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SUMMARY 
Conductivity models derived from magnetotelluric measurements can be appraised 
by constructing extremal models which minimize and maximize localized conduc- 
tivity averages. These extremal models provide lower and upper bounds for the 
conductivity average over the region of interest. Previous applications of this 
method have constructed extremal models via (iterated) linearized inversion; 
however, it is difficult to verify that the computed bounds represent global (rather 
than local) extrema. In this paper, a method of constructing extremal models using 
simulated annealing optimization is developed. Simulated annealing requires no 
approximations and is renowned for its ability to  avoid unfavourable local minima. 
The optimization procedure is flexible and general, and can be applied to construct 
models which extremize a linear or non-linear objective function in any inverse 
problem for which the corresponding forward solution exists. Appraisal via 
simulated annealing is demonstrated using synthetic data and field measurements, 
and the results are compared with those based on linearization. The comparisons 
suggest that the bounds calculated via linearization represent excellent approxima- 
tions to  the global extrema. 
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1 INTRODUCTION 

The magnetotelluric (MT) method uses surface measure- 
ments of natural electromagnetic fields to investigate the 
subsurface conductivity distribution of the Earth. Determin- 
ing useful information about the conductivity from a set of 
measured responses defines the MT inverse problem. The 
most common approach used to solve the inverse problem is 
to construct a model which adequately reproduces the data. 
Unfortunately, this inverse construction problem cannot be 
solved unambiguously: it can be shown that if one model 
exists which fits the data, then infinitely many such models 
exist. Even though it is possible to construct models of 
specific character or models which are close to an assumed 
model, a constructed solution provides no indication about 
the range of acceptable models. 

Another approach to the inverse problem is that of 
appraisal. Rather than constructing one or more of the 
infinite number of possible model solutions, the goal of 
appraisal is to calculate properties which all acceptable 
models (including the true model) share. Backus & Gilbert 
(1968, 1970) developed a method of appraisal for linear 
inverse problems based on generating unique averages of 
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the model from linear combinations of the data. This 
method can be applied to non-linear inverse problems such 
as the MT problem by linearizing about a reference model. 
Unfortunately, in this case the unique averages computed 
pertain only to models that are linearly close to the 
reference model. Oldenburg (1979) constructed a number of 
different conductivity models which fit a set of MT data, and 
found different values for the model average by linearizing 
about these models. Parker (1983) and Oldenburg, Whittall 
& Parker (1984) have found linearized Backus-Gilbert 
appraisal to be inadequate for the MT problem. 

An alternative form of appraisal was presented by 
Oldenburg (1983, hereafter Ol), who determined bounds 
for conductivity averages by constructing extremal models 
which minimize or maximize the conductivity over a 
specified region. In extremal model appraisal, the 
conductivity model is represented by a set of parameters 
{al, a,, . . . , aM} which form a discretized representation 
of the function a(z) on a depth partition 
(0, z,  , z,, . . . , z,,,}. Model limits a; 5 a, 5 a:. are required 
for each conductivity element. These limits represent the a 
priori knowledge about the model: if confining limits are 
known for some depths, then including this information can 
lead to improved computed bounds; alternatively, if reliable 
constraints are not available, then suitably wide limits may 
be assumed so as to not influence the solution (01). 
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A boxcar average of the conductivity over a width A 
centred at a depth z,, can be represented as a linear 
combination of the model parameters 

where 

(2, - z , - J / A ,  if z, - A / 2  5 z ,-,, z, 
otherwise. 

z,, f A/2, 

(2) 
The goal is to construct a model which minimizes or 
maximizes $z,, A )  subject to achieving an acceptable fit to 
the data. To accomplish this, 01 linearized the relationship 
between the response functional R and model a(z )  by 
neglecting second-order terms in the expansion of R about a 
starting model a,,(z) to obtain 

6R, = G,(u,,, z )  6a(z )  dz, j = 1, . . . , N ,  (3) l= 
where 6R, = R, - R,(a,) is the difference between measured 
and predicted responses, 6 u  represents a perturbation to the 
starting model, and G,(u,,) is the FrCchet kernel. 
Substituting 6a = u - a, leads to 

(4) 

which represents a set of linear equations that relate 
(modified) responses directly to the model (rather than the 
model perturbation). These equations may be expressed in 
discretized form as 

where R, represents the modified responses and rIi = 
j:-,G,(z) dz. Linear programming techniques may be used 
to minimize or maximize i?(z,,, A) given by (1) subject to the 
constraint that the data equations (5) are satisfied according 
to the x 1  measure of misfit 

where si is the standard deviation of the jth datum. xfi 
represents the desired level of misfit, which is generally 
taken to be a 2 N ,  the expected value of the x’ statistic 
for N complex responses (Parker & McNutt 1980). Since 
higher order terms have been neglected, this procedure 
must be repeated iteratively until an acceptable model is 
achieved. If the construction procedure converges to the 
global extremum, then a true bound for the conductivity has 
been found. However, since the method uses linearization, 
there is always a danger that the computed bound may be 
representative of a local extremum. To investigate this 
possibility, 01 and Dosso & Oldenburg (1989) initiated 
their inversion algorithms with diverse starting models. 
Although the extremal models constructed sometimes 
differed in minor detail, they did not find a case where the 

computed model average differed; this provided confidence 
that the computed bounds were not dependent on the 
starting model. 

To further investigate the extremal solution, this paper 
presents a new method of constructing extremal models for 
non-linear inverse problems which is not based on 
linearization. Rather, the construction problem is formu- 
lated as an optimization problem which is solved using the 
method of simulated annealing (Kirkpatrick, Gelatt & 
Vecchi 1983). Simulated annealing is an optimization 
procedure which has been successfully applied to many 
problems in the field of combinatorial optimization (see e.g. 
van Laarhoven & Aarts 1987). A major advantage of the 
method is its inherent ability to avoid unfavourable local 
minima. This feature is of crucial importance to the 
application here. Although appraisal using simulated 
annealing is considerably less efficient than linearized 
methods, it represents an independent method of estimating 
conductivity bounds and may be used to corroborate the 
results of the linearized appraisal. In addition, the simulated 
annealing approach is general and flexible, and can be 
applied to extremize any functional in any inverse problem 
for which the corresponding forward solution exists. 

In the next section of this paper, the method of simulated 
annealing and its analogy with statistical mechanics is briefly 
presented [for a comprehensive treatment, see Kirkpatrick 
et al. (1983) and Kirkpatrick (1984), or the monograph by 
van Laarhoven & Aarts (1987)]. In Section 3 the simulated 
annealing appraisal algorithm is described, and in Section 4 
examples of the analysis are presented and compared with 
results of the linearized appraisal for synthetic and field MT 
measurements. 

2 SIMULATED ANNEALING 

Simulated annealing is a general optimization procedure 
which mimics the thermodynamical process of annealing. 
Annealing is the process by which crystals are grown: a 
substance is first heated to melting, then cooled slowly until 
a crystal is formed. Simulated annealing draws an analogy 
between the parameters of an optimization problem and 
particles in an idealized physical system. The optimization 
procedure involves simulating the evolution of the physical 
system as it cools and anneals into a state of minimum 
energy. 

Let possible configurations of the physical system be 
defined by a set of M parameters r = { r l ,  r,, . . . , r M }  which 
may represent, for example, particle positions and 
velocities. A fundamental result of statistical mechanics is 
the Boltzmann probability distribution 

(7) 
which relates the probability P of the system at (absolute) 
temperature T being in configuration r to the energy E(r) (k 
is Boltzmann’s constant). According to the Boltzmann 
distribution, the probability function for a system in 
equilibrium at (non-zero) temperature is distributed over all 
possible configurations r; thus, even at low temperature 
there is a finite chance of the system being in a high-energy 
configuration. At non-zero temperatures the system is 
continuously perturbed due to thermal agitation. According 
to (7), perturbations that increase the energy are allowed, 
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The temperature is reduced in stages allowing enough 
perturbations at each temperature that the system reaches 
equilibrium. As T is decreased, the probability of accepting 
configuration changes that increase the objective function 
decreases. Finally, at a low temperature the system 'freezes' 
and no further changes are accepted. The sequence of 
temperatures and number of perturbations at each 
temperature is referred to as the annealing schedule. An 
appropriate annealing schedule and effective method of 
perturbing the system is generally problem-specific and may 
require experimentation (Kirkpatrick et af. 1983). 

The analogy between cooling a fluid and optimizing a 
function of many parameters may fail in one respect. In an 
ideal fluid the particles are all identical and the ground state 
is distinct and well defined, corresponding to a regular 
crystal lattice with a high degree of symmetry. However, 
mathematical optimization problems often involve many 
distinct, non-interchangeable elements which make a 
regular, symmetric solution unlikely (Kirkpatrick et al. 
1983). Also, energy functions with terms representing 
conflicting objectives (and therefore favouring incompatible 
configurations) may preclude a simple well-ordered solution 
to the optimization problem (van Laarhoven & Aarts 1987). 
Optimizations with these characteristics are termed 'frustr- 
ated'. In physical examples of frustrated systems (e.g. 
magnetic 'spin glasses', see van Laarhoven & Aarts 1987) 
the low-temperature states are degenerate so that a number 
of near-ground-state configurations exist with essentially 
identical energy. Similarly, in optimization problems 
frustration makes the searcR for the global optimum more 
difficult. However, the degeneracy implies that there should 
be many equivalent solutions which closely approximate the 
absolute minimum. In practice, finding one of these 
solutions is sufficient (Kirkpatrick 1984). 

although they are less probable than perturbations that 
decrease the energy. As T decreases, the Boltzmann 
distribution assigns progressively greater probability to 
low-energy configurations, and perturbations which increase 
E become increasingly less likely. In the limit as T-0, the 
Boltzmann distribution collapses into the ground state for 
the system. 

The ground state often corresponds to a pure crystal 
which represents the global minimum-energy configuration 
for the system. To achieve the ground state the system must 
be cooled very slowly to maintain an equilibrium 
distribution. If the system is allowed to get out of 
equilibrium it will not obtain the ground state, but rather 
forms a polycrystalline or amorphous (glass) state with no 
crystalline order and only locally optimal structure. These 
configurations represent local minima for the system energy. 

A simple algorithm which simulates the average 
behaviour of a system of particles in thermal equilibrium 
was developed by Metropolis et af. (1953). In each step of 
the algorithm, a particle is given a small random 
displacement and the resulting change in the energy of the 
system A E  is computed. The probability of such a change 
occurring is assumed to be 

~ ( A E )  = e-AE'kT, 

If BE < 0 (i.e. the transition has lowered the system energy) 
the probability according to (8) is greater than unity; in this 
case the change is arbitrarily assigned a probability P = 1 
and the transition is accepted. The case A E  2 0 is treated 
probabilistically: a random number 5 is generated from a 
uniform distribution on the interval [0, 11; if 5 5 P ( A E ) ,  the 
new configuration is retained; if not, the original 
configuration is retained. Repeating this basic step many 
times simulates thermal motion at a temperature T. The 
system eventually reaches equilibrium and the probability of 
a given configuration r evolves into a Boltzmann 
distribution. 

Simulated annealing optimization is based on an analogy 
between the undetermined parameters of a mathematical 
system to be optimized and the particles of a physical 
system. The objective function of the optimization problem 
is analogous to the energy of the physical system, with the 
desired optimum corresponding to the ground-state 
configuration. Optimization via simulated annealing involves 
statistically modelling the evolution of the physical system 
using the Metropolis algorithm at a series of decreasing 
temperatures that allow the system to anneal into a state of 
minimum energy. Accepting perturbations to the system 
which increase the objective function as well as those which 
decrease it according to the Metropolis criterion allows the 
algorithm to escape from local minima. 

In simulated annealing, the temperature T acts as a 
control parameter and has the same units as the objective 
function E ( k  is taken to be 1). The process begins with the 
system in a known configuration and a procedure of 
generating random perturbations or changes in the 
configuration. The initial temperature must be high enough 
so that the system is completely 'melted', i.e. so that 
essentially all changes are accepted according to the 
Metropolis criterion (8) regardless of whether E is decreases 
or increased. This completely disorders the system and 
renders the solution independent of the initial configuration. 

(8) 

3 THE SIMULATED ANNEALING 
APPRAISAL ALGORITHM 

The construction of extremal models may be formulated as a 
simulated annealing optimization problem as follows. The 
system to be optimized is represented by u = {a,} and the 
ensemble of possible system configurations is taken to be the 
set of all configurations {a;}, such that al: 5 a, 5 uT. Since 
each a, is allowed to vary continuously between its limits, 
there are an infinite number of possible configurations, and 
therefore the formulation here is not strictly a combinatorial 
optimization problem. However, with an appropriate 
procedure of perturbing the system it is straightforward to 
apply simulated annealing to this problem. Vanderbilt & 
Louie (1984) present a method of applying simulated 
annealing to continuous problems when no limits can be 
estimated for the system parameters. 

Extremal models which minimize the conductivity average 
a ( A )  may be constructed by minimizing the energy or 
objective function 

The first term on the right of (9) represents the difference 
between the achieved and desired x1 misfit, the second term 
represents the model average to be minimized, and B is a 
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trade-off or scaling parameter which determines the relative 
importance of the misfit and model average in the 
minimization. To construct an extremal model which 
maximizes I?, the objective function (9) is modified to be 

M 

E(u, A) = Ix'(u) - + B c w,(a: - 0,). (10) 
* = l  

Requiring a precise level of fit to the data according to the 
x1 criterion is adopted here for simulated annealing 
appraisal so that the results may be compared directly with 
those of the linearized (LP) appraisal algorithm. However, 
it should be noted that the simulated annealing approach is 
not restricted to this measure of misfit, and in other 
applications it may be appropriate to use the more 
conventional xz misfit measure (e.g. Parker 1977). Likewise, 
the simulated annealing optimization method can be 
adapted to minimize other functionals of the model (e.g. a 
measure of the model structure), subject to fitting the data, 
by replacing the second term of (9) or (10) by the functional 
to be minimized. 

The energy functions (9) and (10) generally lead to 
frustrated optimization problems since the two terms 
represent conflicting objectives of fitting the data and 
minimizing or maximizing the model average. This implies 
that there are likely many solutions which closely 
approximate the optimal solution and are equally acceptable 
(Kirkpatrick 1984). 

The basic step at each temperature of the annealing 
schedule involves perturbing the system u, computing the 
resulting change in the objective function A E ,  and accepting 
or rejecting the new configuration based on the Metropolis 
criterion (8). System perturbations involve randomly 
changing one or more conductivity elements. A conductivity 
element a, is changed according to 

0, = 0, + v(a, - at ) ,  (11) 

where q is a random number from a uniform distribution on 
[0, 11. In ( l l ) ,  a, and uu are initially taken to be a; and CT: 
so that a, can take on any value between its limits. After a 
sufficient number of temperature steps, large-scale structure 
of the solution becomes (relatively) fixed and extreme 
perturbations will inevitably be rejected. At this point a, 
and a, may be reset to a,/2 and 2a, (if these values are 
within the limits). A perturbation can involve changing one 
element (chosen sequentially) or a random combination of 
elements. Combinations involve a random number of 
elements which are chosen at random and changed 
according to (11). We have found the most effective manner 
of perturbing the system involves alternating between 
changing a single element and a combination of elements, 
and cycling through the system a number of times. 
Typically, this would involve 300-500 perturbations per 
temperature. 

Since finding the best possible extremal value for ii is 
crucial, we have adopted a cautious approach to the 
annealing schedule. An initial temperature To is chosen so 
that at least 90 per cent of the perturbations are accepted. 
This effectively melts the starting model. The temperature is 
reduced according to the sequence 

T,+l = +I;, i = 0 , 1 , .  . . , 

where E~ is typically 0.99. The temperature reduction 
continues until the system freezes and no  further 
perturbations are accepted. Although faster annealing 
schedules could likely be devised by reducing T more 
quickly at high and low temperatures, this schedule has 
proved very effective. 

Determining appropriate values for the trade-off para- 
meter /3 is another important aspect of the optimization 
problem. Our optimization procedure is guided by the 
following ideas. The objective function (9) or (10) may be 
represented as 

E(u, A) = Ex + BE,, (13) 
where Ex is the misfit component, E ,  is the model average 
component, and /3 is the trade-off parameter which controls 
the relative importance of the two contributions in the 
objective function. In the early stages of the annealing 
process the misfits are large and /3 is chosen such that 
BE, > Ex. This generally causes the conductivity to 
approach the imposed limits in the depth range over which 
the conductivity bound is desired. The data usually are not 
fit well at this stage. In order to lessen the tendency for the 
models to be close to the limits, the value of /3 must be 
gradually reduced. This also allows models to be generated 
which greatly reduce Ex.  At some point in the optimization 
the desired misfit is (approximately) achieved and Ex = 0. 
We wish to preserve that condition, and hence it is 
necessary that B be sufficiently small so that even small 
deviations of x1 from x i  are discriminated against. When f i  
achieves such a value, it is not necessary to reduce it further. 
Effectively, only model perturbations which are consistent 
with keeping Ex small have a chance of being accepted, and 
whether these perturbations are accepted then depends 
primarily upon how they affect E,. This latter decision is 
unaffected by scaling E ,  by a constant. In summary, p is 
initially chosen to be large. As the temperature is reduced in 
the annealing schedule /3 is also reduced until it is 
sufficiently small, at which point it can be kept constant. 

We have not investigated the ideal relationship between 
E x ,  E,, p and T, but the ideas presented here indicate that 
/3 should decrease with temperature. We have chosen an 
explicit relationship 

/3(T,+l) = .@(T), i = 0,1, . . . , (14) 

where I 1 (equality is invoked once model structure 
which acceptably fits the data becomes relatively per- 
manent). Appropriate values of @ ( T ) ,  as determined by 
/?(To) and in (14), are generally problem-dependent and 
may require some experimentation. However, we have 
found that the procedure works well and that the extremal 
bound obtained for ii is independent of the precise values 
chosen, provided /3 is varied in the manner described above. 

4 APPRAISAL EXAMPLES 

In this section simulated annealing appraisal is illustrated for 
synthetic and field MT measurements and the results are 
compared to those of linearized extremal model appraisal. 
The synthetic test case considered here was used by Whittall 
& Oldenburg (1991) in their survey of 1-D MT inversion 
techniques. The true model consists of four homogeneous 
layers overlying a uniform half-space, and is indicated by the 
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dashed line in Figs 1 and 2. Complex responses consisting of 
ratios of orthogonal components of magnetic and electric 
field R = B/E were generated at 12 periods equally spaced 
in logarithmic time from 0.0025 to 250 s. Accurate data are 
used in the appraisal, however, an uncertainty of 1.8 per 
cent in all responses is assumed so that the x1 statistic can be 
used to measure the relative fit of the models. The desired 
misfit was taken to be x i =  19-*2N. The model 
partition consists of M = 50 elements with assumed 
conductivity limits of 0.002 5 a, 5 0.2 S m-'. 

Figures l(a) and (b) show the extremal models which 
maximize B(zo = 1300, A = 800) constructed using simulated 
annealing and the linearized algorithm of Dosso & 
Oldenburg (1989), respectively. The similarity of the 
solutions near the region of maximization (900-1700 m 
depth) is amazing considering the completely different 
approaches of the two methods. The deep structure of the 
extremal models in Figs l(a) and (b) differs somewhat; this 
structure is well removed from the region of maximization 
and does not affect the extremal value for B. These 
differences may reflect the degeneracy of the near-optimal 
solutions. The upper bounds for B computed from these 
models are essentially identical: 0.0760 (simulated anneal- 
ing) and 0.0767 S m-' (linearized). Both constructed models 
achieve the desired misfit of x1 = 19.0. The true data 
(squares with error bars) and predicted responses (solid 
line) are compared in the panels on the right of the models 
in terms of apparent conductivity a, and phase 4. 

Figures 2(a) and (b) show the extremal models which 
minimize a(z0 = 1300, A = 800) constructed using simulated 
annealing and linearized inversion, respectively. The 
solutions are very similar near the region of minimization 
and yield lower bounds for B of 0.0022Sm-' (simulated 
annealing) and 0.0020 S m-l (linearized). These computed 
lower bounds reflect the a priorz limit of u- = 0.002 S m-', 
which indicates that the MT data essentially can not impose 
a non-zero lower bound on the conductivity for this 
averaging width (01). As A increases the ability to resolve 13 
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Figure 1. Extremal models constructed by maximizing B(zo = 
1300, A = 800) for the synthetic MT example with model limits 
0.002 5 a, 5 0.2 S m-'. (a) shows the model constructed using 
simulated annealing; (b) shows the solution from the linearized 
inversion. The two models are in excellent correspondence in and 
near the region where the conductivity is maximized. The true 
model is indicated by the dashed line. The constructed models have 
a misfit of x1 = 19.0; the fit to the true responses is shown in the 
panels to the right. 
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Figure 2. Extremal models constructed by minimizing 6(zo = 
1300, A = 800) for the synthetic MT example with model limits 
0.002 5 u, 5 0.2 S m-I. (a) shows the model constructed using 
simulated annealing; (b) shows the solution from the linearized 
inversion. The two models are in excellent correspondence in and 
near the region where the conductivity is minimized. The true 
model is indicated by the dashed line. The constructed models have 
a misfit of x' = 19.0; the fit to the true responses is shown in the 
panels to the right. 

improves. Both constructed models shown in Fig. 2 achieve 
the desired misfit of x' = 19.0. 

It is interesting to compare the extremal models with the 
theoretical results of Weidelt (1985). Weidelt analytically 
treated the problem of extremizing the conductance function 
S(zJ = j?a(z) dz subject to exactly fitting a small number 
of (precise) MT responses. Weidelt's solutions consist of 
thin zones of infinite conductivity, but finite conductance, 
embedded in an insulating half-space. When S is maximized, 
a conductive zone is just included at the edge of the region 
of maximization; when S is minimized, a conductive zone is 
just excluded at the edge of the region of minimization. The 
extremal models shown in Figs 1 and 2 resemble Weidelt's 
solutions with thin conducting zones just included or 
excluded at either edge of the region of maximization or 
minimization, respectively. This would seem to suggest that 
both the simulated annealing and linearized extremizations 
approach discretized approximations to the global extremal 
solution. 

In 0 1 ,  upper and lower bounds a"(A) and &(A) were 
computed for B(zo, A) at a number of different averaging 
widths A,  and plotted as a function of A to illustrate the 
resolution of the data at the depth q,. Fig. 3 shows the 

O Z O C  7 I 
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0 400 800 1200 

Averaging Width A ( m )  

Figure 3. Computed lower and upper bounds for @(z0= 1300, A) 
for the synthetic h4T example with model limits 0.0025 u, I: 
0.2 S m-I. The solid line indicates bounds from linearized appraisal, 
the dotted line indicates bounds from linearized appraisal, and the 
true model averages are indicated by the dashed line. 
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Table 1. Summary of lower and upper bounds computed for 
5(z, = 1300, A) using simulated annealing and linearized inversion 
to compute extremal models for the synthetic MT example. 

a (Slrn) li r,S/m) 

A (m) minimization maximization 

a m e d i n g  linearized annealing linearized 

100 0.0022 0.0020 0.200 0.200 
200 0.0022 0.0020 0.200 0.200 

400 0.0022 0.0020 0.118 0.119 
600 0.0022 0.0020 0.0866 0.0884 

800 0.0022 0.0020 0.0760 0.0767 

loo0 0.0134 0.0127 0.0680 0.0696 

1200 0.0174 0.0172 0.0604 0.0616 
1400 0.021 1 0.0200 0.0537 0.0545 

bounds computed by minimizing and maximizing b(zo = 
1300, A) for eight averaging widths A. The solid line 
indicates the bounds calculated using simulated annealing, 
the dotted line indicates the bounds from the linearized 
analysis and the dashed line shows the true model averages. 
The bounds computed using the two methods are almost 
indistinguishable over the entire range of A,  indicating that 
these methods produce virtually identical extremal values 
for 6; these values are summarized in Table 1. It is noted, 
however, that the extremal values computed from the 
linearized analysis are slightly better at each value of A than 
those achieved by the simulated annealing method (i.e. the 
linearized method yields larger upper bounds and smaller 
lower bounds). 

A final example of appraisal using simulated annealing 
considers a set of wide-band MT field data measured near 
Kootenay Lake in southeastern British Columbia, Canada, 
by Jones et al. (1988) as part of the LITHOPROBE 
Southern Cordilleran transect. Dosso & Oldenburg (1989) 
applied linearized extremal model appraisal to this data set 
to investigate an apparent low-conductivity region at 

100 , 1 

Figure 4. Extremal models constructed by maximizing 5 over the 
apparent low conductivity region 2000-7000 m depth for the 
LITHOPROBE MT data set. Model limits are 0.0001s ujs  
1.0 S m-' .  (a) shows the model constructed using simulated 
annealing; (b) shows the solution from the linearized inversion. The 
two models are in good correspondence in and near the region 
where the conductivity is maximized. The computed upper bounds 
for u are 0.0021 S m-' using simulated annealing, and 0.0023 S m-' 
using linearized inversion. The constructed models have a misfit of 
x' = 95.0; the fit to the true responses is shown in the panels to the 
right. 

2000-7000 m depth indicated by minimum-structure models. 
Considering this data set of complex responses at N = 34 
frequencies and a fine depth partition of M = 130 elements 
represents a demanding test for the simulated annealing 
appraisal algorithm. Model limits of 0.0001 5 a, I 1.0 S m-' 
are assumed, and the desired misfit was taken to be x i  = 95, 
since previous modelling studies indicated that the data 
could not be fit to within the expected value of x' (Dosso 
1990). The upper bound for the model average over the low- 
conductivity region computed using simulated annealing is 
0.0021 S m-l and the constructed extremal model is shown 
in Fig. 4(a). By comparison, an upper bound of 
0.0023 S m-' was computed using the linearized algorithm, 
and the extremal models is shown in Fig. 4(b). Both 
constructed models have a misfit of x1=95.0. The two 
models are in good agreement near the region of 
maximization 2000-7000 m depth. The conductivity remains 
near the lower limit in this region with narrow conductive 
zones just included at either edge of the region of 
maximization. 

4 DISCUSSION 

The simulated annealing procedure developed in this paper 
has great flexibility and can be applied to minimize or 
maximize any (linear or non-linear) functional of the model 
and/or misfit in any inverse problem for which a solution to 
the forward problem exists. The annealing method generally 
requires a large number of solutions to the forward problem 
and therefore the computational efficiency depends directly 
on the efficiency of the forward solution. 

Simulated annealing appraisal for the MT problem can be 
quite slow and is considerably less efficient than linearized 
methods. The solutions for the synthetic MT example 
required, on average, almost two days CPU time per 
extremization on a SUN 4/310 workstation, and represents a 
very careful approach to the annealing schedule to ensure 
that the best possible results are obtained. By comparison, 
the linearized extremizations required only about 3-5 min of 
computation time. However, since simulated annealing is 
well-known for its ability to avoid unfavourable local 
minima, it provides a useful method of corroborating the 
results of linearized analysis. 

In principal, simulated annealing can find global minima 
(e.g. van Laarhoven & Aarts 1987) and therefore the 
bounds computed using the simulated annealing algorithm 
might be expected to be better than those of the linearized 
analysis. However, the success of simulated annealing 
optimization depends on the annealing schedule, the 
method of perturbing the system, and the choice of trade-off 
parameter p. We have investigated a number of possibilities 
for each, and have presented our best optimization 
algorithm. In all the cases considered, we have found that 
the extremal value for b computed using simulated 
annealing is very close, but slightly inferior, to that 
computed using linearized appraisal. This indicates that the 
linearized approach produces excellent extremal values 
which in many cases may represent the best approximation 
(for a given depth partition) to the global extremum. The 
similarity in form of the constructed models to the 
theoretical extremal solutions would seem to support this 
conclusion. Consequently, even though the analysis in this 
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paper does not constitute a proof of global optimality, it 
does provide compelling evidence that linearized extremiza- 
tion is an efficient method of computing meaningful 
conductivity bounds. 
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