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This letter considers a nonlinear piezomagnetoelastic energy harvester driven by stationary Gaussian

white noise. The increase in the energy generated by this device has been demonstrated for harmonic

excitation with slowly varying frequency in simulation and validated by experiment. This paper

considers the simulated response of this validated model to random base excitation and shows that

the system exhibits a stochastic resonance. If the variance of the excitation were known then the

device may be optimized to maximize the power harvested, even under random excitation. © 2010

American Institute of Physics. �doi:10.1063/1.3436553�

Energy harvesting of ambient vibration is important

for remote devices, for example, in structural health

monitoring.
1–6

Completely wireless sensor systems are desir-

able and this can only be accomplished by using batteries

and/or harvested energy. Harvesting is attractive because the

energy generated can be used directly or used to recharge

batteries or other storage devices, which enhances battery

life. Most of the results using the piezoelectric effect as the

transduction method have used cantilever beams and single

frequency excitation, i.e., resonance based energy harvesting.

The design of an energy harvesting device must be tailored

to the ambient energy available. For single frequency ambi-

ent excitation the resonant harvesting device is optimum,

provided it is tuned to the excitation frequency. Several

authors
7–10

have proposed methods to optimize the param-

eters of the system to maximize the harvested energy. Shu

et al.
11–13

conducted detailed analysis of the power output for

piezoelectric energy harvesting systems.

Most linear energy harvesting devices are designed on

the assumption that the �base� excitation has some known

form, typically harmonic excitation. However, there are

many situations where energy harvesting devices are operat-

ing under unknown or random excitations. In such situations

the ambient vibration should be described using the theory of

random processes
14

and the analysis of harvested power

should be performed using the framework of probability

theory. Lefeuvre et al.
15

considered random vibration in the

context of energy harvesting due to random vibrations.

Halvorsen
16

used linear random vibration theory to obtain

closed-form expressions for the harvested energy. He also

derived the Fokker–Planck equation governing the probabil-

ity density function of the harvested power. Soliman et al.
17

considered energy harvesting under wide band excitation.

Adhikari et al.
18

derived expressions for mean normalized

harvested power of a linear system subjected to Gaussian

white noise base acceleration.

An alternative approach uses nonlinear structural sys-

tems to maximize the harvested energy. McInnes et al.
19

in-

vestigated using the stochastic resonance to enhance vibra-

tional energy harvesting of a nonlinear mechanism. An

alternative system is the piezomagnetoelastic structure

shown in Fig. 1. This system �without the piezoelectric

patches� was used by Moon and Holmes
20

to demonstrate

chaotic motion. Erturk et al.
21

investigated the potential of

this device for energy harvesting when the excitation is har-

monic and demonstrated significant performance improve-

ments over the linear system �without magnets� for nonreso-

nant excitation. This paper considers the performance of the

piezomagnetoelastic system to random excitations, using the

model of Erturk et al.,
21

which was validated against experi-

mental results in their paper. A similar device was investi-

gated by Stanton et al.
22

The device consists of a ferromagnetic cantilever beam

that is excited at the support. Two permanent magnets are

located symmetrically on the base near the free end, and the

static system can have five, three, or one equilibrium posi-

tions depending on the geometry of the system,
20

and, in

particular, the distance between the beam and the magnets.

Here we are interested in the case when the system has three

equilibrium positions, two of which are stable, and the me-

chanical system is characterized by the classical double well

potential. The nondimensional equations of motion for this

system
21

are

ẍ + 2�ẋ −
1

2x�1 − x2� − �v = f�t� , �1�
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Electronic mail: s.adhikari@swansea.ac.uk. FIG. 1. Schematic of the piezomagnetoelastic device �Ref. 21�.
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v̇ + �v + �ẋ = 0, �2�

where x is the dimensionless transverse displacement of the

beam tip, v is the dimensionless voltage across the load re-

sistor, � is the dimensionless piezoelectric coupling term in

the mechanical equation, � is the dimensionless piezoelectric

coupling term in the electrical equation, ��1 /RlCp is the

reciprocal of the dimensionless time constant of the electrical

circuit, Rl is the load resistance, and Cp is the capacitance of

the piezoelectric material. The force f�t� is proportional to

the base acceleration on the device, and is assumed to be

Gaussian white noise, with zero mean and specified variance.

The system parameters have been taken as follows:
21

�=0.01, �=0.05, and �=0.5, while � was varied between

0.01 and 0.05. The excitation f�t� is stationary Gaussian

white noise with standard deviation � f. Equations �1� and �2�

are integrated using the fourth order Runge–Kutta–

Maruyama algorithm.
23

The standard deviations of the dis-

placement x and the voltage v are calculated for a range of

excitation noise amplitudes � f.

Figure 2�a� shows the standard deviation of the displace-

ment relative to that of the excitation, and the pronounced

peaks correspond to the stochastic resonance phenomenon.
24

This is a nonlinear effect; for the linear system the output is

proportional to the random excitation and the corresponding

plot would be a horizontal line. The sudden increase in the

displacement amplitude x is associated with the escape from

the single well potential in the presence of stochastic excita-

tion. This may be highlighted by considering the phase plane

for three values of � f shown in Fig. 3. Figure 2�a� shows the

displacement response for two values of �, which is related

to the electrical time constant; the results are only signifi-

cantly different near the stochastic resonance, showing that

the mechanical and electrical systems are only weakly

coupled.

Figure 2�b� shows the ratio of the standard deviations of

voltage and excitation as the excitation amplitude varies. As

the mechanical system is coupled to the electrical circuit

through the piezoelectric transducers, the increase in me-

chanical displacement amplitude causes the voltage ampli-

tude to rise. This also causes the harvested power to increase;

Fig. 2�c� shows the variance of the voltage, which is propor-

tional to the mean harvested power since the mean voltage is

negligible. Note that the power remains very low for noise

intensities below the stochastic resonance. The electrical

constant � significantly affects the voltage produced and

hence the power generated. Decreasing � increases the har-

vested power, as shown in Fig. 2�c�. Note that this increase

in power above the stochastic resonance is due to the

changes in the electrical system, since the mechanical re-

sponses shown in Fig. 2�a� are almost identical. Decreasing �

increases the electrical time constant, and this allows the

load to capture energy from the slow scale dynamics, where

the mechanical states hop between the two potential wells.

For large enough noise intensity the difference disappears.

The practical implementation of a reduction in � requires a

0 0.05 0.1
0

10

20

30 (a)

�
f

�
x
/�
f

� = 0.05

� = 0.01

0 0.05 0.1
2

4

6 (b)

�
f

�
v
/�
f

0 0.05 0.1
0

0.1

0.2
(c)

�
f

�
v2

FIG. 2. �Color online� Simulated responses of the piezomagnetoelastic os-

cillator in terms of the standard deviations of displacement and voltage

��x and �
v
� as the standard deviation of the random excitation � f varies. �a�

gives the ratio of the displacement and excitation; �b� gives the ratio of the

voltage and excitation; and �c� shows the variance of the voltage.
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FIG. 3. Phase portraits for �=0.05, and the stochastic force for �a�

� f =0.025, �b� � f =0.045, and �c� � f =0.065. Note that the increasing noise

level overcomes the potential barrier resulting in a significant increase in the

displacement x.
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reduction in either electrical resistance or capacitance; these

requirements should be included in the trade-offs required

for the design of a real system.

Figure 4 shows the probability density functions for the

displacement x and voltage v for the response shown in Fig.

3�b� for �=0.05, and the corresponding results for �=0.01.

The bimodal distributions in Fig. 4�a� clearly show that the

mechanical system spends most of its time close to the two

equilibrium positions. The bi-modal distribution is not vis-

ible in the voltage, Fig. 4�b�, because the electrical circuit

acts as a first order filter.

Our analysis indicates that the energy harvested from a

piezomagnetoelastic device is most efficient for a certain

range of the noise intensity. In practice, the noise intensity or

noise variance, would be known, and the device designed so

that it operates at the stochastic resonance condition. Essen-

tially this design process would tailor the height of the en-

ergy barrier in the double well potential. The understanding

of the slow dynamics of this bistable system can be used to

improve the coupling to the electrical system and hence the

performance of the energy harvester.
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FIG. 4. Probability density functions of the mechanical displacement x and

the voltage across the piezoelectric patch, v, for � f =0.045 and �=0.05

�solid� and �=0.01 �dashed�.
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