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MagnelosusceptibilitY event and cYcloslraligraph.}
(MSEC) is used to define magnelic susceplibilitY (MS)
signalit，二、‘介，，‘the E价han-Givetian GW  in southern
Morocco (IIId．斤)ur other Ei厂elian-Givetian homidarY
sequences in Morocco, southern France, and the Czech
Republic. MSEC data.fto，in the GSSP are used to iden-
t}fv little first一order isochronous MSEC events ft)r
chronocorrelation.

    MSEC dato clearli, define‘，new abiolic Late E价－
licin MSEC Evcut that iininediate1v /，二。'edes the E沂－
lian一Givetian bonndarv and encompasses the biotic
Kacak and otornan Events. The MSEC event begins in
the upper Tortodus kockeliamls kockelianus Zone and
ends in the upper Polyonathus ensensis Zone. ThisI
Event occurs in the saine siratigraphic position in the
boundarY sequences Stndied. The characteristics可’the
Laie Ei斤lian MSEC Event (ire those ofa prolonged high
stand inglobalsea level.

Introduction

phy wid oi七ital forcing cycles for c}clostrafigaphy Wrick and Ell-
wood. 1995} Crick and Ellwood, 1996; Crick ct aL 1997a: Ellwood
ct al_ 1995: Ellwood ct aL, 1990: Ellwood et al., 1997). Intcr-

regional and other types of long-distance chrorrocorrelation bet\}cen
MSEC data sets are possible v,,hen the lithological variations pro-
ducin(} the MS variations are the result of 'randoni" events or
regional and global (orbital forced) chinate changes (Crick and Ell-
wood. 1995: Crick and Ellwood, 1996: Crick以 al.. 1997b).   Fhe
MSEC si-natUre ofa sedimentary sequence records the complexit},I
of sedimentary processes, often chiNen hy cliniatic/oi七ital forcinu,
Cycles. These CYCIeS Produce a rh,,11imicity in the JMSEC data that
exhibits an apparent lack OfUniqUeness. For this reason the utility of
the MSLC method is dependent on hiostratioraphy for ternporal
indexing wiihin sequences.   Willi high-density sampling M}E(
data can provide e}cnt-stratigraphic chionocort-clations at re}olu-
tions excecdiii(-, those ofthe hest biostratigraphy.

    Althou(,h the ilia！ oi- Eilelianl   'I 一Givetian boundary sequence,; of
Morocco and France are vepreserned b} onl} four to six meters of
sediment, they are replete with MSFC7 events. MSEC, events ;dlow
the use of eNerit straligraphy as an alternate inearis of characteri/im,
the boundary sequences, and these events can then be con-clated
between SeCtIO11S. Such as the GSSP to sections with different o「一less

than adequale hiozonc control.   Because MSEC data are largely
independent of facies and isochronOUS, MSEC bascd event stratigra-
phy provides chronocoirclation between well zoned pelagic
sequences and then- coc}一 al non-pelaoic Counterparts.I

The houndary I-or the Eifelian - Givetian Stage Global Stratotype
Section and Point (GSSP) was agreed upon by member、of the Sub-
commission on De\onian Strati}raphy (SDS) in Rabat, Morocco, in
1991．and ratified in 1995 by the ICS and 1UGS (Walliser et al
1995). '1’ he GSSP was placed in a section at Jebel Mech Irdane in the
Tatilalt of the western Sahara of southern Morocco (H-ure II ）．At
the time of、 tire GSSP ratification. the use of' inagnetic susceptibility
(MS) for correlation and comparison in the context of establishing
time boundaries had not yet reached maturity (Crick et al，1994).
Subsequent use of MS for purposes of detailed correlation (Crick
and Ellwood, 1995} Crick and Ellwood, 1996; Crick et al二1997a:
Crick et al., 1997b) now allows the use of MS data to characterize
and establish MSEC data sets for most marine sequences.

    MSEC is：、type of magrict ost rat igraphy that is dependent on the
induced magneti/.ation of rock instead of' the often altered and less
reliable reniancrit niagneti7ation of polarity studies. MSEC data are
partiCL[lai-ly useful in the identification of' events for event-stratigra-

Magnetic susceptibility

MS is basically it proxy for the litho,-,cnic oi- detrital fraction（”｝、
marine sediment.   ROL11_1111)'. it is it qUarnitatiVC 111CiISUI-C Ot the
amount of iron-hcarino minerals in it sample (Ellwood et id.. 1988,
Ellwood et it]二1996). It is important to note山at MS ditta are＼ery
different from the ma,mictic polarnicS that record the rnaplefic piop-I   I
erties of Earth's magnetic field in rocks. Like magnetic polarities
that depend on the conservation of iron in rocks, NIS also depends on
the preservation of iron. Hovkcver. unlike magnetic polarities that
can be easily rema-neti/.ed by heatin,,, MS is largely unaffected by
low to moderate therrrial processes.

    Because the ma,mitude of NIS varies inversely to the carbonate
content of marine sediment as it tracks the lithogenic/biogenic tatioI
(Ellwood and Lcdbettei．1977). MS hi's also proven Useful as：，pale-
oclirmitic indicnto，r ((、日I-T-% ： ,I it! ｛1)9},- Rohin,,on.！093)
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Interpretation of NIS patterns

In L,}n)cral, variations in MS magnitude within a sequence represent
clianoes in the ori6nal rate ot'supply of the ii-on-bearing lithogenic9
or- dcli-ital fraction to the marine system. 'rwo, somewhat indepen-
dc川controls, constrain the influx of ji-on-bearm- nimerals into the
inainie reahn: the deLree of clituate-induccd erosion, and adjust-
Mclits川base level either throu&,h global sea level rise and fall or
through tectonically indl-Wed chan,-,es in altitude of a re}ion relative
to }oa level. Climate, controlled by orbital forcing cycles, causesI
丫：、、。thle erosion nites that. ill ILll4II、   impart a rhythmicity to sechmen-
tal " scqLlCnces deiectahle in MS data and useful for cyclostratigra-
ph\ ((、 rick and Ellwood. 1995二〔Irick and Ellwood, 19W  Crick et
al ｝997a).

    Vaiiations in sea level may be controlled by orbital forcing
cycles but may also have：、randoin element related to large-scale fee-
tonic controls such as those proposed by (JUrnis（19M  1990). In our
eXj)CFlCnce. rand(）川a山LISMICHtS to base level through relative or net
clizim,2cs in sea level are responsible for the MSEC events reported
hei, . Fcctonic川v indUced chanLes on a olohal scale will produce
firsi order isochrolious M SEC  events that can he identified and cor-

relaied on global, regional, and local scales. particularly when
  ewm ices are constructed fr(、川 、ediment of the same facies. i.e.

pcJ,i,_Jc, heinipelagic. neritic. Changes in regional processes will
produce sccond-order MSEC, events ofmoderate frequency and hm-
itcJ in importance to the re,_,ion of origin. MSEC data will also con-
tzull ahUndJ111 third-ordei. hiLI1一frequency MSLC events produced
h\］Wal fluctuations in the type and late of sediment accuinulaiion.
11111」一、)rder e%cnts aie 1}encralb} not replicated among sections.
MSl,,( data will thus exhibit：、complex Sil-MatUre that is reprcsenta-
tl}·of' the processes and controls on the relative iron content of'
maime、 c(liments. There is, ho\,\cvei．an ordei to this signature.
Gl()hal c\crus and processes control the basic character of a si-na-
ime and fix the general position of majoi peaks Mid Sustained trendsI   -
oh},r}ahle in MSF(-' data sets front different palcogeographies-I   I
尺C,_1 } 0 11、］events and processes generally impart：、character to the
M s, I（dala lhat］、distinctive within a re,ion but one that does notI
011}1 LH-C the global Si2natUl-C. Modifications to the MSE(,' signature
！‘、！，idi\ idUal sequence,, are useful in comparing variations between
，。‘一Y！！一）hiCall\ related sCClUCF1CeS all(]. it* unwanted. may be removed

I；、一江！日飞11

    The examples used here demonstrate that MSF( evcnt-peaks.
shown by comparison with other sections, make exceptionally good
c hronostrati graph i c markers. MSEC, events are（们 wo types. Those
composed of high magnitudes and those composed of' low niagni-
tudes. Ific hioh ma(,nitude events are typicalhy of* shorter duration
and more numerous, whereas, low magnitude events are typically of
longer duration and less numerous. Because they represent less time
and occur with Iii-her 1requency, high magnitude events are more
use角 I for chronocorrelation. The M SEC method MLl,,i be used in

combination wilh standard methods of' hiostratigraphy to establish
initial biozone boundaries. M SEC  call then he used to define

chi onostratigraphic boundaries as is done with polarity magnc-
tostratigraphic markers under Section 2.4 of the revised guidelines
for establishing global chronostratigraphic standaids (Rcnianc et aL,
1997)

    We interpret MSEC events in the l'ollowing ways. Increases in
MIS magnitude correspond to relative or net drops tit sea level. High-
cst magnitudes represvnt maximurn /oiv slonds in }ea level.
Decreasing Magnitudes correspond to relative OF ]let rises in ,ca
level. Lowest InagnitU&S represent MaXilln-1111 hi,}11 AlandS ill SCa
level. Increasing magnitudes correspond to relative or net知Hs in sea
ICVCI. COMITIOnly a number Of COF1SCCLl(iVC MS lows or highs will
coalesce into broad episodes indicative ol'sea level stasis. The char-
aCter of the increase（），decrease in MS niaLmitudes within a si(,na-I
ture represents the rate of the process or processes responsible for the
change.

The Eifelian一Givetian boundary
sequence

The conoclont definition ol'thc Eit'clian一（;ivetian hOUndarv is based

on the entry of：、definitive form of the conodont species PoNgnothu,s
hcndansams which first appears in Bed 123 of the GSSP boundary
sequence al Jebel Mech Irdane (Figures I B＆3). RepresentatiNesot
the anarrionoid Perms Maeni(wera.} first Occur tit the tipper part of
Bed 119 in association with representatives of' other arnrnonoid
1}roups known to he common in the Givetian. Thus the base of' the
Maenioceras StLlfe, widely accepted as the ba,;c of' the Givetian
before the GSSP was establishcd. is now  some 0.15 tit below the

Eifefian一Givetian boundary tit the GSSP. The hOUndary sequence

Scptelnber 1997



了69

3'5'

          10 km
孟钾～ ～～一山一‘ 一 于一 一J一J‘一J～山～ 一J一－＿ 一 ＿ ＿ ＿一」 ． Bo'darieux

Clermont Mdrauft．

碧
eM N

c窦势尹   4332'

｝ ，n赢
！ 气 〔，
！ 10WOU&O J   .4

MorvasT   Marsaift

M6d加 厅翻户习．n

． Cessenon 3'5 飞、 100  km

A

厂一 ～      0- IOW

了
PALUPY n 价

﹄刊
司
j
乃
训
川
｜
州
州

一一一 I～ 一 、
  一 ， ～ ，

2沪尸J夕～‘闷
KLADNO

  义 几几上达丫乡一

PRAGUE

饰 -I 艺

矛一 护

火二＿＿‘一
厂一产～ －

户
下

11飞于久 二、

又
截
月

 
 

白象
2熊ROUN

与 厂J“
七 、／／

石'I-Ou,jtIA RIVeR

卜 二 一熟－

犷一夕产公

szqvA ｝
PRAGUE

形岌

尹二扮 气, A 笼

BEROUN
出份《

U dubu sedmi bratri之
    (UDSB) 。一丫
        ． ．．．．．． ．．

EVONIAN

熟声资奋

‘ 介、一尸二娜乒主心一井、汀荆 以握砰岁 季厂

%:;--   SILURIAN
          --A-

  THRUSTFOLDS

又击 甘 岸

于r

  0口．1目． 口．口． ．日．．25 k

B

Figure 2 Location mapsjor southern France and Czech Republic. A, Montague
Noire region and Pic de Bissous area with location of Marbri}re Nord (PBMN)
section. B, location of U dubu sedmi bratri section (UDSB) in the Prague Basin.

The KacAk一otomari Event

The Kacdk-otomari Event (=rouvillei Event of W al-

liser,］983) is important for two reasons. First. the
event has been used as an alternate marker for the

Eifel ian-Givetian boundary in nentic sequences and川
sequences with poor biostratigraphic control. Second,
the conditions imposed by controls on the KaCak-
olomon Event are thouoht to have acted as an evolu-
tionary filter to produce the changes used to define the
various biozones chosen to define the GSSP (Boucot
1990; Chlupac and Kukal, 1986: Walliser, 1995).
'f here is sonte dissatisfaction and contusion with the

definition and use of the interval assigned to the
Kac}k-otomari Event (House, 1985 } Truyol、一Mas.,,oni
et aL,］985} Walfiser, 1995). Much of this can he
attributed to differences in the ranges of various fo,,sil
groups used to locate the event and to whether the
event is viewed as primarily abiotic or biotic. It i,,,
both, ot course, because changes in faunal makCUP (lid
occur in the interval preceding the Eifeban-Givetian
boundary. But ot equal if not greater importance is
evidence ot the abiotic event.

    The original definition restricted the otommi
Event to the onset of a black shale interval which also

corresponds to the base of the Nowakia otomari tenta-
culite Zone, to the base of the Cabrieroceras crispi-
fo rm e＝rouvillet goniatite Zone, and to the boundmy
between 不 k. kockelianus and Po. etisensis Zone.,,

(Walliser, 1983). House（1985). on the other hand.
considered the whole of the black shale horizon as the

event and named it the KacA  Lvent after the KacA

Member of the Srbsko Formation in Bohemia (for a
detailed discussion ofthe KacA Member see Chfi-1paC
and Kukal. 19M  House,］985). It is important to note
that this black shale interval is not present in all File-
lian-Givetian boundary sequences. Walliser（1995）
attempted to clarify the distinction between the
otoinari and the Kac6k Events by recognizing two
extinction events within the KacA  Event, an eailiei

one marked by the disappearance of不k. ko(kelialm.s
and a latcr one at the Ei比han-Givetian houndar}
marked by the disappearance of Po. eiisen,si.v.Wal-
liser suggested that the womari Event. marking the
disappearance of了k. kockelialitts- retain its orivinal
restricted definition and renanied it the LowerK之   icak

Event. The later extinction event ",as }Iivefl the nanic
Upper Kacak Event. It is clear ft-orn comparison of
definitions ol’ the KacJk一‘)twnari Lvent. that there is

little agreement on the tirning of the beginning and
endin- of the event. Suggestions that place the earli-
est evidence of the event at the disappearance of the
goniatite Pinacites start the e\ent a bit too early（I I'Lly-
ols-Massoni et aL, 1985) and others that place it at the
disappearance of 7'. k. kockelianus start the e\ent too
late. This is the case because, Linn I now, e\ idence ol

the position and duration of the abiotic event respowi-
ble for the biotic Kacak and otomart Events has been

is composed of 45 beds, 22 beds. equivalent to 2.7 m of section,
occur below the boundary and 23 beds. equivalent to 2.］m, occur
above the houndary. The boundary sequence consists mostly of
pelagic to hermpelagic limestones (some platy or nodular) with the
exception of（）．I m of black shale (Bed 117) that corresponds to the
beginning of the Po. ensensis zone and the level of the otomari Event
(Walliser, 1991 ; Walliser et al., 1995). House (Walliser et al., 1995)
refers the whole of the interval. Beds 117 through 119, to the Kac6k
Event. In this and other sections, but certainly not all, this cham,e
from limestone to shale facies, marks the disappearance ot Tortodus
kockelianus kockelianus and the appearance of Po. ensensis.

m issing

    The data presented here dOCUMCIA an abiotic, low-niagnitUde
MSEC. event that encompasses the Kacdk-otomari Event. I lie
boundaries of this MSEC event do not correspond to any known tau-
nal turnover. The lower boundary Occurs川the upper ko(kcliolius
Zone and the upper boundary lies in the upper Po. etvsensi.} Zone.
The general character ot the event is one ofan episode of rapid and
prolonged rise in sea level.   Because of the many differences
between the MSEC event and the Kaciik一（)Iomari Event, vve usc flic

term Late Eifelian MSEC Event when i-cferrin- to the lon-eF IMCI＼al
defined by MS data (Figure 3, Peak 2)

EI)isodes, Vol. 20,，，‘，3
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Figure3 MSEC signature fi-)r the Eifelian一Givetian GSSP at Jebel Mech Irdane,
Tafilalt, southern Morocco. Bed numbers 101-140 and conodont zonationfrom
Walliser et al. (199习。Numbers on black circles define major MSEC peaks in this
andfollowingfigures.

19M  Bultyrick and Walliser, l9ft  House and Chlu-
pac, 1987} Walliser. 1991）．

    .Jebel Mech Irdane: The published sequence for
the GSSP (Walliser et al，1995) includes Beds 101
throu,,h 145. We have extended the sequence through
Bed 161 (Fi-ure 3). The MSEC sianature he2ins with
stepped increases in MS magnitude for Beds 101一107
(Peak I）．'The first sample in Bed 108一with a nia(nu-I
tude lower than previous values, begins a trend of
decreasing MS. There are no obvious differences
between the limestones ofBeds 107 and those of、 Beds

108-110. Low MS values continue thrOL12h Bed 121．
The sequence of low magnitudes of、 Beds川8-121
definesthe［ate Eifelian MSEC Event. The important
reversal in this trend is Peak 2a that hc(-Iiiis to develop
in the upper portion of’ Bed 110 and continues through
Bed I I I ．The appearance of Po. vijsensi.} coincides
with the small peak in Bed 115. The return to low MS
values, similar to those of Beds 101一107, begins with
Beds 120/121，but before the disappearance of Po.
ellselllyllv.

    The trend of increasing MS magnitudes thatI
defines the upper boundary of the Late Eifelian MSEC
Event culminates in Peak 3 in the Lipper portion of Bed
122, immediately below the GSSP. Peak 3 is角]lowed
by another decrease in ina-nitude, at the point where
Po. hennonsatus appears, and one that is sustained
through Bed 127. A sustained and well-dOCI-micrited
increase in MS magnitude follows this low point and
begins an interval of enhanced magnitudes through
Beds］28-149. The appearance of P(）八-tiathus varcus
occurs in this interval, which is divisible into Peaks 4,

5, 6. and 7. Magnitudes in Beds 15(）一161 document a
return to values similar to those of the pre-Late Eife-
lian NISEC Event. Peaks 8 and 9 Occur within this

interval.

    'The overall interpretation ofthe MSEC signature
for the sequence is that of a steady lowering of sea
level in the middle T. k. kockelianus Zone (Peak I）
abruptly reversed to a Sustained high stand through the
remainder of the 7. k. kockelianus Zone and al I but the

latest Po. ensensis Zone (Peak 2). Se}门eve] begins to
decrease in the latest Po. ensensis Zone and, although
variable, an interval of low sea level stand continues
through the Po. hemiansatus Zone and into the Lower
Po. varcus Zone (Peaks 3-7).   A shift toward an
increase in sea level occurs in the early portion of the
Lower Po. varciis Zone and continues to the end ofthe

MSEC patterns

Tatilalt, southern Morocco

Three sections in the I afilalt region of the eastern Anti-Atlas of
southern Morocco are used for comparison of local sequences (Fig-
ure I）．The sequences were originally deposited on the Devonian
Tafilalt Platform  (Belka et al二1997). The sections can be located on

the I：100,000 Carte du Maroc, Feuille NH-30-XX-2, Erfoud. The
Eifelian一Givetian GSSP is located at Jebel Mech Irdane (JMI) and
its lithologic and faunal characteristics have been described in detail
(Walliser, 1991：Walliser et al., 1995). The Jebel Amelane (JA)
sequence is located 5 km north of the GSSP. The characteristics of
its lithology and ammonoid zonation are well known (Becker and
House, 1994), but a conodont zonation has not been established for
the section. Bou Tchrafine (BT) with a well known and complete
succession from Ernsian to Upper Famennian is located approxi-
inately 20 km northeast of the GSSP. Bou Tchrafine was considered
for the Eifelian一Givetian GSSP and its fithologic and faunal char-
acteristics are very well documented (Becker and House, 1994; Bul-
tyrick, 1985} Bultynck, 1987} Bultynck, 1989; Bultynck and Hollard,

sequence(Peaks 8-9). This interpretation is supported by cornpari-
son with the T-R Cycles of Johnson et al.（1985). Although the T-R
Cycles o门ohnson et al.（1985) have not been formerly recognized in
north Africa. interpretation of the MSEC data in the context of sea
level curves shows a rough correspondence with transgressive peaks
occurring consistently earlier in southern Morocco than in North
America. I he latest portion (shallowing) of T-R Cycle le is essen-
tially equivalent to the sequence prior to the Late Eifelian MSEC
Fvent (Beds 101一107). The deepening episode marking the Late
Eifelian MSEC Event corresponds to the carlier portion of T-R
Cycle It. It is likely that the shallowing event following the Eifelian
一Givetian boundary corresponds to the completion of the first sub-
cycle of Cycle If.

    Jebel Amelane: The JA sequence (Figure 4) is lithologically
different from the GSSP but the MSEC signature is basically the
same for the boundary sequence, with few variations. Differences
are related to either changes in rates of sediment accumulation. that
modify the spacing ot'peaks, or to relative differences in magnitudes.
Differences in section thickness indicate that the rate of' sediment

accumulation at JA was 30% greater than at the GSSP. GSSP peaks
1-9 are present at JA. although magnitudes of JA Peaks I and 3 are
less than those of the GSSP. Peak 2 is the same, and Peak 9 ma.-m-

September 1997
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rence of Po. varcio higher in Bed 23. 'This discrepanc,
will need to he resolved with additional field collections

IV,
Ma'der, southern Morocco

For re-ional and inter-basin coiriparison we ha\cI
included the MSEC signature for the Fifelian一Gi\ctian
b0L[ndar} sequence at Jebel On Driss (Figure IC)
located in the Zagora Graben, an oullier of Ihe   Ma'dci
Platform (Belka I al．1997), 55 Kin northeast of Zatzora
（I：100MOO Carte du Maroc, Feuille NH-30-XIII-4.
Tarlibalt). 'The Ma'der is located south"est ofthe Tati-
lalt and OU Driss is approximately 140 kin Southwest of
Mech Irdane. The data reported here come from the On
Driss est (ODE) section of Hollard and Jacqucniont
（1956) and Bultyrick门989). Detai Is of stratigraphy and
biostratigraphy are gken in HollardI 门974) and BUI-
tynck门987］989).

    Jebel Ou Driss est: I lie ODE sequence (FkHlie 6)1
has a much larger neritic component than the Tatilaft
sequences, and the rate of sediment accumulation for the
ODE boundary sequence is six times that of the GSSP.
The M SEC data set for ODE was based on material I rom

biostratigraphic samples of wider and more variable
spacing than those of other sections, and the resolution
is correspondingly lower for the ODE sequence. The
ODE signature begins early enough in the不k. ko( k（一
hanus Zone to record GSSP Peak 2a in the Late Eitchan

MSEC Event. and continues through the Erfelian－
Givetian boundary (GSSP Peak 3) and GSSP Peak 4 in
the lower portion of the Po. heinionsotits Zone. We
have tentatively placed the base of the Late Eifelian
MSEC Event relative to its position to Peak 2a, The
larger neritic component ofODE is responsible for the
'reater MS ina,mitudes obset-ved for the sequence

Montagne Noire, southern France

I he well known Lifelian一Givetian boundary sequence
of the Marbriere Nord sequence (PBMN) on the north-
ern slope ot Pic de Bissous in the southeastern Mon-
tagne Noire. Languedoc Province (Figure 2A). was
chosen for extra-regional comparison (Figure 7). The
Marbri}re Nord quarry is located on the 1:25,000
Lo&ve sheet, 2643 ouest. Detailed descriptions of the
sequence can be found in Feist门990) and Wallisei
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Figure4 MSEC signature for the Eifelian一Givetian boundary sequence at
Jebel Amelane (JA), Tafilalt, southern Morocco. The conodont zonation is
adaptedfrom the Bou Tchrafine section (see text.for details).

tude is greater. The boundaries of the Late Eifelian NISFC Event
(Peak 2) are well defined and in the same biostratigraphic positions
relative to GSSP Peaks I and 3.

    I he conodont zonation for T. k. kockelianus, Po. ensensts, and
Po. hemiansatus for this sequence (Figure 4) was extrapolated from
the position of key ammonoids in sections where both ammonoid
and conodont zonations have been established (Bou Tchratme is an
example). This was not possible for the base of the Po. varcus Zone
and the base of this zone was placed relative to GSSP Peak 6 (Figure
3）.

    Bou Ichrafine: The BT sequence (Figure 5) is also lithologi-
cally different from the GSSP but the MSEC signature is similar to
both the GSSP and JA for the boundary sequence, with only a few
variations. Like at JA, differences are related to either changes in
rates of sediment accumulation, affecting the spacing of peaks. or to
relative differences in magnitudes. The rate of sediment accumula-
tion for BT is roughly the same as for the GSSP over the same inter-
val. GSSP Peaks 1-9 are recognizable, although magnitudes for BT
Peaks 1, 8 and 9 are less than those of the GSSP while the magnitude
of Peak 2 is greater. The boundaries for the Late Eifelian MSEC
Event occur in the same positions relative to GSSP Peaks I and 3.
The position for the base of the Po. varcus Zone was placed relative
to GSSP Peak 6 (Figure 3). Bultynck（1987) placed the first occur-

（1990).
    Marbri}re Nord一Pic de Bissous: The boundary sequence at

PBMN consists of beds of a pelagic to heirupelagic origin deposited
in a basinal environment during the period when the region was part
of the northern margin of Gondwana (Galle et al., 1995). The rate of
sediment accumulation for this portion of the PBMN section W}Is
approximately 60% greater than the GSSP.

    The PBMN MSEC signature is much the same as that of' the
GSSP.   All GSSP Peaks are present allowing easy correlation
between PBM N and the Tafilalt sections. The base of the Po. var( its

Zone, established by Walliser（1990). occurs at the top of Peak 6 as
it does in the GSSP. The character of the M SEC  data set dilfers

however, in three respects. First, high magnitude peaks at PBMN
equal or exceed the highest magnitude peaks of Tafilalt sections and
Peak 3 magnitude is nearly twice that of any Tafilalt section. This
indicates a higher concentration of iron resultin} from a greater
influx of lithogenic material during periods of low stands of sea level
(Peaks I，3,4, 5, 6＆7). Second, variations in magnitude are sub-
dued above Peak 6, suggesting that sea level fluctuations for the Po.
varcus Zone were soinewhat different fi-oni those of the T. k. ko(ke-

lianus, Po. ensensis, and Po. hemianstittis Zones. Third. the SLIS-
tained low stand of sea level of the earliest Givetian observed in the

Tafilalt sections and characteristic of the Po. hem  im  isa tits Zone in

these sections (Peaks 5-7) is not present in the PBMN houndarv

均，isodes, Vol. 20, no. 3
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in the Chotec Limestone which also places the Kacdk Event
in the Chotec Limestone rather than the Kacak Shale M em-

her. It should be noted, however. that House（1983) based
the definition of the KacJk Event not oil a physical event but
on the appearance of the amnionoid genus Maenioceros.
We have already demonstrated with the Tafilalt and Mon-
tagne Noire sequences that the I-ate Elfelian MSFC Event
begins well before the Kac6k Event. We suggest that this is
also the case in the UDSI3 sequence.
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Several conclusions can be drawn concerning the use of
MSEC data applied to marine pelagic一hernipelagic
sequences:

    I．MSEC signatures for the Eifelian一Givetian bound-
ary sequences are thought to he typical of’ marine pelagic-
hernificlagic sediments and are composed of "random"
isochronous, and facies-independent MSEC events suitable
Ibr chronocorrelation.   These events are independent of
biotic events, although biotic events may be highly depen-
dent on the controls or processes that created the conditions
that produced the MSEC event. MSEC events record rela-
tive and net changes in sea level through controls on the
delivery of iron-hearing minerals to the marine system, and
are thus a proxy for changes in sea level. Nine MSEC
events were identified for the Effelian 一Givetian GSSP

boundary sequence and used to establish chronocorrelations
among boundary sequences from southern Morocco through
the Montagne Noire of southern France to the Prague Basin
in the Czech Republic.

    2. The Late Fifelian MSEC Event is defined by an
interval ot'prolonged low NIS values in the Eifelian一Givet-
ian GSSP and is also seen in all other studied sections frorn

southern Morocco. southern France, arid the Czech Repub-
he. I he Event begins in the Lipper买k. kockelianus Zone
and ends in the late Po. ensensis Zone just prior to the Life-
lian一Givetian boundary. The KacA Event and the otomari
Event are included within the Late Fifelian M SEC Event.

The low MS values of the Event are suggestive of a pro-
longed high-stand in sea level, and the nature of the Event
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Figure5 MSEC signature for the Eifelian一Givetian boundary sequence at
Bou Tchrafine (BT), Tafilaft, southern Morocco. Bed numbersfrom Becker
and House(199司．Conodont zonation from Bultnyck (1989).

sequence. This indicates a major regional difference between the
Tafilalt and Montagne Noire in sea-level stand

夕
︸勺

︸

Prague Basin, Czech Republic

I he U dUbu sedini bratri sequence (UDSB) (Figure
8). located in the Prague Basin approximately 20 km
southwest ot the city of Prague (Figure 213), is also
used for extra-regional comparison.

    U dubu sedmi bratri: Consisting of basinal
facies of limited exposure, the section begins in thee}
Chotec Limestone and ends in the Kacjk Shale M em-

ber (Figure 8). The biostratigraphy for UDSB is not
mature and the conodont zonation used in Figure 8 is
only approximate. The Eifelian一Givetian boundary
ol Fwure 8 is based on the carbon and oxygen isotope
record for this and other sections established by
Hladikov} et al.（1997). The UDSB signature begins
in the了 k. kockelianus Zone above the base of the

Late Eifelian M SEC  Event and within GSSP Peak 2.

Prior to the top of the Chotec, MS magnitudes begin
to increase just below the boundary in the latest Po
ensensis Zone, forming Peak 3. The sequence then
duplicates GSSP Peaks 4 and 5 in the Po. heiniansatus
Zone.

    The most controversial aspect of the UDSB sig-
nature is that it places the Late Eifelian MSEC Event

has elements ofthe Johnson et al.（1985) T-R Cycles le and If.
    3. The reproducibility of the GSSP NISEC signature in bound-

ary sequences of other Moroccan sections and those of southern
France and the Czech Republic demonstrates tile worthiness of using
M SEC events and M SEC boundaries for clu-onocon-elation
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