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We compare the large magnetoresistive response of slightly nonstoichiomejriggfor a wide
range of hole p<8x10'cm 3) and electron it<4x 10'¥cm™3) carrier densities. In thp-type
material alone, a characteristic peak in the resistipity,H) is dramatically enhanced and moves
to higher temperature with increasing magnetic field, resulting in a high field-5T)
magnetoresistance that is sizeable even at room temperature. By comingsst, specimens are
geared for low-field H<0.1T) applications because of a striking linear field dependence of the
magnetoresistance that appears to be restricted to the Ag-rich material200® American
Institute of Physicg.S0003-695(00)02013-1

The semiconducting phases of the silver chalcogenidesemperature gradients in the furnace. In addition, they were
Ag,S, Ag,Se, and AgTe, historically have received less at- fashioned as long narrow pieces of typical dimensions (5
tention than other semiconductors with narrow band gaps<1x1)mnt to circumvent the geometrical effects that have
and high carrier mobilities. Perfectly stoichiometric materialbeen associated with high carrier mobility semiconductors.
has negligible magnetoresistariceut recent experimerfts We performed four-probe resistivity and five-probe Hall co-
have shown that small amounts of excess silver lead to largefficient measurements in fields up to 5.5 T using a conven-
magnetoresistive effects on a scale comparable to the “cdional ac bridge technique in the ohmic and frequency-
lossal” magnetoresistand€MR) compounds.Elements of  independent limits. The relative error in the resistivity is less
narrow gap semiconductor physics apply, but the size of th¢han 0.01%; there is an absolute uncertainty, however, of
effects at room temperature, the absence of saturation 20% because of the finite extent of multiple InBi solder con-
magnetic fields much larger than the cyclotron scale, and thtacts on samples of millimeter dimensions.
linear field dependence down to a few Oersteds are surpris- We contrast in Fig. 1 the temperatufedependence of
ing new feature$.Technological prospects have been aidedthe resistivityp at a series of magnetic fieldt for represen-
by the successful demonstration of a positive magnetoresigative n- and p-type polycrystalline material. Both Ag- and
tance of almost 400% at magnetic fi¢hd=5 T in thin films ~ Te-rich samples exhibit a steep rise of the resistivity with
of Te-rich AgTe? decreasing temperature in the intrinsic regime, but differ

As with any new system, attempting to optimize the re-
sponse of the silver chalcogenides involves the consideration
of a large number of experimental parameters. The most im-
portant of these appear to be the effects of chemical compo-
sition, including the sign, numbe? and mobility’ of the car- ®
riers, and the influences of modulated structure, including o:;

Q.

grain boundariésand reduced dimensionality. In this letter,
we systematically compare the magnetoresistaiwie) of
Ag- and Te-rich samples of bulk Afle. Doping by holes
and by electrons leads to very different magnetic field and
temperature characteristics, with implications both for mod-
els of the underlying physics and for applications.
Appropriately weighted amounts of high purity Ag
(99.999%, Alfa Aesgrand Te(99.9999% pure, metals basis,
Alfa Aesan, sealed in quartz tubes under a vacuum better
than 5 millitorr, were melted to create polycrystalline
samples at desired stoichiometries; 5X 10 4<§<1.2
%1073, The compound was rocked at 50 °C above the re-
ported melting point to ensure complete mixing. Slowly 0 . - - : :
cooled samples were cut perpendicular to the long axis of the 0 50 100 TI(SI% 200 250300

cylindrical boule to avoid dopant variations due to small

FIG. 1. Resistivityp vs temperaturd at a series of magnetic fields$ for
representative hole and electron doped silver telluride. Fhge samples
dAlso at the James Franck Institute, University of Chicago. are marked by a resistivity maximum whose shape and position vary
YElectronic mail: t-rosenbaum@uchicago.edu strongly with field.

p (mQ cm)
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FIG. 2. Movement of the peak in the resistivilj,eq, With applied fieldH. A A
. L . o A. TAY (b)
markedly in the low temperature, extrinsic regime. Hole- 0 . . : . ' : '
doped polycrystals display a large peak mT,H) that 40 60 80 100 120
grows in size and moves to high&rwith increasingH. For T ®

the sample shown here, the resistivity maximum Hat
= i 0 i . i =

5'0?61— IS 25%1/3 Of?gts _5 K value; doping fronp 7(;6 FIG. 4. The “retention ratio” of the magnetoresistance between room and
xX10™ to 8X1 cm yields enhance.men_ts from 25% 1O jiquid helium temperatures &) high field and(b) low field. Open triangles
800%. By comparison, electron doping in the range 1.Garep-type samples; filled circles aretype samples. The sensitivity of the
X 10 to 4% 108 cm™3 produces a(T,H) characterized by resistivity maximum tcH makesp-type samples most suitable for high-field
a modest peak, barely amplified over Tts-5 K value, with ~ Pplications.

a fixed location inT and a shape that only evolves subtly o
with H. These general tendencies in MR(are not observed for

We plot in Fig. 2 the movement of the peak in the resis-~Adz+sT€, although the small variations inseen in Fig. 3
tivity, Tpea With applied field. The pronounced peak in for ann-type sample also can be linked (®light) modifica-
p(T,H) for hole-doped samples moves quickly to higHer tions with H of the high temperature side of the resistivity
for H>0.1T, saturating byH~5T. By contrast,Tpegcis ~ MaXimum. - _
independent oH for electron-doped material. The sensitivity 1 h€ Persistence to room temperature of a sizeable mag-
of Tpeaxto H has important ramifications for the temperatureN€toresistance depends crucially on the presence of a peak in
dependence of the magnetoresistance. Huge enhancementdR(T)- In this context it is important to note that the behav-
the magnetoresistance are found for temperatures just abol® 0f p(T,H) with increased Te doping mirrors the effects
Tpeale @nd extend to lesser degree all the way up to roon®f increasing mQucUoﬁ.The enhanpement of the resistivity
temperature. We illustrate in Fig. 3 the temperature deperf@imum and its movement to higher temperature with
dence ofAplp for bulk polycrystals aH="5.5T and note its andp makes hole doping the preferred strategy for creating

consistency with the results on thin films of AgTe? materials suitable for high field applications. We parameter-
ize in Fig. 4a) the salient high field characteristics by plot-

ting the “retention ratio,” MR(T=300 K)/MR(T=5K) at

50 H=5.5T, as a function ofT e, for both n- and p-type
samples. AST .. increases steadily with increasisgup to
400 | 110 and 95 K for electrons and holes, respectivetye re-
tention ratio continues to improve. The effect is most marked
— 300 - for hole-doped material, wherE,e,«is most sensitive tdd.
) At H=0.1T, however, the story is different. In this
°2‘ 200 | lower field regimen-type material is the material of choice,
with a considerably larger retention ratj&ig. 4b)]. The
reasons are twofoldi) as shown in Fig. 2T e, does not
100 move to higherT for H=<0.1T in either Ag_sTe or
Ag,.sTe; and (i) the magnetoresistance falls off more
0 slowly with decreasing field in the case of Ag;Te. With

the enhancement and movemenfgf, with H mitigated in
the small field regime, the functional form p{H) becomes
T &) the determining factor. As seen in Fig. 5, tiréype samples

FIG. 3. Contrast of the temperature dependence of the magnetoresistanfaaintain a linear behavior down to surprisingly small fields;
(MR) at high field for hole and electron doped samples. p-tvpe samples are subquaaratic, but still nonlineat ine-
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0.5 ' " e It is not clear to what extent quantum effettgperhaps in-
° volving mesoscopic regions of excess Ag or Te, bear on the
04 - o | unusual field and temperature dependence of the magnetore-
' oo sistance in the silver chalcogenides.
®
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