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1 Introduction

Despite the obvious relevance to understanding the rich phenomenology of strange metals,

it remains an extremely challenging task to calculate the thermoelectric response of a

strongly interacting theory. One avenue to make progress is to study quantum critical

theories, where the linear response coefficients are constrained to take a scaling form as a

function of temperature, T [1–4].

However for theories with a net charge density, ρ, it is much harder to make progress.

Indeed, in order to obtain finite transport coefficients it becomes necessary to introduce

some mechanism for dissipating momentum. Rather than being intrinsic properties of a

critical theory, the transport coefficients now depend on the details of how translational

invariance, for instance, is broken.

Nevertheless, it is still possible to make progress by working perturbatively in some

small parameter. In particular, detailed results for transport coefficients have been derived

both within a model of relativistic hydrodynamics (perturbative in ρ/T 2) [5] and using the

memory matrix formalism (perturbative in the strength of momentum dissipation) [6, 7].

An alternative approach is provided by holography. The last couple of years has seen a

large amount of progress in obtaining analytic expressions for DC transport in holographic

models in which momentum conservation is violated in some manner. These techniques,

which originated in the study of the electrical conductivity in massive gravity [8–10], have

subsequently been generalised to lattice models [11–13], theories in which translational

invariance is broken by linear axions [14], and to the calculation of thermoelectric [15–17]

and Hall conductivities [18].

The key advantage of these techniques over other approaches is that, rather than being

valid only in some perturbative regime, it is possible to obtain exact expressions for DC

transport. The results are therefore valid at all temperatures (that is, including T 2 ≪ ρ)

and for any strength of momentum dissipation. In particular, obtaining these expressions
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for electric Hall transport recently allowed a novel mechanism for obtaining an anomalous

scaling of the Hall angle to be identified [18].

In addition to this behaviour of the Hall angle, many further anomalous aspects of the

strange metal transport are evident in the effects of a magnetic field on charge and heat

transport. The original hydrodynamic approach of [5] to magnetotransport was motivated

by the large Nernst signals detected by Ong et al. [19]. Similarly, unusual scaling laws are

found in the thermopower, magnetoresistance and Hall Lorentz ratio [4]. Motivated by

these results, in this note we calculate the full set of DC magnetothermoelectric transport

coefficients for a large class of holographic models.

As is typical in holography, the key to performing these calculations is to identify

radially independent quantities in the bulk that can be identified with the boundary cur-

rents [9, 13, 20]. However, we will see that the existence of non-trivial magnetisation

currents complicates the usual discussion [21]. In order for us to obtain radially indepen-

dent quantities, it will be necessary to first subtract off the contribution of the magneti-

sation current. Nevertheless, the end result is that we will still be able to express the DC

transport currents, and hence response coefficients, solely in terms of properties of a black

hole horizon.

In section 2 we present the details of our holographic models and the calculation of the

DC magnetothermoelectric transport. In section 3 we close with a brief discussion of the

significance of these results in the wider context of other approaches to magnetotransport [5,

22]. In order to improve the readability of our discussion we have relegated certain technical

details, such as the definition of the energy magnetisation density and the results for

anisotropic theories, to several appendices.

We note that whilst this manuscript was in preparation a paper calculating the mag-

netothermoelectric response in holographic models with massive gravitons appeared [22].

Whilst the lattice and axion models we are considering here are more general, the close

connection between these models and massive gravity [11, 14] means that our calculations

and results for DC transport take a similar form to those in [22].

2 Thermoelectric transport in a magnetic field

In this section our goal is to calculate the transport coefficients of simple holographic models

in the presence of a magnetic field. In particular, we wish to obtain the thermoelectric linear

response of our theories in response to an applied electric field, ~E, and thermal gradient,
~∇T . As has been discussed at length in [5, 21] there are subtleties with defining these

quantities in the presence of a quantising magnetic field. In particular, the electric and heat

currents receive additional contributions from spatial variations in the local magnetisation.

These additional magnetisation currents must be subtracted out of the total current in order

to obtain the physical transport currents that couple to external probes. We therefore need

to decompose the total electric, ~J (tot), and heat, ~Q(tot) currents as

~J (tot) = ~J + ~J (mag)

~Q(tot) = ~Q+ ~Q(mag) (2.1)
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The magnetisation currents, ~J (mag) and ~Q(mag) have been studied in detail in [21]. There

it was shown that, at the level of linear response, the magnetisation currents induced by

electric and thermal gradients are given by

~J
(mag)
i =

M

T
ǫ̂ij ~∇jT (2.2)

~Q
(mag)
i = Mǫ̂ij ~Ej +

2(ME − µM)

T
ǫ̂ij ~∇jT (2.3)

where ǫ̂ij is the 2-dimensional antisymmetric tensor (with ǫ̂yx = 1) and µ is the chemical

potential. The other quantities appearing in (2.3) are the magnetisation density M and

the energy magnetisation density ME . We will not need a precise definition of the energy

magnetisation density in the main text and so relegate the details to appendix A. The main

focus of our attention is the linear response of the physical transport currents ~J and ~Q.

This defines the electric, σ̂, electrothermal, α̂, and heat, ˆ̄κ,1 conductivities according to

~J = σ̂ ~E − α̂~∇T

~Q = α̂T ~E − ˆ̄κ~∇T (2.4)

In the presence of a magnetic field, each of these conductivities are 2 by 2 matrices. For

isotropic systems, which will be the main focus of our discussion, these can be decomposed

into their symmetric, e.g. σxx, and antisymmetric, e.g. σxy, parts.
2 This means that the

linear response is described by six functions σxx, σxy, αxx, αxy, κ̄xx, κ̄xy. Our goal then, in

this section, is to calculate the DC limit limit of these transport coefficients for a large

class of holographic models. Here, we focus on holographic models that break translational

invariance but preserve the homogeneity of the bulk action. These models have received

a large amount of recent attention [12–15, 18], following the realisation that is possible to

obtain analytic expressions for their DC transport properties [9, 13]. For concreteness we

will work with the following simple bulk action

S =

∫

d4x
√−g

[

R− 1

2
[(∂φ)2 +Φ(φ)((∂χ1)

2 + (∂χ2)
2)] + VT (φ)−

Z(φ)

4
F 2

]

(2.5)

although our considerations can be trivially extend to more general actions. The trans-

lational invariance of the 2+1 dimensional boundary theory is broken by constructing

background solutions where we have χ1 = k1x and χ2 = k2y. Nevertheless, since only

derivatives of the χi fields feature in the action, the system remains homogeneous and can

be studied using ODEs. For simplicity of presentation we will only consider the isotropic

case k1 = k2 = k in the main text, although we present results for anisotropic systems in

appendix B. The class of models described by (2.5) includes many of the theories that have

been studied in the literature. In particular, if we choose to set φ = 0,Φ = const then the

χ fields correspond to massless axions in the bulk. These are dual to marginal operators,

Oχ in the boundary theory, in which translational invariance is broken by a linear source

1Note that ˆ̄κ is not the true thermal conductivity, κ̂, but rather the thermal conductivity in zero electric

field. These are related by κ̂ = ˆ̄κ− T α̂.σ̂
−1

.α̂.
2Note that isotropy implies that σyy = σxx and that σxy = −σyx.
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χ
(0)
i = kxi. The DC transport properties of these theories have been intensely studied

and are directly related to those of massive gravity theories [14]. On the other hand it

is also possible to obtain an action of the form (2.5) starting from the Q-lattice models

introduced in [12]. These Q-lattice models break translational invariance by introducing

an oscillatory lattice through two complex scalar fields Ψ1 ∼ eikx, Ψ2 ∼ eiky. The canoni-

cal action of these charged scalars can be rewritten in the form (2.5), which is convenient

for discussing transport, by performing the polar decomposition3 Ψi(r) = φ(r)eiχi(r). The

field φ(r) therefore corresponds to magnitude of these lattices in the bulk, whilst the χi(r)

can be thought of as their phase. If one uses conventional kinetic terms this results in the

action (2.5) with the choice Φ(φ) = φ2 and the requirement that we should identify the

fields χi under shifts of χi → χi + 2π.

For isotropic solutions a suitable ansatz for the background metric and gauge field

takes the form

ds2 = −Udt2 + U−1dr2 + e2V (dx2 + dy2) (2.6)

A = a(r)dt−Bydx (2.7)

where we assume that the geometry approaches AdS at the boundary r → ∞. The temporal

gauge field a(r) asymptotes to a constant value µ which is interpreted as the chemical

potential of the boundary theory. Likewise B corresponds to the magnetic field in the

dual theory. In addition we will assume that there is a regular black hole horizon located

at a position r+ in the bulk. Near this horizon we can expand the radially dependent

background fields as

U ∼ 4πT (r − r+) + ...

a ∼ a+(r − r+) + ...

V ∼ V+ + ...

φ ∼ φ+ + ... (2.8)

where T is identified with the temperature of the dual theory. As is standard, the transport

coefficients are computed in holography by studying perturbations of the background solu-

tion. We will follow the approach introduced in [13] and calculate the DC conductivity by

applying linear sources to the boundary fields. That is we consider the perturbation ansatz

Ax = −By + (−E + ξa(r))t+ δAx(r)

Ay = δAy(r)

gtx = −ξtU + e2V δhtx(r)

gty = e2V δhty(r)

grx = e2V δhrx(r)

gry = e2V δhry(r)

3Note that in the main text we are assuming that the two fields are related by a bulk Z2 symmetry and

so can have the same radial profile. We allow for anisotropic configurations in appendix B.
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χ1 = kx+ δχ1(r)

χ2 = ky + δχ2(r) (2.9)

which corresponds to applying an external electric field Ei = Eδix and temperature gra-

dient (∇T )i = ξδixT to the boundary theory.

Electrical Currents

As was first realised in [9, 11, 13], the key reason it is possible to calculate transport

coefficients in these models is that the currents of the boundary theory can be related to

radially-independent quantities in the bulk. In particular, the AdS/CFT dictionary tells

us that the expectation value of the currents are given by the quantities

〈 ~J (tot)i〉 = √−gZ(φ)F ir as r → ∞ (2.10)

Usually the fluxes
√−gZ(φ)F ir are independent of radial position, and so can be evaluated

anywhere in the bulk. Evaluating these fluxes at the horizon allows the conductivity

tensor to be extracted. However, in this case, the presence of non-trivial magnetisation

currents complicates the discussion. It is simple to use the linearised Maxwell equation

∂µ(
√−gZ(φ)F iµ) = 0 to show that for the perturbations (2.9) we have

∂r(
√−gZ(φ)F xr) = −∂t(

√−gZ(φ)F xt) = 0

∂r(
√−gZ(φ)F yr) = −∂t(

√−gZ(φ)F yt) = −e−2V Z(φ)Bξ (2.11)

which implies that the fluxes are no longer constant in the presence of a thermal gradient.

Note that if we had also applied a thermal gradient in the y direction, we would also

have found that
√−gZ(φ)F xr depended on the radial coordinate, r. Nevertheless, we

can still construct quantities that are independent of the radial coordinate by integrating

equations (2.11). That is we define bulk fluxes by

J x(r) =
√−gZ(φ)F xr

J y(r) =
√−gZ(φ)F yr − ξM(r) (2.12)

where M(r) is defined to be

M(r) = −
∫ r

r+

dr̃e−2V Z(φ)B (2.13)

This extra term has been chosen so that the currents J i defined in (2.12) are radially

constant by construction,

∂rJ i = 0 (2.14)

However, as we approach the boundary, r → ∞ we can no longer identify them with the

total currents in the boundary theory. Nevertheless, to calculate the response coefficients it

is the transport currents, rather than the total currents, that we are interested in. Remark-

ably, we show in appendix A that as r → ∞ then M(r) corresponds to the magnetisation
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density of the boundary theory. The effect of the additional term in (2.12) is therefore

simply to subtract off the magnetisation current so that near the boundary we have

〈 ~J i〉 = J i(r) as r → ∞ (2.15)

i.e. these constant bulk fluxes J i precisely correspond to the transport currents of the

boundary theory.4 Having related the transport currents to bulk constants we can proceed

to calculate the DC transport as normal. Linearising these expressions according to (2.9)

gives the bulk constants

J x = −Z(φ)UδA′

x − Z(φ)e2V a′δhtx −BZ(φ)Uδhry

J y = −Z(φ)UδA′

y − Z(φ)e2V a′δhty +BZ(φ)Uδhrx − ξM(r) (2.16)

Since these expressions are independent of the radial coordinate, we can choose to evaluate

them wherever we like. The trick, as always, is to proceed to the horizon where the

constraints of horizon regularity imply that

δAi = − Ei

4πT
ln(r − r+) +O(r − r+)

δχi = O((r − r+)
0)

δhti = Uδhri −
ξiU

4πe2V T
ln(r − r+) +O(r − r+) (2.17)

Note that for our ansatz we have Ei = δixE and ξi = δixξ but we have left the regularity

conditions in their general form. Furthermore the definition ofM(r) implies that it vanishes

at the horizon. We therefore find that that the transport currents can be expressed solely

in terms of properties of the horizon.5 In particular we have that

J x = Z(φ)Ex − e2V Z(φ)a′δhtx − Z(φ)Bδhty

∣

∣

∣

∣

r+

J y = Z(φ)Ey − e2V Z(φ)a′δhty + Z(φ)Bδhtx

∣

∣

∣

∣

r+

(2.18)

All that remains is to determine the values of the graviton fluctuations δhti at the horizon.

This can be done by examining the t− x and t− y components of the linearised Einstein

equations which read

U(e4V δh′tx)
′−(B2Z+e2V k2Φ)δhtx+BZUe2V a′δhry = −e2V ZUa′δa′x

U(e4V δh′ty)
′−(B2Z+e2V k2Φ)δhty−BZUe2V a′δhrx = −e2V ZUa′δa′y+BZ(−E+ξa(r))

(2.19)

After imposing the regularity conditions (2.17) these reduce to requiring that we satisfy

(B2Z(φ) + e2V k2Φ(φ))δhtx −BZ(φ)e2V a′δhty = −e2V Z(φ)a′E + e2V U ′ξ

(B2Z(φ) + e2V k2Φ(φ))δhty +BZ(φ)e2V a′δhtx = BZ(φ)E (2.20)

4Note the the reason we have only had to subtract off the magnetisation current from J y is because our

ansatz (2.9) only corresponds to applying a thermal gradient in the x direction.
5This should be contrasted with the total current which, since it depends on the magnetisation, is

sensitive to the full geometry.
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at the horizon. It is then straightforward to invert these equations and substitute for δhti
into (2.18). The resulting expressions for the electrical currents can be compared to (2.4),

which allows us to read off the electrical conductivity tensor as

σxx =
e2V k2Φ(ρ2 +B2Z2 + Ze2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

σxy = Bρ
(ρ2 +B2Z2 + 2Ze2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

(2.21)

whilst the electrothermal conductivities are

αxx =
sρe2V k2Φ

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

αxy = sB
(ρ2 +B2Z2 + Ze2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

(2.22)

which we have expressed in terms of the boundary charge density ρ = −Ze2V a′ and entropy

density s = 4πe2V |r+ .

Heat currents

Up until now we have focused solely on the electrical current. In order to extract the heat

conductivity, we need to consider the heat currents of the boundary theory. In [15] it was

shown that this can be done by considering the bulk two-form Gµν defined by

Gµν = 2∇µkν + Z(φ)k[µF ν]σAσ +
1

2
(2a(r) + Ex)Z(φ)Fµν (2.23)

where kµ is the vector field ∂t. The heat currents can then be identified with this two form

in a similar way to how the electrical current is related to the field strength. In particular,

at the linearised level we can make the identification

〈 ~Q(tot)i〉 = √−gGri as r → ∞ (2.24)

which follows from evaluating Gri for the perturbations (2.9) to get

〈 ~Q(tot)i〉 = U2

(

e2V δhti
U

)

′

− a(r)
√−gZ(φ)F ir as r → ∞ (2.25)

Up to contact terms, the first term in this expression corresponds to the expectation value

of the energy momentum tensor 〈T (tot)i0〉 [15]. The second term subtracts off the electric

current to get the heat current ~Q(tot)i = T (tot)i0 − µ~J (tot)i.

Once we have these fluxes, much of our earlier discussion can now be applied to the

heat currents. The motivation for introducing the two-form Gµν is that, in the absence of a

thermal gradient, it was shown in [15] to satisfy ∂µ(
√−gGµi) = 0. As a result the linearised

fluxes
√−gGri were independent of the bulk radial coordinate. However, the existence of

– 7 –
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magnetisation currents means that this is no longer true for the perturbations (2.9). Rather

we have that

∂r(
√−gGrx) = −∂t(

√−gGtx)− ∂y(
√−gGyx)

= 0

∂r(
√−gGry) = −∂t(

√−gGty)− ∂x(
√−gGxy) + e−2V Z(φ)Bξa(r)

= −e−2V Z(φ)B(E − 2ξa(r))

It is therefore again necessary to add an extra term to the fluxes in order to obtain

radially independent constants. That is we construct

Qx = U2

(

e2V δhtx
U

)

′

− a(r)
√−gZ(φ)F xr

Qy = U2

(

e2V δhty
U

)

′

− a(r)
√−gZ(φ)F yr −M(r)E − 2MQ(r)ξ (2.26)

where MQ(r) is given by

MQ(r) =

∫ r

r+

dr̃e−2V Z(φ)Ba(r̃) (2.27)

The additional terms in the definition of Qy ensure that these modified fluxes are radially

constant

∂rQi = 0 (2.28)

by construction. Once again the fact we have been forced to introduce this extra term

reflects the presence of magnetisation currents in the boundary. In appendix A, we show

that as r → ∞ then MQ(r) precisely approaches the heat magnetisation density, MQ =

ME − µM , of the dual theory. The effect of this additional term is therefore to subtract

off the contribution of the magnetisation current from (2.25). More precisely, we have that

near the boundary

〈 ~Qi〉 = Qi as r → ∞ (2.29)

i.e. the bulk constants Qi correspond to the heat transport currents of the boundary the-

ory. We can now repeat the trick we used with the electrical currents and evaluate these

constants at the horizon. The definitions of MQ(r) and M(r) imply that they vanish at

r = r+ and so, as for the electrical case, we see that the transport currents can be expressed

locally in terms of horizon fields. Using the regularity conditions (2.17) we find that these

expressions take the simple form

Qx = −U ′e2V δhtx|r+
Qy = −U ′e2V δhty|r+ (2.30)

– 8 –
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Fortunately, in our discussion of the electrical current we have already determined the val-

ues of δhti|r+ by inverting (2.20). We can therefore extract the thermoelectric conductivity,

α, as

αxx =
sρe2V k2Φ

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

αxy = sB
(ρ2 +B2Z2 + Ze2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

(2.31)

which reassuringly agrees with the expression we obtained from the electrical current (2.22).

Finally, the heat conductivity, κ̄ reads

κ̄xx =
s2T (B2Z + e2V k2Φ)

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

κ̄xy =
s2TρB

B2ρ2 + (B2Z + e2V k2Φ)2

∣

∣

∣

∣

r+

(2.32)

3 Discussion

Whilst on first glance the expressions for these transport coefficients seem rather baroque,

on closer inspection they display a remarkable simplicity. Perhaps the most striking aspect

of the equations is that, just as in the hydrodynamic analysis of [5], the entire set of DC

transport coefficients are described by two parameters. That is, aside from thermodynamic

factors, it is only the functions6

σccs = Z(φ)|r+
E + P

τ
= e2V k2Φ|r+ (3.1)

that appear in the transport coefficients. Here we have defined the timescale τ so that with

the above identifications the electric conductivity tensor takes precisely the same form as

in [5], where τ−1 corresponded to the momentum dissipation rate Although the agreement

of the electrical conductivity tensor between these two approaches is striking, it does not

extend to the thermoelectric response coefficients (as has previously been emphasised in [16,

17, 22]). This is not necessarily a surprise since, as we stressed in the introduction, as

soon as one includes a net charge density then the transport coefficients will depend on

the microscopic way in which momentum dissipation is incorporated. The holographic

results we have obtained therefore suggest that the mechanism for momentum dissipation

in holography is different from the particular model studied in [5]. Whilst our results

differ from those presented in [5], they take the same qualitative form as the recent results

using massive gravity [22]. In particular, we reproduce the results of linear axions (and

hence massive gravity [14]) by choosing to take the functions Z(φ) and Φ(φ) to be constant.

Although the structure of the equations is very similar, we emphasise that our results apply

for much more general holographic models - regardless of the form of these functions. In

6Here E is the energy density, P the pressure and we have identified σccs as a ‘charge-conjugation

symmetric’ conductivity.
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particular, by varying the choice of action, it is now possible to obtain quite general scalings

(with temperature) in the horizon quantities Z(φ)|r+ and Φ(φ)|r+ . It is therefore tempting

to see if one can choose these scalings to match the phenomenology of the cuprates. This

idea was anticipated in [22] where, after matching τ and σccs to the Hall angle as proposed

in [18], the scalings of the thermoelectric and heat transport coefficients, to leading order

in B, could be deduced. However, since the holographic results differ in general from the

hydrodynamic analysis, it is not yet clear to what extent these scalings are universal and

hence can be meaningfully compared to experiment. Nevertheless, the models and results

we have presented here should be capable of realising these proposed scalings explicitly.

Furthermore, since our results are valid even in strong magnetic fields, it is possible to

use these models to go beyond leading order in B. In particular, it has recently been

proposed that the magnetoresistance of strange metals can be attributed to the effects

of the magnetic field on the critical theory itself [23]. It would therefore be extremely

interesting to use the holographic models discussed here to study transport in the presence

of a strong magnetic field.
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A Magnetisation and energy magnetisation densities

In this appendix we wish to derive the formulae for the magnetisation and energy mag-

netisation densities used in the main text. The definition of the magnetisation is familiar.

If we apply a magnetic field to the boundary theory via a source A
(0)
x = −By, then the

magnetisation density is given by differentiating the Euclidean action SE , as

M = − 1

V
∂SE

∂B
(A.1)

where V is the volume of the boundary field theory. The energy magnetisation density

is defined as an analogous quantity for the metric. That is we should apply a source

δg
(0)
tx = −B1y and differentiate with respect to B1

ME = − 1

V
∂SE

∂B1

∣

∣

∣

∣

B1=0

(A.2)

We now wish to calculate these for the background solutions to our action (2.5). To do

this, it is convenient to consider solutions obeying the ansatz

χi = kxi φ = φ(r)

At = a(r) Ax = −By + (a(r)− µ)B1y

ds2 = −U(r)(dt+B1ydx)
2 +

dr2

U(r)
+ e2V (r)(dx2 + dy2)

– 10 –
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When B1 = 0, these are simply the background solutions we studied in the main text. At

leading order in B1 we also have applied a source δg0tx = −B1y to the boundary theory

which will allow us to evaluate the energy magnetisation density. The higher order terms

in B1 in the metric ensure that we have written down a consistent ansatz. In particular

note that even though we have introduced dependence on the y-coordinate, this does not

appear in the equations of motion. The dynamical fields φ(r), a(r), U(r), V (r) only depend

on the radial coordinate.

In order to calculate the magnetisation and energy magnetisation densities, we need

to differentiate the action with respect to B and B1, before setting B1 to zero. To do

this we first differentiate the off-shell bulk action, before evaluating these derivatives on

the equations of motion. With our ansatz we find that the Einstein-Hilbert term in the

action (2.5) can be written as

1

V SEH =

∫

∞

r+

dr
e−2V

2

[

UB2
1 − 2e4V (U ′′ + 4U ′V ′ + 6UV ′2 + 4UV ′′)

]

Similarly the scalar terms take the form

1

V Sscalar = −
∫

∞

r+

dr

[

1

2
e2V Uφ′2 + k2Φ(φ)− e2V VT (φ)

]

Finally we have the Maxwell term

1

V SMaxwell = −
∫

∞

r+

dr
e−2V

2
Z(φ)

[

(B +B1µ)
2 − 2B1(B +B1µ)a+B2

1a
2 − e4V a′2

]

Although we will not need them here, the equations of motion can of course be deduced

by varying this action with respect to the dynamical fields a(r), φ(r), U(r), V (r). To get

the magnetisation density, we simply need to set B1 = 0 and then differentiate the action.

We note that the only explicit B dependence is in the Maxwell term and hence we find7

M = − 1

V
∂SE

∂B
= −

∫

∞

r+

dre−2V Z(φ)B (A.3)

It is now clear to see that the M(r) defined in (2.13) is precisely the magnetisation density

when r → ∞. Likewise we can construct the energy magnetisation density by first differen-

tiating with respect to B1 and then setting B1 = 0. At linear order in B1 we again find that

it is only the Maxwell term that contributes.8 We thus read off the energy magnetisation

density as

ME = − 1

V
∂SE

∂B1

∣

∣

∣

∣

B1=0

= −
∫

∞

r+

dre−2V Z(φ)B(µ− a(r)) (A.4)

Finally we deduce that the heat magnetisation density is given by

MQ = ME − µM =

∫

∞

r+

de−2V Z(φ)Ba(r) (A.5)

from which we can see that the function MQ(r) (2.27) is equivalent to MQ when r → ∞.

7Note that the Euclidean action constructed via a Wick rotation t → −iτ has an extra minus sign

relative to the Lorentzian action (2.5).
8Note that at leading order in B1 the magnetisation and energy magnetisation densities do not receive

any contribution from the boundary counterterms.

– 11 –
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B Anisotropic models

It is straightforward to generalise our calculations to anisotropic theories. In particular,

we can consider the action

S =

∫

d4x
√−g

[

R− 1

2
[(∂φ)2 +Φ1(φ)(∂χ1)

2 +Φ2(φ)(∂χ2)
2] + VT (φ)−

Z(φ)

4
F 2

]

where we now break translational invariance in the x and y directions by constructing

background solutions with χ1 = k1x and χ2 = k2y. In order to allow for anisotropic

solutions we should also modify our metric ansatz to

ds2 = −Udt2 + U−1dr2 + e2V1dx2 + e2V2dy2 (B.1)

The resulting expressions for DC transport are more complicated that the isotropic

case, but are again simplified somewhat by introducing the thermodynamic factors s =

4πeV1+V2 |r+ and ρ = −eV1+V2Z(φ)a′. They read

σxx =
eV1+V2k22Φ2(ρ

2 +B2Z2 + Ze2V2k21Φ1)

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.2)

σxy = Bρ
(ρ2 +B2Z2 + Ze2V2k21Φ1 + Ze2V1k22Φ2)

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.3)

αxx =
sρeV1+V2k22Φ2

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.4)

αxy =
sB(ρ2 +B2Z2 + Ze2V2k21Φ1)

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.5)

κ̄xx =
4πe2V2sT (B2Z + e2V1k22Φ2)

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.6)

κ̄xy =
s2TρB

B2ρ2 + (B2Z + e2V2k21Φ1)(B2Z + e2V1k22Φ2)

∣

∣

∣

∣

r+

(B.7)

where the expressions for the remaining transport coefficients (e.g. σyy) can be trivially

obtained from those we have presented above through swapping around the labels 1 and 2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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