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MAGNETOSTRICTIVE PROPERTIES OF RARE EARTH-IRON LAVES PHASE 
MATERIALS PREPARED BY POWDER METALLURGY TECHNIQUES * 

** Manoochehr Malekzadeh and Milton R. Pickus 

ABSTRACT 

A powder metallurgical approach has been utilized for preparation 

of highly magnetostrictive rare earth-iron Laves phase compounds. The 

results of dilatometric studies indicate that the liquid-phase sinter-

ing kinetics are in reasonable agreement with the concept of a phase 

boundary reaction a~ the rate-limiting factor. Magnetic powder 

orientation prior to sintering is found to improve magnetostriction of 

these.compounds substantially. 

*This work was supported by the Division of Materials Sciences, Office 

of Basic Energy Sciences, U. S. Department of Energy 

** 
Materials and Molecular Research Division of Lawrence Berkeley Labora-
tory, University of California, Berkeley, California, 94720. 
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1. INTRODUCTION 

A number of studies on the.huge room temperature magnetostriction 

of rare earth-iron Laves phases have indicated that these materials 

are of particular interest in a variety of technological applications 

such as sonar systems and non-destructive testing ,in the field of re-

actor safety [1, 2, 3]. Recently, some powder metallurgical techniques 

have been developed to fabricate these hard and brittle intermetallic 

compounds into suitable sizes and shapes [4, 5, 6]. A notable ad-

vantage of the powder approach is its amenability to magnetic powder 

orientation. Considerable static magnetostriction enhancement has 

been observed in compacts sintered from magnetically aligned powders [7]. 

In this paper, we present the results of some further sintering studies 

as well as the dynamic characteristics of the powder metallurgically 

prepared samples. 

II • EXPERIMENTAL PROCEDURE 

The compound preparation consisted of arc-melting the elemental 

rare earth and iron metals, all of 99.9% purity, under a Zr gettered 

argon atmosphere. The arc-melted buttons were subsequently crushed and 

then pulverized under toluene in a steel planetary ball milling machine 

for 20 minutes. The resulting 15-35 ~m powder was rinsed with acetone 

and vacuum-dried. Rubber tubing, 0.6 cm i.d. and 3.8 cm long, was 

manually filled with powder. The packing efficiency was improved by 

the application of vibratory agitation. The tubing was sealed with 

rubber plugs and placed inside a perforated steel tube for isostatic 

compaction 2 
in the range of 50-70 kg/mm • 



For samples in which a magnetic orientation was desired, the 

manually filled rubber tubing was first subjected to an alternating 

field of 1.0.0.0 De peak-to-peak, at frequencies up to 5.0.0 Hz, superimposed 

on a DC field of 2.0 Koe. A field of this type produced sufficient vibra-

tion to facilitate orientation of the powder. While in the magnetic 

field, the particles were locked in position by hand-applied end com-

pression with a plunger prior to isostatic compaction. 

The cold pressed samples were subsequently wrapped in Ta foils and 

-6 sintered in a dynamic vacuum of 3 x 1.0 rnrn Hg at 113.0 0 
- 115.00 C, for 

durations up to 48 hours. The true densities of the sintered samples 

were determined by a fluid displacement technique with appropriate tem-

perature corrections. Permeability measurements were carried out by 

the fluxmetric technique [8], where corrections were made for the 

demagnetizing field and the cross sectional area difference between the 
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sample and the pick'!'up co!.l. The evaluation of the dynamic magnetostriction of 

the samples was accomplished by a strain gauge technique. This tech-

nique is desirable because of its compactness and accuracy when used 

with a temperature and magnetic field compensating circuitry. In order 

to compensate for the temperature and magnetoresistive effects, for each 

of the active strain gauges on the sample, a corresponding "durnrny" 

gauge of the same type and lot number was mounted on a piece of arc-

melted and homogenized YFe2 . The choice of YFe2 was based on its being 

an isostructural non-magnetos~rictive (As<2xlD-6) compound with a 

thermal coefficient of expansion in the same range as that of other 

R-Fe2 compounds. The bias field was supplied by a short solenoid mag­

net, powered by a 18.0 kw source. It was established that the magnetic 
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field of this magnet over the entire length of the sample was uniform 

within 4 %. The sample probe was placed accurately at the center of 

a solenoidal winding and then the assembly was secured in the bore of the 

short solenoid magnet. The circuitry shown in Figure 1 provided 

alternating fields up to + 500 oe at various frequencies. The calibra-

tion of the field was done in terms of alternating currents passing 

through the solenoidal winding. The strain gauges were balanced by 

means of Q plug-in units and a dual beam oscilloscope. The dynamic 

strains were recorded on a light-sensitive paper by an oscillograph. 

To minimize any temperature rise in the sample, .the alternating fields 

were applied only for short periods (up to 10 seconds). The frequency 

of the dynamic field was chosen at 160 Hz (w ~ 1000) because it was 

low enough to reduce the eddy-current loss and far from the harmonics 

of 60 Hz. 

The linear shrinkage measurements during the liquid-phase sinter-

ing were carried out by means ofdilatometry. Cold pressed samples of 

approximately 6 rom diameter and 10 rom length were placed in the cham­

-6 ber of the dilatometer which had a vacuum of better than 5 x 10 mm Hg 

during the operation.. It required less than 20 seconds for the furnace 

to reach a set point temperature. The temperature was controlled 

within + 5°C by the feedback from the output of a sensitive thermocouple 

welded to the sample. 

III. INITIAL SINTERING KINETICS OF RFe
2 

ALLOYS 

Some sintering studies of RFe2 compounds have been previously 

reported [5, 6]. R. G. Johnson et al [6] have studied the shrinkage 

,. 
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Figure 1. Experimental set-up for dyanamic magnetostriction measurements. 
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behavior of DyFe2 alloys. Their results showed long incubation periods 

for stoichiometric DyFe 2 and for DyFe2 + 10% Dy-Fe eutectic sintered 

at l150°C. They were able, however, to eliminate the incubation 

period by sintering under 10 rom HF gas. 

Using dilatometry, we have looked into the initial sintering 

kinetics of the samples prepared by the sintering approach described 

in Reference [5]. In this approach, the iron deficient allQY (contain-

ing 55% Fe) becomes liquid and therefore, we expect the liquid-phase 

sintering kinetifs to prevail during the initial stages. The first 

stage of liquid-phase sintering involves a relatively rapid densifi-

cation, due to particle rearrangement. We have used Kingery's [9] 

thermodynamic analysis of the densification rate during solution-

precipitation (second stage) to identify the rate controlling mass-

transport process. Using this analysis, the isothermal dependence 

of linear shrinkage on time is expressed by 

a: 

for a process rate controlled by diffusion or 

0: 

for a phase boundary reaction as the rate controlling step. The above 

equations suggest that data of linear shrinkage versus time should in-

dicate the sintering mechanism involved. 

The dilatometric results of an isothermal shrinkage of a Tb3DY7Fe2 
O· O· 

sample is plotted in the form of log (/),L/L ) versus log t in Figure 2. 
o 

The value of Lo was taken as the initial length of the cold "green" 
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Figure 2. Isothermal time dependence of shrinkage behavior of a O~3D~.le2 sample. '-J 
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compact corrected for thermal expansion at the sintering temperature. 

As the data show,a substantial amount of densification is rapidly reached by 

the rearrangement process, due to the presence of a large amount of 

liquid phase at the sintering temperature. The slope of the line 

representing the solution-precipitation stage is much lower than pre-

dieted by the rate-controlling mechanisms described by Kingery. 

A. L. Prill et a1 [10] have found, however, that large amounts of shrink-

a~eiduring the rearrangement stage will result in an apparent low time ex-

ponent of the second stage linear shrinkage and erroneous identification 

of the rate-controlling process. Figure 3 shows the replot of the data 

which were reanalyzed, taking into account the specimen length and 

time at the end of the rearrangement stage. The slopes of lines through 

the replotted data are close to 0.5 (a least square fit through.the 

data points corresponding to 113s o C sintering temperature gave a slope 

of 0.48 with a correlation coefficient above 0.99). A time exponent of 

0.5 for the linear shrinkage isotherms shows the mechanism of sintering 

is rate limited by a phase boundary reaction process rather than dif-

fusion in the liquid phase. The solution-precipitation stage, which 

starts at the first break of the curve in Figure 2, contributes to 

increasing the grain size. Grain boundaries have been proven to be 

effective barriers to domain wall motion. Globus et a1 [11] have 

given a relation between the grain size and the permeability in the 

form of 

11 -1 = 
8 TIM 

s 
H 

I1V 
V 

0:: r 
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Figure 3. Time and length corrected isotherms of liquid phase sintered O~3DO.3Fe2' 
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where: 

M 
s 

r 

= 

saturation magnetization 

radius of a spherical crystallite grain 

volume change of the domain per unit volume 

permeability. 

The large grain size induced by this method of liquid-phase sintering, 

which gives densities as high as 97% of the theoretical density, leads 

also to products with a higher permeability. 

IV. EFFECTS OF MAGNETIC POWDER ALIGNMENT 

In the course of preparation of the magnetically aligned samples, 

the liquid-phase sintering approach was not applied in an attempt to 

reduce any possible loss of the alignment. The measured values of the 

static permeability of these samples are shown in Figure 4. These 

values are much higher than those known for the randomly oriented 

material. The higher permeability will be beneficial for cores working 

at high induction levels. The sharp increase of permeability and the 

occurence of permeability maxima at lower fields, as the density in-

creases, are due to the reduction of internal demagnetizing fields of 

the pores and the drop in coercivity of the material. 

10 

Static and dynamic magnetostrictions of a magnetically aligned solid-

state sintered co.mpact is shown in Figure 5. At constant frequency, the 

magnitude of the dynamic strain attained was roughly proportional to 

. the magnitude of the applied alternating field until the dynamic field 

had a value approximately equal to the bias field. As the alternating 

field exceeded this value, some frequency distortion of the dynamic 

\j 
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strain began to occur. Comparison of the data with Figure 6 indicates 

that, with respect to both static and dynamic magnetos trains , the 

textured sample is superior to the highly dense liquid-phase sintered 

material. This superiority can be due to the effect of grain orienta­

tion on reducing the microstresses set up at the grain boundaries of 

these highly magnetostrictive materials. In the course of magneto:':" 

striction measurements, some temperature rise in the material was de­

tected after each short period of the test. The temperature-rise rate 

was consistently faster with frequency increase of the applied alterna­

ting field. This is attributed to the tendency of the eddy-current loss 

to increase due to the formation of more widely spaced domain walls in 

the material as the texture improves, although the hysteresis loss 

should decrease. 

The huge magnetos trains observed are indicative of the advantage of 

these materials in applications where a high power broad-band low fre­

quency source is desirable. The magnetic powder alignment approach, 

however, can also be extended to the preparation of powder rolled 

thin plates and laminates with an improved reduction in the eddy-current 

loss. Preliminary data indicate that even better magnetostrictive 

properties can be achieved by combining the use of magnetically a11igned 

powder with liquid-phase sintering. 
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