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Superfluids with a tendency towards periodic order have both phonon- and rotonlike spectra. We show

that magnetoroton softening occurs in 87Rb spinor condensates. A rich variety of dynamical instabilities

emerges as a function of the magnetic field orientation and strength of the quadratic Zeeman shift. These

instabilities are driven by an effective dipolar interaction modified dramatically by quasi-two-

dimensionality and rapid Larmor precession.
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Demonstrating the coexistence of long-range phase co-
herence and translational symmetry breaking in the exotic
supersolid phase has been a long and elusive goal [1–6].
Theoretical interest dates back to early studies of super-
fluidity in 4He. Landau suggested that the excitation spec-
trum consists of two parts: a soundlike long-wavelength
mode and a roton spectrum !ðpÞ ¼ !þ ðp! p0Þ2=2m for
p & p0 indicative of a tendency towards periodic order.
The softening of the roton gap where ! approaches zero
provides one means of translational symmetry breaking
without destroying phase coherence [7,8].

In contrast to bulk 4He, current experiments [9,10] on
F ¼ 1 ferromagnetic condensates are in a quasi-two-
dimensional geometry. The spin healing length is larger
than the Thomas-Fermi (TF) radius along the direction of
tightest confinement while it is smaller than the TF radius
along the two remaining directions. Spin degrees of free-
dom are two dimensional and undergo rapid Larmor pre-
cession due to an applied magnetic field. These effects
strongly modify the effective dipolar interaction.

The role of dipolar interactions is well known in con-
densed matter systems [11], but spinor condensates offer
additional competing and controllable interactions [12].
These include the quadratic Zeeman shift and spin-
dependent contact interactions on the scale of a few Hz.
Previous studies have analyzed the tunability of dipolar
interactions via time-dependent precession [13] but have
not explored the implications for collective modes or dy-
namical instabilities. The role of the bare dipolar interac-
tions for instabilities in quasi-two-dimensional single
component quantum gases of polar molecules [14–18] or
spinor condensates [19–21] has also been studied. In this
Letter, we provide a unified treatment of dipolar inter-
actions in quantum gases taking into account reduced
dimensionality and rapid Larmor precession within a mul-
ticomponent description.

Our main results are summarized in Fig. 1. We consider
a ferromagnet with an initially uniform magnetization ~F.
The collective mode spectrum has magnetorotonlike parts
which can become imaginary at finite wave vectors indicat-
ing a dynamical instability. We trace the origin of these in-
stabilities to two types of magnetization fluctuations: trans-

verse fluctuations " ~F? and longitudinal fluctuations " ~Fk.
Here transverse (longitudinal) refers to spin components or
wave vectors perpendicular (parallel) to the magnetic field
along B̂. For single component condensates, collapse dy-
namics driven by dipolar instabilities in single component
condensates were directly observed in Ref. [22]. For mul-
ticomponent condensates, dipolar instabilities were ana-
lyzed within a long-wavelength effective theory [23].
Recall dipolar interactions favor spins aligned head to

tail and antialigned side by side. Thus transverse fluctua-
tions of magnetization, " ~F?, are energetically favorable
for wave vectors parallel to the magnetic field and longi-
tudinal fluctuations of magnetization, " ~Fk, are energeti-
cally favorable for wave vectors perpendicular to the

FIG. 1 (color online). (a) Quasi-two-dimensional spinor con-
densates with x̂, ŷ in plane confined to thickness dn along n̂ out
of plane. Magnetic field along B̂ ¼ cosð#Þn̂þ sinð#Þx̂ induces
rapid Larmor precession (black circle) of a uniform magnetiza-
tion ~F and quadratic Zeeman shift q. Precession and reduced
dimensionality dramatically modify the effective dipolar inter-
action. Fluctuations " ~F can lower the classical dipolar energy
and induce dynamical instabilities. B̂, ~F, and " ~F are depicted in
the lower right corner. These occur for either (b) " ~F? spin
components perpendicular to B̂ along kk wave vectors parallel
to B̂ or (c) " ~Fk spin components parallel to B̂ along k? wave
vectors perpendicular to B̂. (d) Spin mode collective mode
spectrum in momentum space for current experimental parame-
ters # ¼ $=2, q ¼ 1:5 Hz [9]. Shading indicates the magnitude
of Im!~k for dynamically unstable modes. Regions labeled by
corresponding unstable fluctuations. Notice the distinctive cross-
like structure for unstable modes and stable region at the center.
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magnetic field (see Fig. 1). Individually, these two types of
fluctuations can drive dynamical instabilities by lowering
the effective classical dipolar energy. However, when both
types are unstable at the classical level with negative en-
ergies, we show that the collective mode spectrum is
actually stable. This is due to the classically conjugate
nature of these fluctuations.

Including the effects of competing interactions allows us
to construct a phase diagram as a function of quadratic
Zeeman shift and magnetic field orientation. This phase
diagram exhibits a variety of dynamical instabilities in-
cluding those towards states with striped or checkerboard
order. We plot a representative collective mode spectrum
describing current experiments in Fig. 1.

Notice the distinctive crosslike structure strikingly simi-
lar to the observed magnetization correlations in [9,10]. In
these experiments, the size of individual spin domains is
10 %mwhile neighboring domains are modulated along an
axis that is constant on a longer length scale of 20 %m. We
find a characteristic length scale of 30–40 %m for the most
unstable modes which compares favorably with the latter.

We consider a quasi-two-dimensional spinor condensate
with unit vectors x̂, ŷ (n̂) in plane (out of plane), and
magnetic field along B̂ ¼ cosð#Þn̂þ sinð#Þx̂. From here
on, we refer to spin components parallel (perpendicular) to
B̂ as longitudinal (transverse). The in-plane component of
B̂ is along x̂ so we also refer to real or momentum space
components along x̂ (ŷ) as longitudinal (transverse). The
Hamiltonian and Lagrangian are

H ¼
Z

d3x!y
~x

!
!r2

2m
!%þ B0B̂ ' ~Fþ qðB̂ ' ~FÞ2

"
! ~x

þ
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2
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~x! ~x!
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~x! ~x:þ
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þ
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~x0
~Fj! ~x0 :

L ¼
Z

d3x½i!y@t!* !H (1)

where : : denotes normal ordering. Here!# with # ¼ 1, 2,
3 are annihilation operators for F ¼ 1 bosons with mass m
and ~F hyperfine spin operators with ~Fi

jk¼!i!ijk. Through-
out, we use a matrix notation with suppressed indices
where (, T, and y denote the complex conjugate, trans-
pose, and the conjugate transpose, respectively. For exam-
ple,! (!y) is a column (row) vector while ~Fi is a matrix.

The chemical potential % controls the density !y! ¼
n3D and we work with fixed longitudinal magnetization
!yB̂ ' ~F! ¼ n3DfB. The magnetic field induces rapid
Larmor precession about B̂ at a frequency B0 and a qua-
dratic Zeeman shift q. With typical B of zero up to hun-
dreds of mG, q ¼ 70 HzG!2 B2 [12] ranges from zero to
tens of Hz. ac Stark shifts due to properly detuned circu-
larly polarized can further tune q by acting as an effective
Zeeman shift [24]. A harmonic trapping potential along n̂
confines the condensate to a thickness dn. We take typical
values of B0=2$ ¼ 115 kHz and dn ¼ 2 %m [9].

The spin-independent and spin-dependent contact inter-
action strengths are given by g0 ¼ 4$@2a0=m, gs ¼
4$@2ða0 ! a2Þ=3m [25] in terms of the s-wave scattering
lengths aF for two atoms colliding with total angular
momentum F. For 87Rb, a0 ¼ 101:8aB and a2 ¼
100:4aB where aB is the Bohr radius [26] giving positive
gs and ferromagnetic interactions. The dipolar interaction
strength is given by gd ¼ %0g

2
F%

2
B=4$ where %0 is the

vacuum permeability, gF is the Landé g factor, and %B is
the Bohr magneton while the dipolar interaction tensor is
given by

hij3Dð ~xÞ ¼
1

x3
Pijðx̂Þ; hij3Dð ~kÞ ¼ ! 4$

3
Pijðk̂Þ (2)

in real and momentum spacewithPijðẑÞ ¼ "ij ! 3ẑiẑj. For
typical peak three-dimensional densities of n3D ¼ 2:2+
1014 cm!3 the interaction strengths are g0n3D ¼ 1:7 kHz,
gsn3D ¼ 8 Hz, and gdn3D ¼ 0:8 Hz [9,12].
The quadratic Zeeman shift, spin-dependent contact

interactions, and dipolar interactions govern the low-
energy in-plane spin degrees of freedom at a scale of a
few Hz. This energy scale is well separated from that of
spin-independent contact interactions, rapid Larmor pre-
cession, and out-of-plane confinement. The effect of these
terms on the low-energy degrees of freedom is to fix the
local density, induce spatial averaging on a scale dn along
n̂, and induce time averaging on a scale B!1

0 , respectively.
We thus assume a condensate frozen along n̂ with fixed

local density and transform to a rotating frame comoving
with respect to Larmor precession

! ~x !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3Ddn&ðxn=dnÞ

q
RðB0tÞ! ~x; (3)

where ! ~x on the left (right) is a three-dimensional (two-
dimensional) field in the lab (comoving) frame with xn
along n̂ and Rð'Þ ¼ expð!i'B̂ ' ~FÞ. For definiteness we
consider a Gaussian profile &ðzÞ ¼ expð!z2=2Þ=

ffiffiffiffiffiffiffi
2$

p
.

Substituting Eq. (3) into the Lagrangian of Eq. (1) and
integrating over xn and one period !t ¼ 2$=B0 yields
d3x ! d2x, B0 ! 0, gi ! gin3Ddn&ð0ÞC where i ¼ 0, s,
d, the constant C ¼ 1=

ffiffiffi
2

p
is determined by normalization,

and ! satisfies !y! ¼ 1, !yB̂ ' ~F! ¼ fB. The effec-
tive dipolar interaction tensor in momentum space

hij3Dð ~kÞ ! hij2Dð ~kÞ is given by

hij2Dð ~kÞ ¼ heikndnðz!z0ÞRT
ilð'Þhlm3Dð ~kþ knn̂ÞRmjð'Þi;

hfi ¼
Rþ$
!$ d'

R
dzdz0&ðzÞ&ðz0Þfð'; z; z0ÞRþ$

!$ d'
R
dzdz0&ðzÞ&ðz0Þ

(4)

and the averaging can be performed explicitly yielding

hij2Dð ~kÞ ¼ ! 4$

3

!
3hð ~kdnÞ ! 1

2

"
½"ij ! 3B̂iB̂j*;

hð ~kÞ ¼ ½B̂ ' k̂*2wðkÞ þ ½B̂ ' n̂*2½1! wðkÞ*;

wðxÞ ¼ 2x
Z 1

0
dze!ðz2þ2zxÞ

(5)

with wðxÞ rather insensitive to details of &ðzÞ.
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This effective dipolar interaction can drive dynamical
instabilities in a uniform ferromagnet. Bogoliubov analysis
of the collective mode spectrum provides a systematic
approach to studying such instabilities. We take B̂ as the
quantization axis and parametrize

! ~x ¼
ffiffiffiffiffi
n~x

p
iei(~xþi)~x cosð*~x þ i+~xÞ sinð&~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshð2+~xÞ
p

iei(~xþi)~x sinð*~x þ i+~xÞ sinð&~xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2+~xÞ

p
ei(~x cosð&~xÞ

2
6664

3
7775 (6)

with n the two-dimensional density, ( the global phase, &,
) controlling the magnitude of the magnetization, * the
orientation of the transverse magnetization, and + the
magnitude of the longitudinal magnetization. For ! ~x ¼
! independent of ~x we find for ferromagnetic interactions
gs > 0 the mean-field energy is independent of ( and *
and minimized at ) ¼ 0. Introducing the quantities

g?ð ~kÞ ¼ gs !
2$

3
gd½3hð ~kdnÞ ! 1* (7)

andQ ¼ q=2g?ð0Þn3DCwe find the polar state for jQj> 1
and ferromagnet for jQj , 1.

To study collective modes, we focus on the fB ¼ 0 case
relevant for current experiments. Taking ! ~x ¼ ! þ "! ~x

we use the Lagrangian of Eq. (1) to find the linearized
equations of motion for small fluctuations "! ~k. With the
parametrization of Eq. (6), "n, "(, "&, and ") couple to
form two branches of the collective mode spectrum. At
small k, they describe a linearly dispersing Goldstone
mode describing superfluid phonon excitations and a
gapped mode describing fluctuations in the magnetization
magnitude. These modes develop dynamical instabilities
only very close to the mean-field transition between polar
and ferromagnet states.

We instead focus on "*, "+which decouple completely
from "n, "(, "&, ") and form a branch corresponding to
the spin mode. The momentum space Lagrangian

L ¼ i"*(
~k
@t"+ ~k ! ½E*ð ~kÞj"*~kj2 þ E+ð ~kÞj"+~kj2*;

E*ð ~kÞ ¼
k2

2m
! ½ð1þQÞg?ð ~kÞ ! ð1þQÞg?ð0Þ*n3DC;

E+ð ~kÞ ¼ ½2ð1!QÞg?ð ~kÞ þ ð1þQÞg?ð0Þ*n3DC

þ k2

2m
þ 3ðQ! 1Þgsn3DC (8)

describes these quadratic fluctuations.
Recall the transverse orientation ("*) and longitudinal

magnitude ("+) of the magnetization are canonically con-
jugate. This is evident from the coupling "*(

~k
@t"+ ~k of the

above the Lagrangian which arise from the i!@t! term of
the underlying time-dependent Gross-Pitaevskii equation.
At the level of the classical energy in brackets, the fluctua-

tions decouple into independent contributions E*ð ~kÞ and
E+ð ~kÞ. Explicitly, !2

~k
¼ E*ð ~kÞE+ð ~kÞ is easily derived in

terms of the classical energies. Thus we see that only

when one but not both of the contributions E*ð ~kÞ, E+ð ~kÞ
is negative does !~k become imaginary giving a true dy-
namical instability.
We plot representative !~k in Fig. 2 illustrating the spin

mode for # ¼ $=4 near qc ¼ !1:35 Hz. Notice the ap-
pearance of a magnetoroton minimum and the softening of
the magnetoroton gap as q approaches qc. When q is below
qc, the spin mode becomes imaginary at finite wave vector.
Note negative q can be achieved via ac Stark shifts.
The imaginary part of the collective mode spectrum

using current experimental parameters # ¼ $=2, q ¼
1:5 Hz is shown in Fig. 1. These parameters are chosen
to best illustrate softening of the magnetoroton mode and
are near the border between a dynamically stable and
unstable uniform ferromagnet. Notice the similarity with
the clear crosslike structure observed for the magnetization
structure factor [9]. The dynamical instability for the trans-
verse (longitudinal) spin component along longitudinal
(transverse) momenta arises directly from the regions
where the classical energy for transverse (longitudinal)

spin fluctuations E*ð ~kÞ (E+ð ~kÞ) is negative. When both
are negative at small k, the spin mode is in fact stable
reflecting the conjugate nature of these variables.
From our analysis, the length scale of the most unstable

mode shown in Fig. 1 is 30–40 %m. Its physical origin is
simply the competition between the jkj scaling of gain in
dipolar interaction energy versus jkj2 scaling of cost in
kinetic energy. The length scale at which these two con-
tributions are comparable is given by

l!1 - 4$

3
gdn3D&ð0Þdnm (9)

with l- 30 %m.

Re Spin
Im Spin

0.0 0.5 1.0 1.5 2.0
0.0
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1 0.01 µm 1
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FIG. 2 (color online). Spin mode collective mode spectrum !~k
along ky for magnetic field orientations # and quadratic Zeeman
shifts q (Hz) ðq;#Þ ¼ ð!1:1; 0:247$Þ, (!1:35, 0:25$), (!1:6,
0:253$) going from top to bottom. These parameters are near the
border between a dynamically stable and unstable uniform
ferromagnet and best illustrate softening of the roton minimum.
Note negative q can be obtained through ac Stark shifts [24].
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Current experiments observe magnetization modula-
tions with two characteristic length scales. Individual
spin domains are typically 10 %m in size. Neighboring
domains appear to be modulated antiferromagnetically
along a preferred spin axis. This spin axis is uniform on
a larger length scale of 30 %m [10]. One means of under-
standing the emergence of two length scales is as follows.
Dynamical instabilities of the uniform state seed fluctua-
tions that set the characteristic length scale of the unit cell
in the final spin texture. However, higher order effects can
stabilize smaller scale spin domains within each unit cell.

A similar analysis of the collective mode spectrum gives
the phase diagram in Fig. 3 as a function of the quadratic
Zeeman shift q and orientation of the magnetic field #
where # ¼ 0 (# ¼ $=2) corresponds to B̂ out of the plane
(in the plane). R indicates a ring-shaped region of unstable
modes, R0 disk-shaped, C? (CB) two connected regions
parallel (perpendicular) to B̂, D? (DB) two disconnected
regions perpendicular (parallel) to B̂, D?CB (DBC?) two
disconnected regions parallel (perpendicular) to B̂ along
with two connected regions perpendicular (parallel) to B̂.

In conclusion, we have shown the collective mode spec-
trum for fluctuations above a uniform ferromagnet shows
both a phonon and magnetorotonlike spectrum as well as a
variety of dynamical instabilities. The resulting phase dia-
gram as a function of quadratic Zeeman shift and orienta-
tion of the magnetic field shows a rich variety of finite
wave vector instabilities. The origin of these dynamical
instabilities can be traced to canonically conjugate fluctu-
ations in the transverse orientation and longitudinal mag-
nitude of the magnetization. These fluctuations can lower
the classical energy for the effective dipolar interaction.
We also demonstrated how rapid Larmor precession and
reduced dimensionality qualitatively alters this dipolar
interaction.
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FIG. 3 (color online). Spin mode phase diagram as a function
of magnetic field orientation # and quadratic Zeeman shift q
based on analysis of the collective mode spectrum. The uniform
ferromagnet (polar state) is stable within (outside) the thick lines
near the left and right edges at the mean-field level. The
ferromagnet is dynamically stable (unstable) below (above) the
thick line in the interior. The unstable modes occur in a variety of
topologies in momentum space and regions with different top-
ologies separated by thin lines. Illustrative plots of unstable
modes in momentum space for each distinct topology (black
circles) show the evolution from crosslike four-lobed structures
(DBC?, D?CB) to dumbbell-shaped two-lobed structures (CB,
C?, D?) to ring structures (R0, R). Four-lobed (two-lobed)
structures for unstable modes can seed the growth of checker-
board (striped) spin textures. The inset is of the region near q ¼
1:5, # ¼ $=4. The X near the top center denotes parameters for
current experiments. The black triangles are for parameters of
Fig. 2.
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