve

in Fig. 5(b). In this case, the magnetoresistance peak corre-

sponding to LA phonon scattering dominates over that from

TA phonon scattering and its position is shifted due to the

dominance of the on-diagonal terms in the electron-phonon

scattering matrix element. This is inconsistent with the mea-

surements [11] and highlights the importance of including

carrier screening to understand the nature of the measured

MPR oscillations.

V. TEMPERATURE DEPENDENCE OF RESISTIVITY IN

THE ABSENCE OF A MAGNETIC FIELD

This section considers the temperature dependence of the

phonon contribution to the resistivity, �ρ(T ), of the Hall

bar when B = 0. To calculate the temperature dependence

of the resistivity due to both the TA and LA phonons, we

use the linearized Boltzmann equation for temperature-limited

resistivity in graphene [15]. The parameters we use in the

model are the same as those we use to calculate the form

FIG. 6. The increase of the resistivity, �ρ(T ), with temperature

at B = 0 measured on a 15 μm Hall bar with a single gate (open

blue circles) and the corresponding calculation (solid black curve)

for ns = 3.2 × 1012 cm−2. The blue and red curves show separately

the calculated contribution of the LA and TA phonons respectively

to the resistivity, ρLA(T ) and ρTA(T ).
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of the MPR oscillations, and we also include the screening

of the deformation potential, see Sec. III. The black curve

in Fig. 6 is the calculated total resistivity when ns = 3.2 ×
1012 cm−2 for graphene encapsulated by hBN, and ǫr = 3.5.

This model agrees quantitatively with the measured depen-

dence of resistivity on temperature (blue open circles) for

the graphene sample used in [11]. The blue and red curves

show the contribution to the resistivity of the LA, ρLA(T ), and

TA, ρTA(T ), phonons respectively. They reveal that ρTA(T ) ∼
2ρLA(T ) consistent with the analysis in [18]. This result

provides further confirmation of our model parameters and

the higher contribution of TA phonon scattering over LA

phonon scattering. It also demonstrates how MPR can be used

to elucidate spectroscopically the electron-phonon coupling

parameters, which are fundamental to the electronic properties

of two-dimensional materials, and which are not accessible by

conventional techniques.

VI. CONCLUSIONS

We have presented a model to describe quantitatively the

magneto-acoustic phonon resonance recently measured in

graphene. The results of our calculations at low magnetic

fields and high carrier densities show a series of oscillations

with a form which agree well with the measurements. This

phenomenon can be used to determine the speeds of the

LA and TA phonons and their relative contributions to the

resistivity. The results thus provide insight into the nature

of phonon-limited resistivity in graphene. Previous theoreti-

cal work has investigated how high-energy optical phonons

could give rise to magnetophonon peaks in graphene [35].

An experimental realization would require the generation of

hot carriers with energies well in excess of those reported

here, either by applying very large electric fields or by optical

excitation.
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