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1 Introduction

Since the beginning of physics,

symmetry considerations have provided

us with an extremely powerful and

useful tool in our effort to understand

nature. Gradually they have become

the backbone of our theoretical

formulation of physical laws.

Tsung-Dao Lee

This quote by Tsung-Dao Lee nicely summarizes the fundamental role of symmetries in

nature and more importantly in its theoretical description pursued by Physics. Surpris-

ingly enough, the power of symmetries is also extended to situations where symmetries

appear to be spontaneously broken [1] — non-linearly realized, and softly broken [2] (see
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Figure 1. Left: Soft explicit breaking of parity symmetry. The arcs are slightly asymmetric —

soft explicit breaking. Right: Spontaneous breaking of parity symmetry. A day with clouds breaks

the parity symmetry of the landscape.

figure 1). In these cases, the imprints left by the (broken) symmetries are encoded in the

appearance of new, dynamical low energy excitations, known as Goldstone and pseudo-

Goldstone modes, respectively. The original argument behind the Goldstone theorem goes

back to 1961 and reads: “if there is continuous symmetry transformation under which the

Lagrangian is invariant, then either the vacuum state is also invariant under the transfor-

mation, or there must exist spinless particles of zero mass” [3]. This idea has been verified

and exploited in all possible branches of physics starting from the well-known BCS theory

for superconductivity [4] and ending with the physics of the God particle — the Higgs

Boson [5–7].

Importantly, the theorem itself only ensures the existence of a gapless mode:

lim
k→ 0

ω(k) → 0 , (1.1)

with ω and k the frequency and wave-number, respectively. Only the addition of the

following assumptions:

1. Poincaré Invariance,

2. Internal continuous global symmetries,

3. Non dissipative systems,

implies a stronger version, which can be formulated as: “the breaking of an internal con-

tinuous global symmetry guarantees the existence of gapless modes; the number of those

modes coincides exactly with the number of broken symmetry generators and their disper-

sion relation is linear ω(k) ∼ k”. Within this stronger scenario, the number of Goldstone

modes is given by the dimension of the coset space G/H, where G is the broken group and

H the preserved one:

nGB = dimG/H = dimG− dimH . (1.2)

This number is nothing else than the counting of the “flat directions” of fluctuations of the

order parameters.

– 2 –
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Clearly, there is a plethora of physical systems which do not satisfy the requirements

above. This leads to very interesting phenomena, which can be summarized as:

• The number of Goldstone modes appearing is less than that of broken generators.

• The dispersion relation of the Goldstone modes is not linear.

• The Goldstone modes are not propagating but rather diffusive.

Let us briefly give some explicit examples for each of these situations (see also figure 2).

One setting in which the number of Goldstone modes are less than the broken generators is

that of spacetime symmetries [8], where this anomaly is technically due to what is known

as the Inverse Higgs Constraint [9, 10]. In simple words, this phenomenon arises since

the would be independent Goldstone modes may actually be written as derivatives of other

Goldstones and we may integrate them out from the effective low energy description. From

a more general point of view, a reduced number of Goldstones, compared to the number

of broken generators, is due to the fact that the broken generators Qα,Qβ commute with

the Hamiltonian but not with one another:

[H,Qα] = 0 , [H,Qβ ] = 0 , but [Qα,Qβ ] 6= 0 ; (1.3)

thus the symmetries cannot be thought of as independent. The emblematic case is the

simultaneous breaking of spacetime rotations and translations. The broken generators

obey the Poincaré algebra:

[Jm , Pn] = i ǫmnk Pk , (1.4)

which forces them to not commute. This effect has important consequences, and it is

exactly the reason why we do not observe any Goldstone mode for rotations in a crystal.1

Other simple examples are: (I) a plane in a fixed position in 3-dimensional space, 3 broken

generators but only one Goldstone (panel a) of figure 2); (II) the breaking of conformal

invariance in 4-dimensional spacetime, 5 broken generators but only one Goldstone —

the dilaton.

The second situation (which is strongly connected to the first) refers to physical systems

in which the Goldstone bosons have a dispersion relation of the type:

ω(k) ∼ kn , with n 6= 1 , (1.5)

where, in other terms, the Goldstone modes are not linear. These kind of Goldstone bosons

are typical of non-relativistic systems and they have been recently rigorously classified and

labelled as type-II or type-B Goldstone modes [12–16]. The fundamental point in this

discussion is that the effective low energy description can be written as [17]:

L =
1

2
ρab ∂tπ

aπb +
1

2
ḡab ∂tπ

a∂tπ
b − 1

2
gab∇πa · ∇πb + . . . , (1.6)

1There is an interesting analogous story with the Goldstones for boosts. In the same way, they are

“almost never” observed. Apparently, if they were, they would be quite different from standard ones (i.e.

a continuum) [11].
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where πI are the Goldstone fluctuations, and ḡab and gab are symmetric with respect to a

and b. The ρab is an anti-symmetric matrix referred to as the Watanabe-Brauner matrix

and the corresponding first term in (1.6) cannot appear in Lorentz invariant systems [17].

More fundamentally, such matrix is given by the commutator of the broken generators:

ρab = −i [Qa,Qb] . (1.7)

The rank of such matrix determines the number of the different types of Goldstone bosons:

ω(k) = k2n− 1 , TYPE A , (1.8)

ω(k) = k2n , TYPE B , (1.9)

where n is an integer.2 Within this scenario, the naive counting in eq. (1.2) is violated.

More precisely

n = nGB −
1

2
rank ρ , nB =

1

2
rank ρ , nA = nGB − rank ρ . (1.10)

For an introductory review about this generalized counting criterion see [18]. The most

famous example in this category is that of the ferromagnet, in contrast to the antiferromag-

net. Both systems break SO(3) →SO(2) but in the first case we have only one Goldstone

mode — the magnon — which is quadratic, while in the second case two standard linear

Goldstones. The difference is due to the fact that a ferromagnet has a ground state with

all the spins aligned and a finite spin density, and it can be explained exactly with the

formalism illustrated above (namely the rank of the Watanabe-Brauner matrix being 6= 0).

The last case, that of diffusive Goldstones, is more recent. It has been noticed, and

then formalized using out-of-equilibrium effective field theory (EFT) methods [19–21], that

in dissipative systems (e.g. open systems) diffusive Goldstone modes can appear:

ω = −iD k2 . (1.11)

These modes can be explained using the same effective field theory formalism as in eq. (1.6),

and they are apparently observed in several physical systems [22].3 More exotic subdiffusive

modes (e.g. ω = −iD k4 ) can arise within the hydrodynamic theory of fractons [27].

As hydrodynamics and effective field theory, holography, in particular its bottom-up

version, is founded on symmetry principles and the slogan that “the global symmetries of

the dual field theory corresponds to gauge symmetries / isometries in the bulk gravitational

description” [30]. Simultaneously, the spontaneous and pseudo-spontaneous symmetry

breaking has been discussed and studied in several holographic models, starting from the

famous holographic superconductor setup [31] to the more recent holographic systems with

broken translations [32]. The topic of anomalous Goldstone bosons has also been investi-

gated in the context of type B modes in [33] and in that of diffusive Goldstones in [23].

2Beforehand, the two type of excitations were labelled with “type I” and “type II”.
3Recently, diffusive goldstone bosons have been also observed in holographic models [23–25]. The nature

of such modes is still unclear [26].
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Figure 2. Three different cases of “anomalous Goldstones”. a) A plane in a fixed position in

3-dimensional space. There are three broken generators but only one Goldstone mode. b) The case

of a ferromagnet. There are two broken generators and only one Goldstone which is quadratic. The

data shown are taken from [28]. c) A flock of birds. The Goldstone boson has a diffusive dispersion

relation [29].

In this work, we aim at studying a different situation using holographic techniques.

In particular, we consider the dynamics of magnetophonon resonances — Goldstone

bosons which appear in systems with spontaneously broken translations at finite mag-

netic field [34, 35]. The interest is twofold; first, these modes are interesting per se because

they are another example of type B Goldstone modes with dispersion relation:

ω ∼ k2 . (1.12)

In particular, by switching on a magnetic field B we can observe the hybridization between

the two linearly propagating Goldstone bosons — the longitudinal and transverse phonons:

ω‖,⊥ = v‖,⊥ k , (1.13)

to a single quadratic mode — the magnetophonon.

On the other side, from a condensed matter perspective, the physics of magnetophonon

resonances is particularly appealing in the presence of small explicit breaking of trans-

lations. In such case, at zero magnetic field, the would be phonons acquire a pinning

frequency ω0, which follows the Gell-Mann-Oakes-Renner (GMOR) relation [36]. This pin-

ning frequency manifests itself in a mid-IR peak in the longitudinal conductivity Re[σxx]

(the typical case is that of pinned charge density waves, see [37]). At finite (and large)

magnetic field, the pinned magnetophonon peak can survive at very low frequencies even in

presence of a strong pinning mechanism [38]. Using classical hydrodynamic arguments [34],

the position of the peak in large magnetic fields gets shifted to

ωpk ∼
ω2
0

ωc
, (1.14)

where ωc ∼ B is the cyclotron frequency. Hence, its position decreases linearly with 1/B,

as observed experimentally in certain (but importantly not all) compounds [38].
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Unfortunately, there is no consensus on the scaling of ωpk as a function of B, and several

scalings are indeed seen in experiments [39]. Moreover, it is not a universal fact that the

magnetophonon frequency ωpk always decreases with the magnetic field B. As we will see,

holography is indeed one of the cases where this does not happen. More interestingly and

broadly, the dynamics of the magnetophonon peak as a function of the magnetic field can

reveal the fundamental nature of the “disorder” responsible for its pinning [39–45], and it

thus encodes a very valuable insight into the system at hand. In the following section 2,

we will provide more details about the physics of magnetophonon resonances.

In summary, in this work, we utilize the recently discussed homogeneous holographic

models with broken translations [46, 47] to study the dynamics of magnetophonon res-

onances. First, we study the appearance of this mode and its type B nature, and we

compare the holographic results with the hydrodynamic predictions. Secondly, we intro-

duce a small source of explicit breaking. We study in detail the longitudinal and transverse

conductivities, and the magnetophonon peak as a function of the magnetic field, charge

density and translational breaking strength. As we will describe in detail, our analysis and,

in particular, the dependence of the magnetophonon peak frequency as a function of the

external magnetic field B could shed light on the nature of the “disorder” introduced by

the homogeneous holographic models such as the well-known “linear-axions model” [48].

Despite a lot of work on this model and generalizations [24, 46–69], the physical nature of

the dual field theories is still not well understood.4

Structure of the paper. The paper is organized as follows: in section 2 we review the

fundamental features of magnetophonon resonances from an EFT and condensed matter

point of view; in section 3 we briefly present the holographic model which we consider

throughout this work; in section 4 we discuss the hydrodynamic description of our holo-

graphic model in presence of the spontaneous breaking of translations and finite charge

density and zero magnetic field; in section 5 we analyze the dispersion relation of the mag-

netophonons in the absence of pinning, and in particular we focus on their type-B nature;

in section 6 we study the electric conductivities and the dynamics of the pinned magne-

tophonons in the presence of a small source of explicit breaking of translations; finally, in

section 7 we conclude and discuss the importance of our results and the comparison with

experimental data. In addition, in appendix A we review the hydrodynamic framework

of [34] and in appendix B that of [71, 72], and in appendices C and D we provide further

technical details on the computations.

2 A brief history of magnetophonons

In this section, we review the fundamental aspects of magnetophonon resonances. For an

excellent and more detailed discussion see [39].

The history of magnetophonons started in the late 70s when the authors of [73, 74]

suggested that the presence of a strong magnetic field B in two-dimensional structures

4See, for example, the controversy about the hydrodynamic description of the dual viscoelastic field

theory in [25, 70] and the discussion in [26].
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Figure 3. Experimental data for a 15nm wide AlGaAs/GaAs/AlGaAs quantum well (QW) taken

from [39]. The behavior as a function of the magnetic field is highlighted. Measured data, and in

particular the scaling ωpk(B) indicate that the disorder that dominates the pinning in this material

is most likely some dilute disorder. We will come back to this point in the conclusions, section 7.

The data and the figure are taken and adapted with permission from [39].

would facilitate the formation of Wigner Crystals which are ordered electronic structures

appearing at low temperature and low density due to the strong Coulomb interactions.

Most of the interest has now shifted to the study of the so called “pinning mode” reso-

nance, which has been experimentally observed in a plethora of pinned solid phases of two

dimensional electron system (2DES) [39] (see figure 3 for one concrete example). For a

summary of all the experimental observations see references in [38].

The first point that we should clarify is why the magnetophonon resonances have a

quadratic dispersion relation. The reason is simple. In absence of any magnetic field,

B = 0, the momenta (intended as operators), obey the standard Poincaré algebra:

[Pi , Pj ] = 0 , (2.1)

and they commute. This is the reason why longitudinal and transverse phonons decouple.

On the contrary, in the case of a finite magnetic field, the algebra is modified and it becomes:

[Pi , Pj ] = −i ǫij BQ , (2.2)

where Q is the electric charge operator. At the level of the effective action for the Goldstone

fluctuations πI , the presence of a finite magnetic field allows the appearance of a new term:

L = ǫij πi ∂tπj + . . . , (2.3)

– 7 –
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exactly like the one in the formalism of [17]. In two spatial dimensions, this implies that

the corresponding Watanabe-Brauner matrix ρij is now non-trivial, and in particular has

rank(ρ) = 2. Following the counting rules explained in the previous section, we immediately

obtain that:

nA = 0 , nB = 1 , ←− magnetophonon . (2.4)

Importantly, as we will show explicitly in our holographic theory, the appearance of

a type-B goldstone mode is always accompanied by the presence of the so-called “gapped

partner”. More precisely, at finite magnetic field, the two linear propagating sound modes

— Goldstones of translations — combine into a type-B mode, the magnetophonon, and

a gapped mode sometimes referred to as the magnetoplasmon. Interestingly, under some

non-degeneracy assumptions, the number of type-B phonons and the number of gapped

partners (sometimes called “almost-Goldstone bosons”) sum up to the number of broken

generators [75]. In our case, the broken generators are the two momenta, Px, Py. At zero

magnetic field, we have two type-A linear Goldstone bosons. At finite magnetic field, we

have one type-B magnetophonon and one gapped partner. Either ways, 1 + 1 = 2. Out

of curiosity, a very similar situation arises in the context of vortex-lattices in superfluid,

where the quadratic mode is known as the Tkachenko mode and the gapped partner as the

Kohn mode (see figure 2 in [76]).

At this point, we can go a step further and try to understand the dispersion relation of

the magnetophonon resonance using hydrodynamic methods [34, 38]. We review the basics

of the hydrodynamic description in appendix A. Here we limit ourselves to present only

the main results necessary for our discussion. At finite magnetic field, the transverse and

longitudinal phonons couple together, in a way that the resulting frequencies become [35]:

ω2
± =

1

2

(

ω2
c + ω2

‖ + ω2
⊥

)

± 1

2

√
(

ω2
c + ω2

‖ + ω2
⊥

)2
− 4ω2

⊥ ω2
‖ , (2.5)

where ωc is the cyclotron frequency and ω⊥,‖ the frequencies of the linear decoupled

phonons. At zero momentum, k = 0, ω⊥,‖ = 0 and we are left with two modes:

ω− = 0 , ω+ = ωc . (2.6)

The root with the negativ sign is the massless type-B magnetophonon, while the root

with the plus sign is the gapped partner — the magnetoplasmon. At small momentum,

k/T ≪ 1, we get:

Re [ω+] = ωc +
(v2‖ + v2⊥)

2ωc
k2 + . . . , Re [ω−] =

v⊥ v‖

ωc
k2 + . . . , (2.7)

and we observe the quadratic behavior which we have mentioned.

In the presence of small explicit breaking (e.g. impurities), the dispersion relation of

the magneton-phonon gets modified into:

Re [ω−(k)] =

√
(
ω2
0 + ω2

⊥(k)
) (

ω2
0 + ω2

‖(k)
)

ωc
, (2.8)

– 8 –
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with ω0 the pinning frequency. This mode acquires a finite gap ω−(k = 0) ≡ ωpk. We will

come back to these dispersion relations in much more detail in section 5.

A last fundamental point, from a more phenomenological perspective, is related to the

dependence of the magnetophonon peak ωpk with respect to the external magnetic field

B. This observable has a privileged role since it is the easiest to measure accurately and

since it can give important information on “the type” of disorder in the material. Using

hydrodynamics [34, 35], we can infer that the position of the resonance peak is given by:

ωpk =
ω2
0

ωc
. (2.9)

This means that a classical treatment of the pinning mechanism [34, 35] would lead to:

ωpk ∼
1

B
. (2.10)

Unfortunately or interestingly, recent experimental results [77] are in disagreement

with this prediction. They instead observed a peak increasing with the magnetic field (see

one example in figure 3). In order to understand these experimental results, in which the

peak increases with the magnetic field (and it decreases with the density) one needs to

go beyond the “classical treatment”. To this end, some of the most famous models are

those of [78–80]. Very interestingly, the scaling of ωpk with the magnetic field B depends

crucially on the nature of the disorder which produces the pinning, and it can be used as

an efficient tool to disentangle various types of disorder. In more detail, the dependence

is very sensitive to whether the system is in a classical or quantum regime. This can be

quantified using the concepts of magnetic length lb =
√

~/eB and disorder correlation

length ξ. In terms of these quantities:

lb ≫ ξ quantum regime , (2.11)

lb ≪ ξ classical regime . (2.12)

Note that the result ωpk ∼ 1/B holds only in the classical regime. In the opposite regime,

the results can be very different and the peak can increase with the magnetic field. As an

example, in the quantum regime, a model for dilute disorder would give ωpk ∼ B [78], and

if specific corrections are taken into account (mainly via numerical simulations) the theory

predicts a sublinear increase of the peak frequency:

ωpk ∼ Bγ , with 0 < γ < 1 . (2.13)

For more options and theoretical models see [39, 81–88] and references therein.

In the following, we will consider a specific holographic model which contains mag-

netophonon resonances. We will study their features in the case of spontaneously broken

translations, and once the mode becomes pinned.

– 9 –
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3 The holographic model

We consider the large class of holographic models introduced in [46, 47] and defined by the

following four-dimensional bulk action:

S = M2
P

∫

d4x
√−g

[
R

2
+

3

ℓ2
− V (X)− 1

4
F 2

]

, (3.1)

where X ≡ 1
2 g

µν ∂µφ
I∂νφ

I and F 2 ≡ FµνF
µν with the field strength being F = dA. The

AdS radius ℓ and the Planck mass MP will set to be unity. Given the large amount of

works discussing this model, we will be brief (see [30, 52] for more details and [89] for an

introduction to holography).

In order to work in a 2+1 dimensional field theory at finite temperature, we consider

a black bran in an asymptotically AdS4 bulk geometry. The metric reads in infalling

Eddington-Finkelstein coordinates

ds2 =
1

u2
[
−f(u) dt2 − 2 dt du+ dx2 + dy2

]
, (3.2)

with u ∈ [0, uh] the radial holographic direction ranging from the boundary u = 0 to the

horizon, f(uh) = 0. The bulk profile for the scalars is

φI = κxI , (3.3)

which is trivially a solution of the system because of the global shift symmetry φI → φI+bI

of the action (3.1). We introduce both a finite charge density ρ and an external magnetic

field B via the gauge field Aµ in radial gauge Au = 0:

At = µ− ρ u , Ax = −B

2
y , Ay =

B

2
x . (3.4)

We furthermore require the temporal component of the gauge field to vanish at the horizon,

which implies in the case uh = 1 that ρ = µ. The emblackening factor takes the simple form:

f(u) = u3
∫ uh

u
dv

[
3

v4
− V (κ2 v2)

v4
− (ρ2 +B2)

2

]

. (3.5)

The corresponding temperature of the dual theory reads:

T = −f ′(uh)

4π
=

6− 2V
(
κ2 u2h

)
− (ρ2 +B2)u4h

8π uh
, (3.6)

while the entropy density is simply s = 2π/u2h (from now on, Mp = 1). In section 4 and 5,

we consider potentials of the form

V (X) = m2X3 , (3.7)

corresponding to spontaneously broken translations in the dual field theory [32]. In sec-

tion 6, we will consider the polynomial potential:

V (X) = αX
︸︷︷︸

explicit

+ β X3

︸ ︷︷ ︸
spontaneous

. (3.8)

– 10 –
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The first part of such potential corresponds to an explicit breaking of translational invari-

ance [48, 59], while the second part implements its spontaneous breaking [32, 70, 90–93].

The combination of the two terms allows to study the pseudo-spontaneous regime, where

the breaking is mostly spontaneous [56, 61, 94]. More rigorously, we will always work in

the limit:

pseudo-spontaneous regime: α≪ 1 , β ≫ α . (3.9)

For completeness, let us write down the temperature of the field theory considered under

this choice of potential:

T =
3

4π
− (ρ2 +B2)u3h

8π
− ακ2 u2h + β κ6 u6h

4π uh
. (3.10)

Before proceeding, let us summarize our dimensionless parameters:
{

ρ

T 2
,
κ

T
,
B

T 2
, α , β

}

. (3.11)

Notice that the results in the explicit regime, where β = 0, or eventually β ≪ α, can be

found in [95], and they represent a very good check for our numerics.

4 A hydrodynamic warm-up

Before proceeding to the main points of our paper, we consider a simpler problem which to-

date remains still unsolved. More precisely, we investigate the hydrodynamic description

of our homogeneous holographic model with spontaneously broken translations at finite

charge density. At zero charge density (or alternatively zero chemical potential µ = 0), the

problem was recently solved in [25] after realizing explicitly in [70] that the hydrodynamic

description of [96–99] was lacking fundamental terms to match the holographic results.5 In

this section, we plan to check explicitly if the improved hydrodynamic description of [71]

matches the holographic results from our model in the presence of finite charge density.

Skipping the technical details which can be found in the original paper [71] and are sum-

marized in our appendix B, we immediately jump to the hydrodynamic modes which are

expected in the system. To avoid any confusion, in the rest of the paper, we will indicate

with the suffix ⊥ the quantities (e.g. hydrodynamic modes) which belong to the transverse

sector (transverse with respect to the choice of the wave-vector k) and with ‖ those in the

longitudinal spectrum.

Under these assumptions, our system will exhibit the following hydrodynamic modes:

transverse sector: ω⊥ = v⊥ k − i

2
Γ⊥ k2 , (4.1)

longitudinal sector: ω‖ = v‖ k −
i

2
Γ‖ k

2 , ω
‖
1,2 = −iD

‖
1,2 k

2 . (4.2)

5In order to avoid any misunderstanding, let us be precise and explain this in detail. The hydrodynamic

framework of [96–99] considered systems which are thermodynamically favored, i.e. the crystal pressure

P = 0. This is the main reason of the disagreement found in [70]. However, even in unstrained configurations

with P = 0 the temperature derivative of P(T ), neglected in [99], is fundamental to achieve the correct

hydrodynamic description [25].
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In the transverse sector we have a single propagating shear sound mode with speed v⊥
together with its attenuation constant Γ⊥. The longitudinal sector is more complicated.

We have a longitudinal propagating sound mode with speed v‖ and attenuation constant

Γ‖ and two additional diffusive modes ω
‖
1,2 with diffusion constants D

‖
1,2. These last two

modes are a combination of the crystal diffusion Dφ discussed in [25, 26] and the standard

charge diffusion Dq (see, for example, [100]).

According to the results of [71], for conformal field theories, the various transport

coefficients may be written as:

v2⊥ =
G

χππ
, Γ⊥ =

η

χππ
+

GΠ2
f

σ χ2
ππ

, (4.3)

v2‖ =
1

2
+ v2⊥ , Γ‖ =

η

χππ
+

Π2
f G

2

σ χ3
ππ v

2
L

, (4.4)

while the diffusion constant D
‖
1,2 can be found as solutions of the quadratic equation:

(

D −
Π2

f

σ

G+B− P
2χππ v2‖ (Πf +Πl)

) (
ΞD

2 (Πf +Πl)
− σq

T 2

)

=
D

σ

(
sf ql − qf sl
Πf +Πl

+
γ

T

) (
sf ql − qf sl
Πf +Πl

− γ′

T

)

. (4.5)

Let us explain one by one all the terms entering into the equations above. We define the

hydrodynamic pressure p, the energy density ǫ, the lattice pressure P, and the momentum

susceptibility χππ as:

p = −Ω , ǫ = 〈T tt〉 , P = 〈T xx〉 − p , χππ = 〈T tt〉+ 〈T xx〉 , (4.6)

where Ω is the free energy density, and Tµν the stress-energy tensor. The shear modu-

lus G, the shear viscosity η, and the dissipative parameter σ can be extracted using the

Kubo formulas:

G = lim
ω→0

lim
k→0

ReGRTxyTxy , η = − lim
ω→0

lim
k→0

1

ω
ImGRTxyTxy ,

(ǫ+ p)2

σχ2
ππ

= ξ = lim
ω→0

lim
k→0

ω ImGRΦΦ , (4.7)

where Φ is the Goldstone operator dual to the bulk scalars φ.6 Moreover, we can use the

results of [101] to obtain a horizon formula for ξ (and thus for σ), given by:

ξ =
4π (ǫ+ p)2

2m2N sχ2
ππ

+
µ2

χ2
ππ

, (4.8)

which is valid for potentials of the form V (X) = m2XN , and correctly reproduces the

results at zero chemical potential presented in [25]. The expected behavior of the 〈ΦΦ〉
correlator is shown in figure 4 together with a numerical confirmation of formula (4.8).

6We are not indicating any ‖,⊥ index because we are interested only at the limit k → 0 where such

distinction does not make any sense anymore.
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Figure 4. The analysis of the 〈ΦΦ〉 correlator for a benchmark potential V (X) = m2X3 at

zero magnetic field. The structure follows the hydrodynamic expectations shown in eq. (4.7). For

simplicity we show only one set of data where we keep m = 1, uh = 1 fixed. Left: Comparison

between the momentum susceptibility χππ extracted from the numerical correlator (blue dots) and

the hydrodynamic formula (orange line). Right: Comparison between the dissipative coefficients

ξ (which relates to σ) extracted from the numerical correlator (blue dots) and the hydrodynamic

formula (orange line).

The bulk modulus B can be derived using the following relation:

T
∂P
∂T

+ µ
∂P
∂µ

= 3P − 2B , (4.9)

which holds due to the conformal symmetry.

In order to derive other parameters, we use the definitions of [71]:

sf =
∂p

∂T
, sl =

∂P
∂T

, qf =
∂p

∂µ
, ql =

∂P
∂µ

, (4.10)

together with

Πf = ǫ+ p = sf T + qf µ , Πl = ǫl + P = sl T + ql µ . (4.11)

One can check explicitly that sf and qf are nothing but the entropy density s and charge

density ρ of our system (3.2), respectively. Additionally, because of the conformal invari-

ance we have:

ǫ = 2 (p+ P) , ǫl = 2 (P −B) . (4.12)

Interestingly, we find that sl < 0 for any choice of monomial potentials.

Finally, the remaining coefficients Ξ, σq, γ, γ
′ can be obtained from

Ξ =
∂sf
∂T

∂qf
∂µ
− ∂sf

∂µ

∂qf
∂T

, (4.13)

and from the low frequency expansion of the following Green’s functions:

GRJxJx =
q2f
χππ
− i ω σ̃q , GRJxφx

= − qf
i ω χππ

+ γ̃ , GRφxJx =
qf

i ω χππ
+ γ̃′ , (4.14)

– 13 –
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where

σ̃q = σq +
1

σ

(
qf P
χππ

− γ

) (
qf P
χππ

+ γ′
)

, (4.15)

γ̃ =
Πf

σ

(
γ

χππ
− qf P

χ2
ππ

)

, (4.16)

γ̃′ =
Πf

σ

(
γ′

χππ
+

qf P
χ2
ππ

)

. (4.17)

We have checked numerically the structure of the JJ, JΦ,ΦJ correlators and found perfect

agreement with the expressions in eq. (4.14). Moreover, we have verified numerically that

γ̃ = −γ̃′ → γ = −γ′ , (4.18)

which comes simply from the fact that our system is invariant under time-reversal and it

is imposed by so-called Onsager constraints.

Following [24], one can derive simple formulas for the parameters γ̃ and σ̃q:

γ̃ =
µ (m2 + s T )

χ2
ππ

+
2π ρ (µρ+ s T )

χ2
ππ N s

, (4.19)

σ̃q =
(χππ − µρ)2

χ2
ππ

+
2π ρ2 (χππ − µρ− s T )2

χ2
ππ m

2 sN
, (4.20)

which are valid for potentials V (X) = m2XN assuming the scalars profile to be simply

φI = xI .7 Our results are shown in figure 5, where we verify the expressions presented

in (4.14), and plot the behavior of the parameters σ̃q, γ̃ as a function of µ/T and m/T .

Finally, we check numerically that the analytic formulas (4.20) are indeed correct.

After discussing the various Green’s functions and hydrodynamic predictions, we move

to a concrete and complete check of the hydrodynamic framework. To simplify the discus-

sion, we will focus on a specific potential:

V (X) = m2X3 , with φI = xI , (4.21)

which we take as a benchmark model. We start in figure 6 by comparing the hydrodynamic

formulas with the numerical data regarding the propagating transverse sound. The numer-

ical values extracted from the quasinormal modes (QNMs) are in good agreement with hy-

drodynamics for all values of m/T and µ/T . The presence of a finite charge density always

decreases the speed of propagation of transverse sound. This can be easily understood from

the fact that the momentum susceptibility χππ grows with the chemical potential ∼ µ2.

In other words, sound is slower because the “mass density” (the non-relativistic analogous

of the momentum susceptibility) is larger. The dynamics of transverse sound attenuation

is more elaborated. Even though the finite density decreases the sound attenuation con-

stant Γ⊥ at small m/T , the effect is reversed at large m/T , where the finite charge density

decreases the lifetime of transverse sound. For the longitudinal sound mode, we show our

results in figure 7. The results from hydrodynamics and holography match perfectly.

7Taking the more generic profile φI = κxI , it is easy to realize that for monomial potentials of the form

V (X) = m2XN the κ parameter is redundant and it can be re-asborbed in the definition of m2.
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Figure 5. Top Left: The real part of the JJ correlator (red dots) compared to the hydrodynamic

formula for q2f/χππ (blue line). We fixed m = uh = 1. Top Right: The imaginary part of the

mixed JΦ correlator (purple dots) compared to the hydrodynamic formula for qf/χππ (orange line).

We fixed m = uh = 1. Bottom Left: The parameter σ̃q as a function of µ/T for several values of

m/T . The lines are the analytic formula (4.20), while the dots are the numerical values extracted

from the JJ correlator. Bottom Right: The parameter γ̃ as a function of µ/T for several values of

m/T . The lines are the analytic formula (4.20) and the dots the numerical values extracted from

the JΦ correlator.

We now discuss the two diffusive modes present in the longitudinal sector. We compare

hydrodynamics and the holographic results in figure 8. The hydrodynamic predictions are

satisfied in our holographic model. Both diffusion constants decrease with the dimensionless

chemical potential µ/T .

Finally, we discuss the bound [24]

γ̃2 ≤ σq ξ , (4.22)

which follows from the positivity of the entropy production in the hydrodynamic theory

of [99]. All the quantities involved in this bound can be obtained analytically in our

holographic model. Hence, it is immediate to verify the inequality (4.22) as a function of

the parameters µ/T andm/T . We plot our results in figure 9. The bound in eq. (4.22) holds

at any temperature. Moreover, it is saturated exactly in the limit m/T →∞, T/µ→ 0.

In summary, we conclude this section by celebrating a perfect agreement between the

hydrodynamic framework of [71] and the results obtained from our holographic theory.
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Figure 6. The predictions from hydrodynamics for the benchmark potential V (X) = m2X3 and

various values of µ/T . Left: The speed of transverse sound. The smileys indicate the numerical

values obtained by fitting the real part of the quasinormal modes Re[ω] = v⊥ k. Right: The

transverse sound attenuation constant. The smileys indicate the numerical values obtained by

fitting the real part of the quasinormal modes Im[ω] = − 1

2
Γ⊥ k2.
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Figure 7. The predictions from hydrodynamics for the benchmark potential V (X) = m2X3 and

various values of µ/T . Left: The speed of longitudinal sound. Right: The longitudinal sound

attenuation constant.
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Figure 8. The predictions from hydrodynamics for the benchmark potential V (X) = m2X3 and

various values of µ/T . The diffusion constants are obtained by solving the coupled equation (4.5).

Left: The diffusion constant D1 which in the limit µ → 0 corresponds to the crystal diffusion.

Right: The diffusion constant D2 which in the limit µ→ 0 corresponds to the charge diffusion.
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Figure 9. The combination γ̃2/σqξ as a function of T/µ for various values of m/T . This figure

has to be compared with figure 4 of [24].
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5 The magnetophonon as a type-B Goldstone

In this section, we add a finite magnetic field to the setup of the last section and continue

to consider the case in which translations are spontaneously, but not explicitly broken. In

terms of the parameters of our system (3.11), this corresponds to the choice α = 0. In ab-

sence of magnetic field, the presence of the following hydrodynamic modes has been verified:

transverse sector: ω⊥ = v⊥ k − i

2
Γ⊥ k2 , (5.1)

longitudinal sector: ω‖ = v‖ k −
i

2
Γ‖ k

2 , ω1,2 = −iD‖
1,2 k

2 , (5.2)

where the two modes ω⊥,‖ are the expected phononic vibrational modes whose speeds are

set by the shear and bulk elastic moduli [25]. The additional longitudinal diffusive modes

are a combination of the crystal diffusive mode, emerging because of the spontaneous

breaking of the global symmetry φ → φ + b [23, 26], and the standard charge diffusion

mode (see previous section 4).

At zero magnetic field, the two sectors are decoupled and the longitudinal/transverse

phonons represent indeed a pair of linearly propagating (type A) Goldstone bosons, cor-

responding to the breaking of translations in the x, y spatial directions.8 As explained in

section 2, at finite magnetic field the two sectors couple, and one expects the presence of a

type-B mode and a gapped partner:

Re[ω] = C + B k2 , magnetoplasmon ,

Re[ω] = A k2 , magnetophonon , (5.3)

where these dispersion relation can be derived formally using hydrodynamics [38].

Before continuing, let us remind the reader which are the expectations from hydrody-

namics and field theory. The real part of the two modes, at small momentum, should follow:

Re [ω+] = ωc +
(v2‖ + v2⊥)

2ωc
k2 + . . . , Re [ω−] =

v⊥ v‖

ωc
k2 + . . . , (5.4)

where the cyclotron frequency ωc [102] is defined as

ωc =
ρB

χππ
. (5.5)

Additionally, the magnetoplasmon mode ω+ displays a damping term:

Im [ω+] = −γB , with γB =
σ̃q B

2

χππ
, (5.6)

which is valid in the limit of small magnetic field B/T 2 ≪ 1 [102]. A full analysis of

our numerical results would necessitate a complete hydrodynamic theory in the presence

8As expected, no additional Goldstone modes for broken rotations appear due to the Inverse Higgs mech-

anism.
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Figure 10. The fate of the two propagating hydrodynamic sound modes under increasing the

magnetic field. The red lines show the results at B = 0 and the two linear sound modes. We fix

µ/T = 1 and m/T = 1 moving B/T 2 = 0.01 (orange), 0.1 (pink), 1 (green), 2 (cyan) and 4 (blue).

The circles indicate the magnetophonon mode while the stars the magnetoplasmon mode. For

simplicity we do not show the behavior of the diffusive modes. Left: The real part of the dispersion

relations. Cyan and blue stars are not shown as the gap becomes very large. Right: The imaginary

part. The rest of the magnetoplasmons data (corresponding to green, cyan and blue stars) are not

shown since the damping becomes very large.

of lattice pressure P, spontaneously broken translations, and finite charge density and

magnetic field. To the best of our knowledge, such theory has not been built yet.

The aim of this section is to verify the dispersion relation in eq. (5.3) and to compare

them with the hydrodynamic formulas in eq. (2.7). For simplicity, we focus on a single case:

V (X) = m2X3 , φI = xI , (5.7)

as a prototype for spontaneous symmetry breaking of translations. First, we show in

figure 10 the dynamics of the sound modes by increasing the magnetic field. At B = 0,

we can identify two linear propagating sound modes (solid lines). After turning on the

magnetic field, the modes combine forming the gapped magnetoplasmon (stars) and the

quadratic type-B magnetophonon (circles). As evident from figure 10, the gap of the

magnetoplasmon grows with B, while the coefficient of the k2 scaling of the magnetophonon

decreases with it.

Next, we focus more in detail on the dispersion relation of the two modes. First, in

figure 11, we consider the magnetoplasmon gapped mode. We plot both the real part (the

gap) and the imaginary part (the damping) of its dispersion relation, and we verify that

the hydrodynamic formulas (5.4) and (5.6) are valid. We find that at small magnetic field,

B/T 2 ≪ 1, the numerical data are in very good agreement with those formulas. At large

magnetic field, the real part clearly shows a different scaling, Re [ω] ∼ B1/2. Interestingly,
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the numerical prefactor is completely independent of µ/T and m. It is tempting to connect

this behavior to the fact that at very large magnetic field the physics is purely quantum

and is controlled by the lowest Landau level:

ωLLL ∼
√
B . (5.8)

In any case, we are able to recover the large B behavior using simple arguments. Let us

start with the definition of the magnetic length:

l =

√

~ v

eB
, (5.9)

which can be converted into a frequency using the relation l = v/ω ; in units ~ = e = 1, we

obtain ω =
√
v
√
B. Now, in the large B limit, B/T 2 ≪ 1, we approach the conformal UV

fixed point for which the characteristic speed is given by the conformal value v = 1/
√
2.

This means that the resulting frequency is given by

ω =
1

21/4

√
B ∼ 0.84

√
B . (5.10)

This estimate is in perfect agreement with the numerical data shown in figure 11. Increasing

the mass of the graviton m/T , the universal behavior is reached at larger values of the

magnetic field. Note that a
√
B-like behavior of the real part of the QNMs for large

magnetic fields was also observed in [103–105].

We proceed with discussing the dynamics of the magnetophonon mode — our type-B

Goldstone. The real part of the dispersion relation is consistent with a quadratic scaling

ω = A k2. At the same time, we observe that the imaginary part is compatible with a

quadratic diffusive behavior. In summary, we observe that the dispersion relation of the

type-B Goldstone mode at small momentum is of the type:

ωTY PE−B = A k2 − iD k2 + . . . . (5.11)

These results are in agreement with what observed in the context of SU(2)→U(1) symmetry

breaking in [33]. Interestingly, a diffusive damping for type-B Goldstone is not envisaged

from EFT methods [106]. Field theory approaches predict a ∼ k4 imaginary part for

quadratic type-B Goldstone modes manifesting the quasiparticle nature of the excitation.

To ensure a quasiparticle excitation in our present case (5.11), we have to require D < A
which, in general, is not guaranteed in our holographic theory. The presence of a particle-

hole continuum in the holographic model — the so called incoherent sector — can be a

possible mechanism behind the ∼ k2 imaginary term observed.9 The continuum is not taken

into account in the EFT description and it is known to have already important consequences

in other situations, such as Fermi liquid theory [107] and holographic models [108–110].

We examine the behavior of the coefficients A,B appearing in the dispersion relations

in eq. (5.3). We have confirmed numerically that the hydrodynamic formula:

B =
(v2‖ + v2⊥)

2ωc
, A =

v⊥ v‖

ωc
, v2‖ =

1

2
+ v2⊥ , C = ωc , (5.12)

9We thank C.Hoyos for suggesting this point to us.
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Figure 11. The cyclotron frequency ωc and the cyclotron damping γB extracted from the disper-

sion relation of the magnetoplasmon mode at zero momentum. The parameters are {µ/T, m/T} =
{{0.001, 0.001}, {0.01, 0.001}, {0.1, 0.001}, {1, 0.001}, {5, 0.001}, {0.001, 5}, {1, 5}, {1, 10}, {10, 1}}
(blue, magenta, orange, yellow, red, green, brown, gray, pink). Left: ωc as a function of B/T 2

varying other parameters. The dashed lines are the formula for ωc (5.5) valid at small magnetic

field. The solid lines are the numerical data. The inset shows the large B behavior consistent

with ω/T ∼ 0.84
√

B/T 2. Right: The damping γB . The dashed lines are the small B analytic

formula (5.6). The inset is the large B limit.

fit very well the scalings obtained from the numerical data. In absence of a complete

hydrodynamic framework, we plot our results from the numerical data. More precisely,

in figure 12 and figure 13, we show the behavior of these the coefficients appearing in the

dispersion relations as a function of the parameters of our system µ/T , m/T and B/T 2.

The results are compatible with hydrodynamics. In particular:

• Both parameters A and B decrease with the magnetic field. This is due to the fact

that both the parameters are inversely proportional to the cyclotron frequency ωc:

A ∼ ω−1
c , B ∼ ω−1

c , (5.13)

and ωc grows linearly with the magnetic field at small B. Indeed, our numerical

results are compatible with a ∼ 1/B decay of both the parameters at small magnetic

field.

• Both the parameters grow with m/T . This is due to the fact that both are propor-

tional to the speed of transverse of sound. Let us remind that

v⊥ ∼ m, A ∼ v⊥ , B ∼ v2⊥ . (5.14)

As expected, we observe that AT ∼ m/T and B T ∼ m2/T 2 at small m/T . This is

another proof that the hydrodynamic formulas are correct.
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Figure 12. The coefficient A extracted from the dispersion relation of the type-B magnetophonon

Re [ω] ∼ A k2 as a function of the parameters of the system. Left: As a function of the dimensionless

magnetic field B/T 2 fixing m/T = µ/T = 1. The inset shows the dispersion relation of the

magnetoplasmon increasing the magnetic field (from green to pink). Center: As a function of the

graviton mass m/T fixing µ/T = 1 and B/T 2 = 0.5. The inset shows the dispersion relation of

the magnetoplasmon increasing m/T (from green to pink). The dashed line shows the low m linear

scaling compatible with the hydrodynamic formula. Right: As a function of the dimensionless

chemical potential µ/T fixing m/T = 1 and B/T 2 = 0.5. The inset shows the dispersion relation of

the magnetoplasmon increasing the chemical potential (from green to pink). The dashed line shows

the ∼ 1/µ scaling compatible with the hydrodynamic formula.
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Figure 13. The coefficient B extracted from the dispersion relation of the type-B magnetoplasmon

Re [ω] ∼ C + B k2 as a function of the parameters of the system. Left: As a function of the

dimensionless magnetic field B/T 2 fixing m/T = µ/T = 1. The inset shows the dispersion relation

of the magnetoplasmon increasing the magnetic field (from orange to black). Center: As a function

of the graviton mass fixing µ/T = 1 and B/T 2 = 0.5. The inset shows the dispersion relation of the

magnetoplasmon increasingm/T (from orange to black). The dashed line shows the lowm quadratic

scaling compatible with the hydrodynamic formula. Right: As a function of the dimensionless

chemical potential µ/T fixing m/T = 1 and B/T 2 = 0.5. The inset shows the dispersion relation

of the magnetoplasmon increasing the chemical potential (from orange to black). The dashed line

shows the ∼ 1/µ scaling compatible with the hydrodynamic formula.
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• Both parameters decrease by increasing the chemical potential (or equivalently the

charge density). This is expected from hydrodynamics since:

A ∼ ω−1
c , B ∼ ω−1

c , ωc ∼ ρ ∼ µ . (5.15)

Our numerical results fully support this scaling.

In summary, the results shown in figure 12 and figure 13 confirm the hydrodynamic behav-

ior:

Re [ω+] = ωc +
(v2‖ + v2⊥)

2ωc
k2 + . . . , Re [ω−] =

v⊥ v‖

ωc
k2 + . . . , (5.16)

and suggest that the physics of our holographic model is indeed captured by such effective

description.

To confirm even further the EFT description, we continue our analysis by checking the

dispersion relations of the magnetophonons and magnetoplasmons at large momentum.

We do expect that at larger momenta the two modes decouple, and thereby a pair of

linearly propagating sound modes verified in our theory without a background magnetic

field. More precisely, the magnetophonon is expected to follow the original transverse

phonon dispersion relation:

Re[ω](k) = v⊥ k , (5.17)

while the magnetoplasmon that of the longitudinal phonons:

Re[ω](k) = v‖ k . (5.18)

This decoupling at larger momenta is typical of interacting modes, and appears also in the

context of plasmons, induced by Coulomb interactions (see [110, 111] for the same effect in

holography systems with Coulomb interactions). We confirm these predictions in figure 14,

in which we see both the modes approaching the decoupled phonon dispersion relations as

discussed in section 4.

Finally, we show in figure 15 the dynamics of the coupled charge and crystal diffusive

modes by increasing the magnetic field B. Interestingly, even in presence of a strong

magnetic field both the modes remain gapless and diffusive; no damping appears. The

diffusion constant of the modes which connecting to crystal diffusion (red dots in the right

panel of figure 15) is almost unaffected by the presence of the small magnetic field. Its

diffusion constant grows very slowly by increasing B/T 2 (see inset in the right panel of

figure 15). It reaches a maximum around B/T 2 ∼ 2.7 and then slowly decreases. On the

contrary, the diffusion constant of the mode related to charge diffusion (blue dots in the

right panel of figure 15) is strongly modified by the magnetic field, and displays a similar,

but much more pronounced, non-monotonic behavior. It shows a maximum around the

same position B/T 2 ∼ 2.7, and then decreases to zero at large B.

6 The magnetophonon peak and the effects of the magnetic field

In this section, we introduce a small external source of explicit breaking parametrized by

the dimensionless parameter α. We will always consider the pseudo-spontaneous regime

defined in (3.9).
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Figure 14. The dispersion relations of the magnetophonons (left) and magnetoplasmons (right)

at large momentum. The black dashed lines indicate the decoupled phonon dispersion relations

Re[ω] = v⊥,‖ k. Eventually, going at even larger momenta both the modes will interpolate into the

relativistic dispersion relation Re[ω] = k imposed by the AdS4 UV fixed point. The data are the

same of figure 11 and figure 12 where we kept fixed µ/T = 1 and B/T 2 = 0.5 and moved m/T .
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– 24 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
7

0.1 0.2 0.3 0.4
B

1.12

1.13

1.14

1.15

1.16

1.17

σxx
DC

0.2 0.4 0.6 0.8 1.0 1.2 1.4
κ

0.2

0.4

0.6

0.8

σxx
DC

0.5 1.0 1.5 2.0
β

1.15

1.20

1.25

σxxDC

0.1 0.2 0.3 0.4
B

0.05

0.10

0.15

σxyDC

0.2 0.4 0.6 0.8 1.0 1.2 1.4
κ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σxy
DC

0.5 1.0 1.5 2.0
β

0.4

0.6

0.8

1.0

1.2

σxyDC

Figure 16. Comparison between the numerical conductivities at ω = 0 (markers) and the DC

formulas in equations (6.3) (lines). For simplicity we fixed uh = 1. The agreement is excellent.

We focus our analysis on the electric conductivities:

Ji = σij Ej , (6.1)

and [112], in particular, on the longitudinal conductivity σxx(ω) and the Hall conductivity

σxy(ω), defined via the following Kubo formulas:

σxx(ω) =
i

ω
〈Jx Jx 〉 , σxy(ω) =

i

ω
〈Jx Jy 〉 . (6.2)

Both correlators above may be computed using the standard holographic techniques (see

appendix C for details).

The DC (ω = 0) values of such conductivities can be obtained using the methods

of [113] and they read

σDC
xx =

κ2 V ′ gxx
(
B2 + κ2 V ′ gxx + ρ2

)

B2 ρ2 + (B2 + κ2 gxx V ′ )2
∣
∣
uh
, σDC

xy = B ρ

(
B2 + 2κ2 V ′ gxx + ρ2

)

B2 ρ2 + (B2 + κ2 gxx V ′ )2
∣
∣
uh

,

(6.3)

generalizing the expressions in [51, 114]. Recall that κ determines the coupling of the linear

axions to gravity (3.3) and that we fixed m = 1 throughout this section. In the limit where

translations are not broken (i.e. κ→ 0), we recover the standard result

σxx = 0 , σxy =
ρ

B
≡ ν , (6.4)

which was already found in [115], with ν ≡ ρ/B being the filling fraction. As a warm-up,

we check our numerical results with the DC formulas provided in (6.3). The comparison is

shown in figure 16 for a random sample of data. The agreement is very good, confirming

that our numerics are reliable.

Next, we turn into studying the effects of the magnetic field on the pseudo-phonon

peak manifesting in the electric conductivities. At zero magnetic field, the structure of
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the low-lying transverse excitations in the system is well described by the hydrodynamic

expression

(i ω + Γ) (i ω +Ω) + ω2
0 = 0 , (6.5)

as confirmed numerically in [61, 94]. Γ is the momentum relaxation rate, corresponding to

the explicit breaking of spacetime translations x → x + a. Analogously, Ω is the “phase

relaxation” rate, associated to the explicit breaking of the internal shit symmetry φ→ φ+b.

ω0 is the already mentioned pinning frequency which is responsible for the off-axes peak in

the electric conductivity.

We present the effects of the magnetic field B on the electric conductivities in figure 17.

We start from a choice of parameters which exhibit a clear pseudo-phonon peak at B = 0,

visible as the blue line of figure 17, and then increase the value of the dimensionless magnetic

field B/T 2 until very large values. We observe that the position of the peak, expressed as

the maximum of the longitudinal conductivity Re[σxx],
10 increases monotonically with the

magnetic field B. On the contrary, the width of the peak, which determines the lifetime

of the associated resonance, becomes first sharper and then starts increasing again at very

large magnetic fields.

In order to confirm our results, we compute the quasinormal modes of the system at

finite charge density and magnetic field. Our results are displayed in figure 18. The motion

of the QNMs is consistent with what already found in the electric conductivities. The

real part of the lowest QNM increases monotonically with the strength of the magnetic

field, corresponding to the peak moving continuously to higher frequency in the electric

conductivities. More interestingly, the imaginary part of the lowest pole is non-monotonic.

The lifetime of the QNMs first becomes longer as a function of B/T 2, and then decreases

at larger values of the magnetic field. This is again consistent with the width of the peak

in the conductivity first becoming smaller and then increasing with B. Notice that this

non-monotonic behavior of the imaginary part as a function of the magnetic field is quite

typical, and has been observed also in the absence of translations breaking [102].

In figure 19, we plot the position of the peaks ωpk as a function of the magnetic field

B and the filling fraction ν. First, we compare the position of the peak extracted from

the maximum of the longitudinal conductivity with the real part of the lowest QNM. The

precise numerical values do not match as expected since generically

ωpk 6= Re[ωqnm] . (6.6)

Nevertheless, the qualitative trend as a function of the magnetic field B is very similar.

Moreover, at large magnetic field, B/T 2 ≫ 1, the two almost coincide, meaning that

the contribution of Im[ωqnm] to ωpk becomes negligible. Interestingly, the position of the

peak seems to saturate to a constant value for large values of the filling fraction, while it

rapidly decreases at small values of ν. Qualitatively, our results are in agreement with the

experimental fits obtained in [38] (see the right panel of figure 2 therein).

10Note that the maximum in the conductivities does not coincide with the value of the pinning frequency

ω0 but it is rather a result of a complicated interplay between the various parameters. However, the

measured peak is not the pinning frequency itself but the maximum of the conductivity [39].
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Figure 17. The evolution of the pseudo-phonon peak increasing the magnetic field. We move the

magnetic field B/T 2 ∈ [0, 5 × 103] (from blue to red). The other parameters ρ/T 2 = 987, κ/T =

31.4, α = 0.1, β = 2 are kept fixed.
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Figure 18. QNMs motion in the complex plane for the same parameters of figure 17. The dynamics

is produced by dialing the dimensionless magnetic field B/T 2, while keeping other parameters fixed.
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Figure 19. Dependence of the peak position ωpk as a function of the magnetic field B/T 2 and

the filling fraction ν ≡ ρ/B. The peak is extracted both from the real part of the longitudinal

conductivity (red dots) and from the quasinormal modes spectrum (blue dots).
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Figure 20. Left: Behavior of the peak in the longitudinal conductivity Re[σxx] at large B/T 2.

The asymptotic behavior is consistent with a scaling ωpk ∼ B1/2. Right: Dependence of the peak

position ωpk as a function of the parameter β, which determines the strength of the SSB — the shear

elastic modulus. The peak is extracted both from the real part of the longitudinal conductivity.

To make this analysis more precise, we follow the position of the magnetophonon peak

ωpk until very large values of B in the left side of figure 20. The position of the peak is

extracted as the maximum of Re[σxx(ω)]. At large magnetic field, a quite robust scaling

ωpk ∼ B1/2 , (6.7)

is identified, which is compatible with dimensional analysis. More precisely, for B ≫ µ2

we can neglect the effects of the chemical potential and the only dimensionless constant we

can construct is exactly ω/B1/2. Notice that this scaling is incompatible with the results

of [38], and the idea that at large magnetic field the magnetophonon resonance becomes

light, despite the presence of strong explicit breaking. As we will analyze further in the

conclusions, our results are in agreement with certain experimental results, and suggest

a precise interpretation of the nature of the “disorder” mimicked by these homogeneous

holographic models.

We continue our analysis by studying the effects of the parameter β on the magne-

tophonon peak. The parameter β is dimensionless, and it parametrizes the strength of

spontaneous symmetry breaking, or in other words, the rigidity of the dual system [94]. In

figure 21 we show the dynamics of both the longitudinal and Hall electric conductivities by

moving the dimensionless parameter β from small to large values. The position of the peak,

given as the maximum of Re[σxx], moves towards higher frequency. The precise motion is

depicted in the right side of figure 20. The scaling is consistent with

ωpk ∼
√

β . (6.8)

In our setup, the spontaneous breaking scale 〈SSB〉 is indeed proportional to
√
β [61, 94].

Using the GMOR relation [36], we also know that ω2
0 ∼ 〈EXB〉 〈SSB〉 ∼

√
β, with 〈EXB〉

the explicit breaking scale that is independent of β. All in all, our numerical data supports

the hydrodynamic prediction that [34]

ωpk ∼
ω2
0

ωc

(

∼
√

β
)

, (6.9)

and reproduces the correct scaling with the rigidity of the system.
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Figure 21. The evolution of the pseudo-phonon peak increasing the shear modulus. We move

the parameter β ∈ [1, 150] (from black to yellow). Other parameters ρ/T 2 = 987, κ/T = 31.4, α =

0.1, B/T 2 = 103 are kept fixed.
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Figure 22. The evolution of the pseudo-phonon peak increasing the charge density. We move the

parameter ρ/T 2 ∈ [50, 2000] (from black to light blue). Other parameters β = 1, κ/T = 31.4, α =

0.1, B/T 2 = 103 are kept fixed.

Finally, we are going to investigate the behavior of the conductivity keeping the mag-

netic field B and other parameters fixed, and dialing only the charge density of the system.

The results for the AC conductivities are shown in figure 22 from small charge density

(black line) to large values (light blue line). Two features are observed: (I) the DC con-

ductivity grows as a function of the charge density, which is expected and in agreement

with the DC formulas (6.3); (II) the magnetophonon peak moves to lower frequencies.

The complete dynamics is shown in figure 23. At large values of the charge density, the

decrease is well approximated by a linear function. The result in figure 23 are consistent

with the one showed in figure 2 of [38], where the frequency of the peak decreases by
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Figure 23. Left: Dependence of the peak position ωpk as a function of the charge density ρ/T 2.

The peak is extracted from the real part of the longitudinal conductivity. Right: A log-log plot

for ωpk.

increasing the charge of the system ρ ∼ ν. We have not been able to find a robust power-

law scaling of ωpk as a function of the charge density.

7 Conclusions

In this work, we have made an extensive analysis of a large class of holographic models with

broken translations at finite charge density and magnetic field. Let us briefly summarize

our main results:

• In section 4, we studied in detail the hydrodynamic excitations of our system at

zero magnetic field and in the absence of explicit breaking of translations. We have

identified two propagating sound modes and two coupled diffusive modes, and ex-

amined their dispersion relations as a function of the dimensionless parameters of

the model. We have successfully verified the matching between our results and the

hydrodynamic framework of [71]. We have checked explicitly the structure of all the

correlators, the dispersion relations of the hydrodynamics modes, and the transport

coefficients appearing therein. Finally, we have verified the validity of the universal

bound required by the positivity of the entropy production.

• In section 5, we analyzed the dynamics of the hydrodynamic modes in the presence of

finite charge density, finite magnetic field and spontaneous breaking of translations.

We identified a transition between two type-A Goldstone modes — the transverse

and longitudinal sound modes, to a single type-B quadratic Goldstone mode (the

magnetophonon) and one gapped partner (the magnetoplasmon). To the best of our

knowledge, ours is the first holographic example of a type-B Goldstone mode related

to the breaking of spacetime symmetries (for internal symmetries, this was observed

already in [33]). Additionally, we performed an analysis of the dispersion relations at

small momentum and successfully compared the results with hydrodynamics. Inter-

estingly, as in [33], we observed that the imaginary part of the type-B Goldstone is not

quartic as expected, but it follows a clear diffusive behavior Im ω ∼ k2. We are not

aware of any explanation for this mechanism in the context of effective field theories

– 30 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
7

for type-B Goldstone bosons. Finally, we showed the dynamics of the hydrodynamic

modes as a function of the various parameters of the system, and compared to the

hydrodynamic formulas. Even though the qualitative behavior is compatible with

the expectations, the concrete numerical values do not coincide. The disagreement

increases at large magnetic field, and it is simply the proofs that the hydrodynamics

of [71] needs to be generalized at finite B in order to match our numerical data. Never-

theless, we proved explicitly that the scalings found numerically for small parameters

are totally consistent with the expectations from hydrodynamics given by [34, 35]:

Re [ωmagnetoplasmon] = ωc+
(v2‖ + v2⊥)

2ωc
k2+ . . . , Re [ωmagnetophonon] =

v⊥ v‖

ωc
k2+ . . . .

(7.1)

We hope that our work will prompt the construction of a complete hydrodynamic

framework at finite magnetic field to which our results may be compared.

• In section 6, we computed the transport properties of the model in the presence of

a large magnetic field and the pseudo-spontaneous breaking of translation symme-

try. We identified the presence of a pinned magneto-resonance peak in the optical

electric conductivities and studied its dynamics. We observed that the pinning fre-

quency of the peak grows with the magnetic, and at large magnetic field follows an

approximate scaling

ωpk ∼ B1/2 . (7.2)

(I) This behavior indicates that our model does not obey the classical arguments

of [34, 35, 38], for which the magneto-resonance peak should decrease with the mag-

netic field. On the contrary, it confirms that the pinning mechanism has a fundamen-

tal quantum nature which cannot be described by the naive classical theory giving

ωpk ∼ 1/B (see [39] for more details). (II) The observed scaling (7.2) is consistent

with the experimental observation in certain two-dimensional materials. In figure 24

we have taken some experimental data from [39] and analyzed the scaling using a

log-log plot. The data are indeed qualitatively compatible with our scaling (7.2).

Obviously, this does not imply that our model is describing any specific material, but

rather that the scaling we find is consistent with realistic data, but at odds with the

discussion in [38]. Obviously, by generalizing the holographic action with additional

couplings and fields (e.g. a dilaton-Maxwell coupling) it could be possible to fine tune

the dynamics of the peak to become smaller by increasing B.11

In summary, we performed a complete analysis of the hydrodynamic and trans-

port properties of a large class of holographic models with spontaneously and pseu-

do-spontaneously broken translations at finite charge, and to the best of our knowledge

for the first time at finite magnetic field. This study has revealed the presence of inter-

esting features both from a theoretical and phenomenological point of view. Finally, it

11In the same way, [24] fine tuned the system to have a pinning frequency increasing with T in a very

small regime of low temperatures.
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Figure 24. Experimental data for a 15nm wide AlGaAs/GaAs/AlGaAs QW sample taken

from [39]. The data are the same as in figure 3 and are taken with permission from [39]. Left:

The motion of the magnetophonon resonance peak as a function of the external magnetic field.

Right: A log-log plot which shows a qualitative ∼ B1/2 scaling at large magnetic field, in well

agreement with our data shown in figure 20.

represents a new step towards the understanding of the homogeneous holographic models

with broken translations and their application to strange metals and metallic transport in

the absence of quasiparticles. In the future, it would be interesting to extend our studies

at finite magnetic field to more complicated holographic systems which break translations

without retaining the homogeneity of the background such as [116–119]. This would help

to understand to which extent these simpler homogeneous models can be trusted, in which

features they concretely differ from the inhomogeneous setups (e.g. commensurability [120–

122]) and which phases of matter they are actually describing [26, 123].
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A Hydrodynamics of spontaneously broken translations in external mag-

netic field

In this appendix, we review the original hydrodynamic formulation proposed by Fukuyama

and Lee in 1978 [34]. We consider a periodic charge distribution (charge density wave)

ρ(~r) = n+ ρ0 [cos(Qx+ φx(~r)) + cos(Qy + φy(~r))] , (A.1)

where ρ0 is the amplitude of the charge density wave and φα (α = x, y) the dynamical

phase. This structure is periodic with period 2π/Q.
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We are interested in the dynamics at scales larger than the lattice spacing:

|∇φα| ≪ Q , (A.2)

which defines our hydrodynamic limit. For simplicity, we neglect Coulomb interactions for

the rest of this section. Under these assumptions, the Hamiltonian of the system reads

H = HK + U + V . (A.3)

The first term is simply the kinetic term for the phases:

HK =
nm

2Q2

∫ (

φ̇2
x + φ̇2

y

)

d~r , (A.4)

where nm is the mass density and φ̇α/Q the local velocity in the αth direction. The second

term of (A.3) is the elastic potential energy. Assuming that the longitudinal speed of sound

is equivalent to the transverse one, such term takes the simple form:

U =
1

2
C0

∑

α,β

∫ (
dφα

dxβ

)2

d~r . (A.5)

In a more realistic case, there would be a non-trivial tensor Cαβ taking into account the

different shear moduli, and the speeds would be different. Finally, the last term in (A.3)

is the external periodic potential responsible for the pinning, which can be written as

V = e V0 ρ0
∑

i

[

cos(Qxi + φx(~Ri)) + cos(Qyi + φy(~Ri))
]

, (A.6)

where V0 defines the strength of such potential and ~Ri = (xi, yi) denotes the location of

the ith “atom”.

In terms of the momentum density operator Pα, which is the canonical conjugate to

φα, the algebra for our system reads

[
Pα(~r) , φβ(~r

′)
]
= −iQ δ(~r − ~r′) δαβ , (A.7)

[
Pα(~r) , Pβ(~r

′)
]
= −i n

l2B
δ(~r − ~r′) δαβ , (A.8)

where the second commutation rule comes from the presence of an external magnetic field:

l2B =
c

eB
. (A.9)

The non-commutation of the momentum density operators is the fundamental reason be-

hind the quadratic dispersion relation of the magnetophonon modes. One can understand

this by considering the free Hamiltonian for a system in an external gauge field:

H0 =
∑

i

1

2m

(

pi +
e

c
Ai

)2
. (A.10)
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The momentum density can then be written as:

Pα =
(

pα +
e

c
Aα

)

, (A.11)

and it is importantly not just pα. Given the standard commutation rule and remembering

that Ai = B
2 ǫij x

j , one can immediately derive the non-commutation of the Pα, which

indeed turns to be proportional to the magnetic field B. The commutation rule (A.8),

together with the Hamiltonian (A.3), determines the full dynamics of the system.

Going to Fourier space, the final equation of motions can be written as

ω2
nDαβ +

C0Q
2

nm
q2Dαβ − ωn ωc ǫαβ Dαβ =

Q2

nm
(2π2) δ(~q − ~q′)δαβ , (A.12)

where for simplicity we have dropped also the pinning term proportional to the potential

V . The complete computation can be found in [34]. In the absence of pinning, we can

write down

Dαβ(~q, ~q
′; i ωn) = (2π)2

Q2

nm

1

(ω2
n + ω+)2(ω2

n + ω2
−)

(

ω2
n + ω2

⊥ ωn ωc

−ωn ωc ω2
n + ω2

‖

)

, (A.13)

where Dαβ is the Green’s function matrix (in Matsubara formalism ω → i ωn). Some

comments are in order. (I) In the absence of magnetic field the matrix would be diagonal,

giving rise to the usual longitudinal and transverse sound modes. (II) The off-diagonal

terms are antisymmetric because of the breaking of parity induced by the magnetic field.

(III) The diagonal entries are not the same because we have re-introduced a difference in

the longitudinal and transverse speeds of sound.

At this point, the excitations of the system are determined by the poles of the Green’s

function matrix:

ω = ω± , (A.14)

where

ω2
± =

1

2

(

ω2
c + ω2

⊥ + ω2
‖

)

± 1

2

√
(

ω2
c + ω2

⊥ + ω2
‖

)2
− 4ω2

⊥ ω2
‖ . (A.15)

Note that this formula is slightly more general than the one presented in the original paper

of Fukujama and Lee [34] in the sense that it includes a different speed of propagation

for transverse and longitudinal phonons. This formula can be found in [39]. Expanding

these two eigenfrequencies at small momentum and using ω⊥,‖ = v⊥,‖ k, we obtain the

expressions appearing in the main text:

ω+ = ωc +
v2‖ + v2⊥

2ωc
k2 , ω− =

v⊥ v‖

ωc
k2 , (A.16)

where the plus mode is the magnetoplasmon, and the minus one is the magnetophonon. If

one includes the Coulomb interaction, the gap of the magnetoplasmon will increase to

ω+ = ωc +
ω2
p

2ωc
, (A.17)

where ωp is the plasma frequency.
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In the presence of pinning, the equation for the frequencies at zero momentum can be

easily derived and becomes:

ω2
± =

1

2

[

ω2
c + 2ω2

0 ± ωc

√

ω2
c + 4ω2

0

]

. (A.18)

In the large magnetic field regime, the two modes simplify to:

ω+ = ωc +
ω2
0

ωc
∼ ωc , ω− =

ω2
0

ωc
, (A.19)

which are the results mentioned in the main text. Using the same techniques, one can

derive the structure of the magneto-conductivity at low frequencies.

B Charged viscoelastic hydrodynamics

In this appendix, we summarize the hydrodynamic framework of [71], which leads to the

results presented in section 4.

The theory starts with the definition of the scalar fields φI which can be understood as

the Goldstone modes for spontaneously broken translations. The indices I, J, . . . run over

the spatial directions, while µ, ν, · · · = 0, . . . , d denote spacetime indices. We then write

down the tensor

hIJ = gµν ∂µφ
I ∂νφ

J , (B.1)

with its preferred background value h̄IJ ∼ δIJ . The mechanical deformations of the medium

are described in terms of the strain tensor

uIJ ≡
hIJ − h̄IJ

2
. (B.2)

The free energy of the medium is given by

F = −
∫

ddx
√−g F , (B.3)

with

F = p+ P
(
uI I + uIJuIJ

)
− 1

2
B
(
uI I
)2 −G

(

uIJuIJ −
1

d

(
uI I
)2
)

+ . . . , (B.4)

where higher order terms in the strain tensor are neglected. Here, p is the thermodynamic

pressure, P the crystal pressure, B the bulk modulus and G the shear modulus.

In addition to the Goldstone modes φI , the dynamics of the system includes also the

stress tensor Tµν and the electric current Jµ, which satisfy the following equations

∇µT
µν = F νρJρ , ∇µJ

µ = 0 (B.5)

where additional external forces are set to vanish. The most general set of constitutive

relations for a charged viscoelastic medium at one-derivative order in the Landau frame

are given by:

Jµ = q vµ − PIν σq
IJP

Jν
(

T∂ν
µ

T
− Eν

)

− PIµγIJv
ν∂νφ

J , (B.6)

Tµν = (ǫ+ p) vµvν + p gµν − rIJ∂µφ
I∂νφ

J − PI(µPJν) ηIJKL PK(ρPLσ)∇ρ vσ , (B.7)
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where we have defined

Pµν ≡ gµν + vµvν , PIµ ≡ Pµν∂νφ
I , Eµ ≡ Fµνv

ν . (B.8)

Here q is the charge density, vµ the four-velocity, ǫ the energy density, p the thermodynamic

pressure, rIJ the elastic tensor, µ the chemical potential, and σq
IJ , ηIJKL, γIJ dissipative

tensors. In addition, we also have the dynamical equation for the Goldstone modes

σφ
IJ v

µ ∂µφ
I + γ′JKPKµ

(

T∂ν
µ

T
− Eν

)

+∇µ

(
rJK∂µφK

)
= 0 , (B.9)

where new dissipative tensors σφ
IJ , γ

′
IJ appear. Expanding the last equation around a

background value φI = xI − δφI , one obtains the more standard Josephson relation:

vt ∂tδφ
I = vI − vi∂iδφ

I + . . . . (B.10)

Given the most generic expressions, we now focus on the linear regime in which

σq
IJ = σq hIJ , σφ

IJ = σ hIJ , γIJ = γ hIJ , γ′IJ = γ′ hIJ , (B.11)

ηIJKL =

(

ζ − 2

d
η

)

hIJhKL + 2 η hIKhJL , (B.12)

where σq is the incoherent conductivity, ζ the bulk viscosity and η the shear viscosity, and

the rest are new dissipative parameters. In the linear regime, the constitutive relations and

the Josephson equation become:

Jµ=
(

qf+qlu
λ
λ

)

vµ−σqPµν
(

T∂ν
µ

T
−Eν

)

−γPµ
I v

v ∂νφ
I , (B.13)

Tµν =
(

ǫ+ǫlu
λ
λ

)

vµvν+
(

p+Puλλ
)

Pµν+P hµν−ησµν−ζPµν∂ρv
ρ−2Guµν

−
(

B− 2

d
G

)

uλλh
µν , (B.14)

σvµ∂µφ
I−hIJ∇µ

(

P∂µφJ−
(

B− 2

d
G

)

uλλ∂
µφJ−2Guµν∂νφJ

)

+γ′PIµ
(

T∂ν
µ

T
−Eν

)

=0 ,

(B.15)

where qf = ρ is the charge density of the system and hµν = hIJ∂µφ
I∂νφ

J , uµν =

uIJ∂µφ
I∂νφ

J . Solving the linear equations in momentum space, we can find the com-

plete set of linear modes admitted by the theory presented in the main text. Notice that

conformality and PT invariance require the additional constraints:

ǫ = d p− rIJ h
IJ , hIJ ηIJKL = ηIJKLh

KL = 0 , γ = −γ′ . (B.16)

We conclude here our summary and refer to [71] for more details.

C Technical details

In this appendix, we provide more technical details about the computations done in

this work.
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C.1 Equations of motion

First, we start by displaying the equations of motions for our system. We define the

following perturbations:

gµν = ḡµν + u−2 δgµν , Aµ = Āµ + δAµ , φI = φ̄I + δφI , (C.1)

where the bar quantities are the background values for the fields. We will adopt the

radial gauge:

δAu = 0 , δgau = 0 , δguu = 0 , (C.2)

with u being the radial direction. To simplify the equations, we also introduce

δgxx =
1

2
(δg22 + δg33) , δgyy =

1

2
(δg22 − δg33) . (C.3)

Moreover, we perform a Fourier decomposition of every fluctuation as

δζ(u, t, x, y) = e− i ω t+ i k y δζ(u) (C.4)

Using these conventions, the equations of motions for the perturbations are:

Maxwell equations :

− i µ δg′22 + k δA′
y + i δA′′

t = 0 , (C.5)

i B k δg22 −B δg′ty + δA′
x

(
f ′ + 2 i ω

)
+ f δA′′

x − µ δg′tx − k2 δAx = 0 , (C.6)

B δg′tx + δA′
y

(
f ′ + 2 i ω

)
+ f δA′′

y − µ δg′ty + i k δA′
t = 0 , (C.7)

− µω δg22 +B k δgtx + k f δA′
y − k µ δgty + i k2 δAt + i k ωδAy + ω δA′

t = 0 , (C.8)

Scalar equations :

u f ′ δφ′
x + u f δφ′′

x + 2 f δφ′
x + u δg′tx + 2 δgtx − i k u δgxy − k2 u δφx+

+ 2 i u ω δφ′
x + 2 i ω δφx = 0 , (C.9)

i k u δg33 − 2 i k u δg22 + u f ′ δφ′
y + u f δφ′′

y + 2 f δφ′
y + u δg′ty+

+ 2 δgty − 3 k2 u δφy + 2 i u ω δφ′
y + 2 i ω δφy = 0 , (C.10)

Einstein equations :

f
(

u
(

2
(

B2 u3 + 6m2 u5 − i ω
)

δg22 + u f ′ δg′22 − u δg′′tt + 4 δg′tt − 2 i k δgty

− 12 i k m2 u5 δφy + 2µu3 δA′
t

)

+ 2 i B k u4 δAx − 12 δgtt

)

+ u
(

u
(

2ω + i f ′
)

(

ω δg22 + k δgty

)

+ δgtt

(

u3
(

B2 + µ2 + 4m2 u2
)

− u f ′′ + 4 f ′ + k2 u− 2 i ω
))

− 2u f2 δg′22 + 6 δgtt = 0 , (C.11)

B2 u4 δgtx − 2B µu4 δgty + 2 i B k u4 δAt + 2 i B u4 ω δAy + 2u δgtx f
′ − u2 f δg′′tx+

+ 2u f δg′tx − 6 f δgtx + 2µu4 f δA′
x − i u2 ω δg′tx + k2 u2 δgtx + 4m2 u6 δgtx − µ2 u4 δgtx

+ 6 δgtx + k u2 ω δgxy + 6 im2 u6 ω δφx + 2 i µ u4 ω δAx = 0 , (C.12)

i
(

i k u2 ω δg33 + i k u2 ω δg22 − i B2 u4 δgty − 2 i B µu4 δgtx − 2B u4 ω δAx − 2 i u δgty f
′

+ i u2 f δg′′ty − 2 i u f δg′ty + 6 i f δgty − 2 i µ u4 f δA′
y − k u2 δg′tt + 2 k u δgtt − u2 ω δg′ty

− 4 im2 u6 δgty + i µ2 u4 δgty − 6 i δgty + 2 k µu4 δAt + 6m2 u6 ω δφy + 2µu4 ω δAy

)

= 0 ,

(C.13)
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2B2 u4 δg22 + u2 f ′ δg′22 − 2u f δg′22 + 12m2 u6 δg22 + 2 i u2 ω δg′22 − 2 i u ω δg22+

+ 2 i B k u4 δAx − u2 δg′′tt + 4u δg′tt − 6 δgtt + i k u2 δg′ty

− 2 i k u δgty − 12 i k m2 u6 δφy + 2µu4 δA′
t = 0 , (C.14)

B2 u4 δgtx − 2B µu4 δgty + 2 i B k u4 δAt + 2 i B u4 ω δAy + 2u δgtx f
′ − u2 f δg′′tx+

+ 2u f δg′tx − 6 f δgtx + 2µu4 f δA′
x − i u2 ω δg′tx + k2 u2 δgtx + 4m2 u6 δgtx − µ2 u4 δgtx

+ 6 δgtx + k u2 ω δgxy + 6 im2 u6 ω δφx + 2 i µ u4 ω δAx = 0 , (C.15)

−B2 u4 δg33 u
2 f ′ δg′33 + 2u f ′ δg33 − u2 f δg′′33 + 2u f δg′33 − 6 f δg33 + k2 u2 δg33+

+ 4m2 u6 δg33 − µ2 u4 δg33 − 2 i u2 ω δg′33 + 2 i u ω δg33 + 6 δg33 +B2 u4 δg22 − u2 f ′ δg′22

+ 2u f ′ δg22 − u2 f δg′′22 + 4u f δg′22 − 6 f δg22 + k2 u2 δg22 + 4m2 u6 δg22 − µ2 u4 δg22

− 2 i u2 ω δg′22 + 4 i u ω δg22 + 6 δg22 + 2 i B k u4 δAx − 2u δg′tt + 6 δgtt + 2 i k u δgty+

+ 2µu4 δA′
t = 0 , (C.16)

−B2 u4 δgxy − u2 f ′ δg′xy + 2u δgxy f
′ − u2 f δg′′xy + 2u f δg′xy − 6 f δgxy − i k u2 δg′tx+

2 i k u δgtx − 2 i u2 ω δg′xy + 4m2 u6 δgxy − µ2 u4 δgxy + 2 i u ω δgxy + 6 δgxy

− 6 i k m2 u6 δφx = 0 , (C.17)

− 2B u3 δA′
y − u δg′′tx + 2 δg′tx + i k u δg′xy − 6m2 u5 δφ′

x + 2µu3 δA′
x = 0 , (C.18)

i
(

i k u2 ω δg33 + i k u2 ω δg22 − i B2 u4 δgty − 2 i B µu4 δgtx − 2B u4 ω δAx − 2 i u δgty f
′+

i u2 f δg′′ty − 2 i u f δg′ty + 6 i f δgty − 2 i µ u4 f δA′
y − k u2 δg′tt + 2 k u δgtt − u2 ω δg′ty

− 4 im2 u6 δgty + i µ2 u4 δgty − 6 i δgty + 2 k µu4 δAt + 6m2 u6 ω δφy + 2µu4 ω δAy

)

= 0 ,

(C.19)

− i k u δg′33 − i k u δg′22 + 2B u3 δA′
x − u δg′′ty + 2 δg′ty − 6m2 u5 δφ′

y + 2µu3δA′
y = 0 ,

(C.20)

δg′′22 = 0 , (C.21)

where we have shown for simplicity only the case V (X) = m2X3 and φI = xI . The

full set of equations for a generic potential V (X) is not shown, since it is rather lengthy

and not particular illuminating. We remind the reader that these equations are writ-

ten in Eddington-Finkelstein (EF) coordinates. We also note that one can consistently

set δg22 = 0.

C.2 Asymptotics and Green’s functions

In Poincaré coordinates, the asymptotic expansion of the various fields at the boundary

u→ 0 are given by:

δφx = δφ(1)
x + · · ·+ δφ(2)

x u5−2N + . . . , δφy = δφ(1)
y + · · ·+ δφ(2)

y u5−2N + . . . , (C.22)

δAx = δA(L)
x + δA(S)

x u+ . . . , δAy = δA(L)
y + δA(S)

y u+ . . . , (C.23)

δAt = δA
(L)
t + δA

(S)
t u+ . . . δgtt = δg

(L)
tt + · · ·+ δg

(S)
tt u3 + . . . , (C.24)

δg33 = δg
(L)
33 + · · ·+ δg

(S)
33 u3 + . . . , δgtx = δg

(L)
tx + · · ·+ δg

(S)
tx u3 + . . . , (C.25)

δgty = δg
(L)
ty + · · ·+ δg

(S)
ty u3 + . . . , δgxy = δg(L)xy + · · ·+ δg(S)xy u3 + . . . , (C.26)
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where we have assumed a potential V (X) = m2XN .12 In EF coordinates, the constraint

equations require the absence of the leading term for the tt component of the metric,

δg
(L)
tt = 0, as explained in [124]. This is an artifact of the choice of radial gauge in EF

coordinates and it can be relaxed in a more general gauge.

For the case with N < 5/2, for which the translational symmetry is broken explicitly,

the indexes (S) and (L) stand respectively for “subleading” and “leading” terms, corre-

sponding to response and source of the corresponding operator. For the scalar fields we

have used (1) and (2) since the role of the two coefficients change depending on N . Using

the holographic dictionary [125], the various retarded Green’s functions defined in Poincaré

coordinates are given by:

GRΦIΦI
=

1

N (2N − 5) m2

δφ
(2)
I

δφ
(1)
I

∣
∣
∣
u=0

, GRJxJx =
δA

(S)
x

δA
(L)
x

∣
∣
∣
u=0

, GRJxJy =
δA

(S)
x

δA
(L)
y

∣
∣
∣
u=0

,

(C.27)

GRJjΦI
=

1

N (2N − 5) m2

δA
(S)
j

δφ
(1)
I

∣
∣
∣
u=0

, GRΦIJj
=

δφ
(S)
I

δA
(L)
j

∣
∣
∣
u=0

, GRTxyTxy
= −3

2

δg
(S)
xy

δg
(L)
xy

∣
∣
∣
u=0

.

(C.28)

It should be pointed out that when N > 5/2, δφ
(2)
x and δφ

(2)
y in the UV expansion

become the leading source terms, and the translational invariance does not break explicitly

but rather spontaneously. In this case, the corresponding retarded Green’s functions are

given by

GRΦIΦI
=

1

N (2N − 5) m2

δφ
(1)
I

δφ
(2)
I

∣
∣
∣
u=0

, (C.29)

GRJjΦI
=

1

N (2N − 5) m2

δA
(2)
j

δφ
(2)
I

∣
∣
∣
u=0

, GRΦIJj
=

δφ
(1)
I

δA
(L)
j

∣
∣
∣
u=0

. (C.30)

Notice that reading off the Green’s functions in EF coordinates requires a careful

treatment of the holographic renormalization procedure in order to identify the source

terms and expectation values of the dual field theory operators correctly. For example, in

the language of eq. (C.23), the current-current correlator translates to

GR (EF)
JxJx

(k = 0) = −i ω +
δA

(S) (EF)
x

δA
(L) (EF)
x

∣
∣
∣
u=0

. (C.31)

Finally, let us remark that all the retarded Green’s functions are computed by imposing

ingoing boundary conditions at the horizon which is set to uh = 1 without loss of generality.

12Notice that all potentials of the type:

V (X) = X
N + aX

M
,

with M > N give the same asymptotic expansion. In other words, the smallest power in the potential

controls the dynamics in the UV.
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Figure 25. The convergence of our numerics for the parameters k/T = 1.676, m/T =

4.189, B/T 2 = 105.276, µ/T = 4.189. The corresponding lowest three QNMs are ω1,N=41/T =

±0.0804 − 0.0661 i, ω2,N=41/T = −0.2045 i and ω3,N=41/T = −0.3926 i. Left: Decay of the ab-

solute value of the Chebychev coefficients corresponding to the eigenfunctions of the lowest QNM

ω1 ({δφx, δφy, δAt, δAx, δAy, δhtt, δhtx, δhty, δh33, δhxy}={red, orange, magenta, brown, purple,

cyan, blue, green, black, gray}). Right: Moving of the lowest three QNMs with increasing gridsize

({red, blue, green}={ω1, ω2, ω3}).

D Numerical methods

In this appendix, we briefly outline the numerical methods and check the quality of our nu-

merics. A more detailed introduction may be found in [61, 70, 126]. The numerical methods

used for computing the QNMs and Green’s functions are based on so-called pseudo-spectral

methods (see [127–131] for an introduction). Note that we choose Chebychev polynomials

as basis functions and discretize all functions on a Chebychev-Lobatto grid.

In order to prove that our numerical procedure is convergent, we show the decay of the

Chebychev-coefficients and the moving of the QNMs at large magnetic fields (see figure 25).

We see that even for only 25 gridpoints, the coefficients fall off sufficiently. In the right

side, we show that for N = 25, the QNMs move less than 10−16, for increasing the gridsize.

Increasing the gridsize makes the error exponentially smaller as we expect for spectral

convergence. We furthermore checked that all equations of motion including the constraint

equations outlined in appendix C.1 are satisfied for the obtained numerical solutions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[69] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 04 (2014)

181 [arXiv:1401.5436] [INSPIRE].

[70] M. Ammon, M. Baggioli, S. Gray and S. Grieninger, Longitudinal Sound and Diffusion in

Holographic Massive Gravity, JHEP 10 (2019) 064 [arXiv:1905.09164] [INSPIRE].

[71] J. Armas and A. Jain, Hydrodynamics for charge density waves and their holographic duals,

Phys. Rev. D 101 (2020) 121901 [arXiv:2001.07357] [INSPIRE].

[72] J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126

[arXiv:1908.01175] [INSPIRE].

[73] Y.E. Lozovik and V.I. Yudson, Crystallization of a two-dimensional electron gas in a

magnetic field, JETP Lett. 22 (1975) 11.

[74] H. Fukuyama, P.M. Platzman and P.W. Anderson, Two-dimensional electron gas in a

strong magnetic field, Phys. Rev. B 19 (1979) 5211.

[75] A. Kapustin, Remarks on nonrelativistic Goldstone bosons, arXiv:1207.0457 [INSPIRE].

[76] S. Moroz, C. Hoyos, C. Benzoni and D.T. Son, Effective field theory of a vortex lattice in a

bosonic superfluid, SciPost Phys. 5 (2018) 039 [arXiv:1803.10934] [INSPIRE].

– 44 –

https://doi.org/10.1103/PhysRevD.97.061901
https://arxiv.org/abs/1710.01326
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01326
https://doi.org/10.1103/PhysRevD.99.061901
https://arxiv.org/abs/1812.01040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01040
https://doi.org/10.1007/JHEP03(2019)093
https://arxiv.org/abs/1807.10530
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.10530
https://doi.org/10.1103/PhysRevD.99.106002
https://arxiv.org/abs/1808.05391
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.05391
https://doi.org/10.1007/JHEP10(2019)235
https://arxiv.org/abs/1905.09488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09488
https://doi.org/10.1007/JHEP12(2017)113
https://arxiv.org/abs/1708.09391
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.09391
https://doi.org/10.1007/JHEP01(2020)058
https://arxiv.org/abs/1910.11330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11330
https://doi.org/10.1103/PhysRevD.97.086017
https://arxiv.org/abs/1711.06610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.06610
https://doi.org/10.1007/JHEP10(2019)068
https://arxiv.org/abs/1904.11445
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.11445
https://doi.org/10.1007/JHEP04(2018)053
https://arxiv.org/abs/1801.09084
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09084
https://doi.org/10.1007/JHEP05(2019)079
https://arxiv.org/abs/1903.05114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05114
https://doi.org/10.1007/JHEP07(2020)095
https://doi.org/10.1007/JHEP07(2020)095
https://arxiv.org/abs/2001.11510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11510
https://doi.org/10.1007/JHEP04(2014)181
https://doi.org/10.1007/JHEP04(2014)181
https://arxiv.org/abs/1401.5436
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.5436
https://doi.org/10.1007/JHEP10(2019)064
https://arxiv.org/abs/1905.09164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09164
https://doi.org/10.1103/PhysRevD.101.121901
https://arxiv.org/abs/2001.07357
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.07357
https://doi.org/10.1007/JHEP01(2020)126
https://arxiv.org/abs/1908.01175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01175
https://doi.org/10.1103/PhysRevB.19.5211
https://arxiv.org/abs/1207.0457
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.0457
https://doi.org/10.21468/SciPostPhys.5.4.039
https://arxiv.org/abs/1803.10934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10934


J
H
E
P
0
9
(
2
0
2
0
)
0
3
7

[77] C.-C. Li, L.W. Engel, D. Shahar, D.C. Tsui and M. Shayegan, Microwave conductivity

resonance of two-dimensional hole system, Phys. Rev. Lett. 79 (1997) 1353.

[78] H.A. Fertig, Electromagnetic response of a pinned wigner crystal, Phys. Rev. B 59 (1999)

2120.

[79] M.M. Fogler and D.A. Huse, Dynamical response of a pinned two-dimensional wigner

crystal, Phys. Rev. B 62 (2000) 7553.

[80] R. Chitra, T. Giamarchi and P. Le Doussal, Pinned wigner crystals, Phys. Rev. B 65 (2001)

035312.

[81] Y. Kim et al., Magnetophonon resonance in graphite: High-field raman measurements and

electron-phonon coupling contributions, Phys. Rev. B 85 (2012) 121403(R).

[82] M.O. Goerbig, J.-N. Fuchs, K. Kechedzhi and V.I. Fal’ko, Filling-factor-dependent

magnetophonon resonance in graphene, Phys. Rev. Lett. 99 (2007) 087402.

[83] C. Qiu et al., Strong magnetophonon resonance induced triple g-mode splitting in graphene

on graphite probed by micromagneto raman spectroscopy, Phys. Rev. B 88 (2013) 165407.

[84] Y. Kim et al., Measurement of filling-factor-dependent magnetophonon resonances in

graphene using raman spectroscopy, Phys. Rev. Lett. 110 (2013) 227402.

[85] D. Ploch, E. Sheregii, M. Marchewka and G. Tomaka, Magnetophonon resonance in

multimode lattices and two-dimensional structures (DQW), J. Phys. Conf. Ser. 92 (2007)

012066.

[86] C. Hamaguchi and N. Mori, Magnetophonon resonance in semiconductors, Physica B

Condens. Matter 164 (1990) 85.

[87] M.T. Greenaway, R. Krishna Kumar, P. Kumaravadivel, A.K. Geim and L. Eaves,

Magnetophonon spectroscopy of dirac fermion scattering by transverse and longitudinal

acoustic phonons in graphene, Phys. Rev. B 100 (2019) 155120.

[88] P. Kumaravadivel et al., Strong magnetophonon oscillations in extra-large graphene, Nat.

Commun. 10 (2019) 3334.

[89] M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and applications,

Cambridge University Press, Cambridge, U.K. (2015).
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