MAGNETORESISTANCE AND MAGNETOCAPACITANCE

IN A TWO-DIMENSIONAL ELECTRON GAS
IN THE PRESENCE OF A ONE-DIMENSIONAL SUPERLATTICE POTENTIAL

Dieter Weiss

Max-Planck-Institut fiir Festkorperforschung, Heisenbergstrafie 1
D-7000 Stuttgart 80, Federal Republic of Germany

A novel type of magnetoresistance oscillation is observed in a two-dimensional elec-
tron gas in a high mobility GaAs-AlGaAs heterostructure with a holographically induced
lateral periodic modulation in one direction. The modulation arises due to the persistent
photoconductivity of the samples at low temperatures. The experiments show that the
1/B periodicity of the additional oscillations is determined by the carrier density N,
and the period a of the grating, reflecting the commensurability of cyclotron diameter
and modulation period. The key to the explanation of the novel magnetotransport os-
cillations is an oscillatory linewidth of the modulation broadened Landau bands. To
demonstrate this we have performed magnetocapacitace measurements in order to ob-
tain direct information about the density of states of the modulated two-dimensional
electron gas

INTRODUCTION

At low temperatures the magnetoresistance of a degenerate two-dimensional electron
gas (2-DEG) exhibits the well known Shubnikov-de Haas (SdH) oscillations reflecting
the discrete nature of the degenerate Landau energy spectrum [1]. A superimposed one-
dimensional periodic potential lifts the degeneracy of the Landau levels and leads to a
novel type of magnetoresistance oscillation periodic in 1/B as long as the period of the
modulation is small compared to the mean free path of the electrons [2]. The periodicity
of these oscillations is governed by an interesting commensurability problem owing to
the presence of two length scales , the period a of the potential and the cyclotron radius
Rc at the Fermi energy [2,3]. In selectively doped AlGaAs-GaAs heterostructures a
persistent increase in the two-dimensional electron density is observed at temperatures
below T=150K if the device is illuminated with infrared or visible light. This phenome-
non is usually explained on the basis of the properties of DX-centers which seem to be
related to a deep Si donor. The increase in the electron density depends on the photon
flux absorbed in the semiconductor so that a spatially modulated photon flux generates
a modulation in the carrier density. In our measurements a holographic illumination of
the heterostructure at liquid helium temperatures is used to produce a periodic potential
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Figure 1. Schematic experimental set up and top view of the L shaped sample geometry
with sketched interference pattern (a). Principle of holographic illumination by spatial
modulation of the concentration of ionized donors in the AlGaAs layer and of electrons
in the 2-DEG using two interfering laser beams (b). The interference pattern is shown
schematically — the period a is determined by the wavelength A and the angle ©

with a period on the order of the wavelength of the interfering beams, a method first
used by Tsubaki et al. [4]. The potential modulation obtained by this technique is on
the order of 1 meV where the Fermi energy Er in our samples is typically 10 meV.

In the first part of this contribution the experiment displaying the novel magneto-
resistance oscillations is briefly reviewed followed by a brief discussion of the Landau
energy spectrum in the presence of a superimposed one-dimensional potential and a
sketch of the theory explaining the observed oscillatory magnetoresistance. In the last
section the modification of the energy spectrum is experimentally demonstrated by ma-
gnetocapacitance measurements reflecting directly the thermodynamic density of states
(DOS) at the Fermi energy.

MAGNETORESISTANCE OSCILLATIONS

The experiments were carried out using conventional AlGaAs-GaAs heterostructures
grown by molecular beam epitaxy with carrier densities between 1.5-10'cm~2 and 4.3 -
10" cm~? and low temperature mobilities ranging from 0.23-108cm?/Vs to 1-10%cm?/Vs.
Ilumination of the samples increases both the carrier density and the mobility at low
temperatures. We have chosen an L-shaped geometry (sketched on the right hand side
of Fig.1a) to investigate the magnetotransport properties parallel and perpendicular to
the interference fringes. Some of the samples investigated have an evaporated semi-
transparent NiCr front gate (thickness ~ 8nm) in order to vary the carrier density as
well as to carry out magnetocapacitance measurements after holographic illumination.
A sketch of the experiment exploiting the persistent photoconductivity to periodically
modulate the positive background charge in the AlGaAs-layer is shown in Fig.1a and 1b.
We used either a 5SmW HeNe laser (A = 633nm) or a 3mW Argon-Ion laser (A = 488nm)
mounted on top of the sampleholder. The expanded laser beam entered the sampleholder
through a quartz window and a shutter ensuring typical illumination times of about 100
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ms. Two mirrors mounted close to the sample were used to create two interfering plane
waves. The advantage of this kind of ‘microstructure engineering’ is its simplicity and
the achieved high mobility of the microstructured sample due to the absence of defects
introduced by the usual pattern transfer techniques [5].

The result of standard magnetoresistance measurements carried out perpendicular
(p1) and parallel (p) to the periodic modulation is shown in Fig.2. In addition to the
usual Shubnikov-de Haas oscillations appearing at about 0.5T additional oscillations
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Figure 2. Magnetoresistivity p and Hall resistance Ry parallel and perpendicular to
the interference fringes. The positions of the minima of p; are plotted in the inset
demonstrating the 1/B periodicity of the novel oscillations

become visible at even lower magnetic fields. While pronounced oscillations of this new
type dominate p, at low magnetic fields, weaker oscillations with a phase shift of 180°
relative to the p, data are visible in the p; measurements. No additional structure
appears in the Hall resistance. The novel oscillations are, analogous to SdH oscillations,
periodic in 1/B as is displayed in the inset of Fig.2. As the temperature is increased
from 2.2K to 4.2K the SdH oscillations are strongly damped whereas the additional
oscillations are apparently unaffected. The periodicity is obtained from the minima of
p1, which can be characterized by the commensurability condition

2R, = (A — i)a, A=1,2,3,.., (1)

between the cyclotron diameter at the Fermi level, 2R, = 2vp/w. = 2l*kp, and the
period a of the modulation. Here kr = /27N, is the Fermi wavenumber, | = \/fi/eB
the magnetic length, and w, = f/mi? the cyclotron frequency with the effective mass
m = 0.067mo of GaAs. For magnetic field values satisfying Eq.(1) minima are observed
in p,. The periodicity A(1/B) can easily be deduced from Eq.(1)
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The validity of Eq.(1) has been confirmed by performing these experiments on different
samples, by changing the carrier density with an applied gate voltage, and by using
two laser wavelengths in order to vary the period a [2]. This is demonstrated in Fig.3
where the periodicity A(1/B) (displayed as carrier density n = £ (A%)™") is plotted
as a function of the carrier density Ns and the period a. The solid lines correspond
to Eq.(2). Recently similar magnctoresistance oscillations have also been observed in

conventionally microstructured samples by Winkler et al. [0].

Ng (10" emi 2 )

Figure 3. n = E(A—’g)_l versus N,. Full symbols correspond to a laser wavelength
A=488nm, open symbols to A=633nm and different symbols represent different samples.
The solid lines are calculated using the condition that the cyclotron orbit diameter 2R,

is equal to an integer multiple of the interference period a, as is sketched in the inset

€

SKETCH OF THE THEORY

Since the theory of these novel type of oscillation is discussed in detail by Gerhardts
in this volume I restrict myself to a rough sketch of it. A periodic potential, e.g., in x
direction V(z) = Vocos(Kx) with K = 27 /a lifts the degeneracy of the Landau levels,
and yields eigenstates |z,n) which carry current in the y-direction,

1 de, 1 den
mw, dz, K dk, ’

(3)

<zon!vy|x0") = -

where z, is the center coordinate xo = —{*k, and n is the Landau level (LL) index.
On the other hand (z,n|v;|z,n) = 0, which is the origin of the anisotropic transport
coefficients observed. The width of the Landau bands oscillates, which is most easily
understood within first order perturbation theory with respect to V,. This yields for the
energy spectrum plotted in Fig.4

eM(z,) = hwe(n + ‘;‘) +V, cos(Kzo) e * La(X), )
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where X = 1K?I?, and exhibits qualitatively the same features as the exact energy
spectrum [3]. For fixed magnetic field (fixed X), the Laguerre polynominal L, (X)
oscillates as a function of its index n [7]. The flat band condition, L,(X) = 0, can be
expressed in terms of the cyclotron radius Rc = Iv/2n + 1, and is identical with Eq.1
[3]. The flat band energies are indicated for A = 1,...,4 as dotted lines in Fig.4. In
a real physical system the flat bands are of course collision broadened and described
by a linewidth I'. The origin of the oscillations is that the wavefunctions, having a
spatial extent of approximately 2R, sense effectively the average value of the periodic
potential over an interval of length 2R¢. The nonvanishing matrix elements (z,n|vy|z,n)
lead to an additional contribution to the conductivity oy, which becomes important
for high-mobility systems [3]. It is this contribution of current carrying states at the
Fermi level, which has no counterpart in ¢,,, which accounts for the anisotropy of the
transport coefficients and leads to oscillations with minima if flat bands occur at the
Fermi energy. Since oy, shows no noticeable oscillations and since o2, > 0,0y, , one
has pre R 0yy/02, , Py X Oz/0l, , and the minina of o, coincide with those of
pzz. The result of a calculation carried out in the Kubo formalism is shown in Fig.5
where the calculated p,; = p. and py,, = pj curves are compared to experimental
ones. In this experiment a higher modulation amplitude has been achieved than in
previously published data taken from the same sample material [3]. The resulting higher
amplitudes of the novel oscillations are therefore well described using a modulation
amplitude V5 = 0.6meV in the calculations which is twice as large as in Ref. [3]. Details
of the calculation are discussed by Gerhardts in this volume. The novel oscillations of
p. are nicely reproduced by the calculation, which for pj essentially yields the Drude
result (independent of B). The temperature dependence of the novel oscillations is
much weaker than that of the SdH oscillations, since the relevant energy is the distance
between flat bands, which is much larger than the mean distance between adjacent
bands. A similar model, based on the Boltzmann transport theory, has been used
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by Winkler et al. [6] to explain the additional oscillations. A semiclassical picture
explaining the e-f‘fect as a resonance between the periodic cyclotron orbit motion and
the oscillating E x B drift of the orbit center induced by the potential grating has
been suggested by Beenakker [8]. Such a semiclassical approximation, however, does
not describe the whole physics of the observed phenomena as will be shown in the next
section.

MAGNETOCAPACITANCE EXPERIMENTS

The oscillations of the LL linewidth, mentioned above, should in turn lead to oscil-
lations of the density of states. Since for fixed magnetic field, the number of states per
Landau band is fixed, oscillations of the band width should lead to oscillations of the
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peak density of states with maxima for flat bands satisfying Eq.(1). This behaviour is
demonstrated experimentally in magnetocapacitance measurements. The capacitance
between the semi-transparent gate and the 2-DEG is measured by applying an ac-voltage
between the gate and one channel contact and measuring the out-of-phase ac-current
with lock-in techniques. The oscillations of the capacitance as a function of the ma-
gnetic field are directly connected to the DOS at the Fermi energy [9,10,11,13]. In
a homogeneous 2-DEG it has been shown experimentally that the LL linewidth (due
to collision broadening) T' has a magnetic field dependence of the form I' & B* with
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Figure 6. Measured magnetoresistivity p, (a) and magnetocapacitance (b) of a modula-
ted sample compared to the capacitance of an essentially unmodulated sample (c). The
arrow corresponds to the magnetic field value fulfilling Eq.1 for A = 1. The insets sketch

the measurements

Figure 7. Calculated magnetocapacitance versus magnetic field for Ng = 3.2 10t em~

2

and a = 365nm. A B-independent linewidth is chosen to be I' = 0.3meV. The upper
curve is for Vo = 0.7meV, and the lower one for the weak modulation V5 = 0.1meV.

After Zhang Ref.[16]
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0 < a < 0.5[12,13], whereas theoretically I' « v/B is expected for short range scatterers
and a B-independent I' for long range scatterers [14,15]. Since the Landau degeneracy
is proportional to B, the peak values of the DOS in the individual LL’s and, as a con-
sequence, the peak values of the capacitance, are expected to increase monotonically,
with a structureless envelope, with increasing magnetic field. On the other hand the
envelope of the magnetocapacitance minima decreases monotonically with B due to the
increasing LL separation fiw.. In Fig.6 the magnetocapacitance data after an initial ho-
lographic illumination (90ms long) (b) is compared with the capacitance measured after
an additional illumination which essentially smears out the periodic modulation (c). In
Fig.6a the magnetoresistivity p, measured under the same experimental conditions as
the magnetocapacitance data in Fig.6b is shown. The carrier density in Fig.6c has been
adjusted to the same value as before the additional illumination using a negative gate
voltage. In contrast to Fig.6c, where the magnetocapacitance behaves as one usually
observes in a 2-DEG, the capacitance oscillations in Fig.6b display a pronounced mo-
dulation of both the minima and maxima which is easily explained from the energy
spectrum plotted in Fig.4. At about 0.69T (marked by an arrow) where the cyclotron
diameter at the Fermi level equals three quaters of the period a, p; in Fig.6a displays
the last minimum (A = 1) corresponding to the last flat band condition. Therefore the
magnetocapacitance values near 0.69T are approximately equal in Fig.6b and Fig.6c.
If now the magnetic field is increased, broader Landau bands are swept through the
Fermi level, and cause the nonmonotonic behaviour visible in Fig.6b. At higher magne-
tic fields the level broadening saturates and the usual LL degeneracy again raises the
DOS in a LL with increasing field. It should be mentioned that the modulation effect
is observed for different angles between the one-dimensional modulation and the long
axis of the Hall bar as is expected for a thermodynamic quantity in contrast, of course,
to the magnetoresistivity. In order to check the magnetocapacitance data theoretically
microscopic calculations of the density of states based on a generalisation of the.well
known selfconsistent Born approximation have been performed by Zhang [16]. Parts of
this theory are also discussed by Gerhardts (this volume) and therefore I only present
the results obtained from such calculations. In Fig.7 calculated magnetocapacitance
data for a modulated (upper curve) and an essentially unmodulated 2-DEG are shown
which are in good agreement with the experimental data. The collision broadening used
in the calculations was I' = 0.3meV in agreement with previous magnetocapacitance
measurements carried out on homogeneous samples with similar mobility [13].
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