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1 Introduction

The mechanism of metal-insulator transition is one of the oldest, yet one of the funda-

mentally least understood problems in condensed matter physics. For a period of time

in the past it was prevailingly believed that there is even no metal-insulator phase tran-

sition in two spatial dimensional systems in zero magnetic field, since all charge carriers

are thought to be localized in an infinity large two-dimensional system [1]. While it is an

important problem, to understand the metal-insulator transition is difficult both from the

practical and the conceptual points of view. It is obvious that a good metal and a good

insulator are very different physical systems, and can be characterized by quite different

elementary excitations. In particular, in the intermediate regime of the metal-insulator

transition, there coexist different types of excitations and simple theoretical tools prove

of little help. The research of metal-insulator transition came to the strong correlation

era since the discovery of high temperature superconductivity. It is believed that strong

correlation physics dominates, and physical pictures based on weak-coupling approaches

prove insufficient or even misleading. Many theories have been proposed to understand

the metal-insulator transition, such as phenomenological scaling hypothesis formulated for
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quantum criticality, scaling theories of disorder-driven transitions and order-parameter ap-

proaches to interaction-localization. Nevertheless, mechanisms toward the metal-insulator

transition remain controversial and somewhat incomplete, see [2, 3] for reviews for a general

introduction to metal-insulator transitions.

On the other hand, holography has been providing towards the study of fascinating

phenomena in strongly correlated systems [4, 5]. It has seen an increasing interest in apply-

ing the techniques of holography to probe the rich structure of strongly coupled quantum

phases of matter, see e.g. [6–9] for reviews in the context of condensed matter applica-

tions. Of particular interest are the transport properties as a function of temperature and

other parameters, such as charge density and magnetic field. Holography provides a frame-

work to deal with states of quantum matter without quasiparticle excitations, for which

the transport properties deviate strongly from conventional approach described by Fermi

liquid theory. 1 In order to remove the unphysical divergence of transport due to transla-

tional invariance at finite charge density, a crucial ingredient is to introduce the momentum

dissipation. While there are many ways of introducing momentum relaxation in hologra-

phy, the simplest and most convenient one is the so-called linear axion models [16], where

translations are broken by a linear source that preserves a combination of translations and

shift symmetry. Some results obtained from this mean field approach have been found to

be qualitatively similar to those following from more generic mechanisms of momentum

relaxation.2

In the spirit of effective field theory, a minimal holographic model of a disorder-driven

metal-insulator transition was proposed in [27]. Such effective holographic theory describes

the low energy physics of dual field theory that involves only two sectors: a charge current

and a translation symmetry breaking sector that mimics the effects of disorder. After

including a direct coupling between the charge sector and the translation breaking sector,

the transport shows some interesting features. In particular, the DC electrical conductivity

does not obey any lower bound and there is a disorder-driven metal-insulator transition

at zero magnetic field. The authors of [27] considered a special model and studied its

electric response in absence of magnetic field. Given the rich phenomenological features of

this holographic setup, it is worth understanding the theory further and uncovering new

transport behaviors. An important outcome of [27] is that the new cross-coupling must

have a negative slop in order to obtain a metal-insulator transition. While it was checked

explicitly by considering a simple case, a deeper understanding of this issue is necessary.

To have a well-defined effective theory, one should concern the conditions under which a

model is consistent and free from pathologies. The analysis of consistency was done in

the decoupling limit with the metric kept frozen and in zero magnetic field. A further

check on the constraints on the couplings is necessary. What’s more, as a hallmark of a

phase transition, the scaling of an appropriate physical observable in this metal-insulator

transition has not been disclosed.

In this work we will address some issues mentioned above and will extend the study of

1Holographic realization for the anomalous scalings of strange metals can be found e.g. in [10–15].
2Despite a lot of work on linear axion models and generalizations, see e.g. [17–24], the physical nature

of the dual field theories is not well understood yet [25, 26].
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the holographic metal-insulator transition by including a non-trivial background magnetic

field. Firstly, magnetic field is a natural and experimentally relevant knob. It remains a

challenge to understand how the continuum of quantum critical excitations responds to it.

It is clear that a magnetic field will introduce qualitatively new features into transport.

In particular, Hall conductivities are now allowed due to the breaking of time reversal

invariance by the magnetic field. Secondly, unitarity as well as the second law of thermo-

dynamics enforces the matrix of conductivities to be positive definite, which in turn requires

the longitudinal conductivity to be non-negative. Considering the magnetotransport can

give a non-trivial test on the constraints on the couplings proposed in [27], or otherwise

might impose further constraints. As we will show in the present study, it is indeed a more

stringent restriction on the theory parameters for the model studied in [27].3 Last but

not least, it is definitely interesting to see more the phenomenology of this transition and

its generic features. We would like to uncover some universal behaviors during the metal-

insulator transition and try to examine possible probes that can be used to characterize

this transition. Indeed, we will understand why the new coupling plays the key role in the

metal-insulator transition and will find universal scaling features near the phase transition.

While it was called disorder-driven metal-insulator transition in [27], we will show that the

transition can also be driven by dialing the charge density and magnetic field.

The plan of this paper is as follows. In section 2, we introduce the holographic the-

ory and find the general dyonic black brane solutions analytically. We will discuss the

constraints on the coupling functions of the theory. In section 3 we present the main phe-

nomenological features of transport behaviors. We will obtain the DC magnetotransport

in terms of horizon data and then will discuss some generic features. The DC transport

for two representative models will be studied in more details. In section 4 we study the

optical conductivity for various phases and construct the temperature-disorder phase dia-

grams. We will check the behaviors of specific heat and charge susceptibility during the

metal-insulator transition. Section 5 is devoted to examining the behavior of complexity

in the metal-insulator transition. We conclude with further discussions in section 6 and

with some technical details in appendix A.

2 Holographic setup

We introduce the minimal holographic theory of metal-insulator transition. The action

takes the form [27]

S =

∫

d4x
√−g

[

1

2κ2N
(R− 2Λ)− 1

4e2
Y (X)FµνF

µν −m2V (X)

]

, (2.1)

where κN is the gravitational constant connected with GN by the relation 2κ2N = 16πGN ,

e stands for the U(1) charge that represents the unit of charge of the charge carriers, and

Λ describes the cosmological constant. The charge degrees of freedom are encoded in the

3In the absence of magnetic field, the constraints proposed in [27] gaurantee that the electric DC con-

ductivity is positive definite.
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U(1) gauge field Aµ with its strength Fµν = ∂µAν − ∂νAµ. Y and V are functions of the

translation breaking sector X =
∑2

I=1
1
2g

µν∂µφ
I∂νφ

I .

The disorder deformation is introduced by the Stückelberg field profiles φI ∝ xI with

xI the spatial coordinate of the system, which captures an averaged description of disorder

coming from a homogeneously distributed set of impurities. From an effective field theory

point of view, such setup provides a holographic metal-insulator transition as minimal as

possible, because there are no more dynamical ingredients in the dual field theory other

than the translation breaking and the charge sector. While V (X) does not couple directly

to the charge carriers, Y (X) captures the effects from charged impurities and is important

to realize a metal-insulator transition. Along similar lines, more general models were

introduced in [28, 29], where higher derivative corrections to an effective holographic action

of homogeneous disorder have been discussed in absence of magnetic field.

The equations of motion for the theory (2.1) are given by:

∇µ

[(

Y ′(X)

4e2
FµνF

µν +m2V ′(X)

)

∇µφI

]

= 0 , (2.2)

∇µ[Y (X)Fµν ] = 0 , (2.3)

Rµν −
1

2
(R− 2Λ)gµν = 2κ2N Tµν , (2.4)

with Tµν the stress tensor

Tµν =− 1

2
gµν

[

Y (X)

4e2
FµνF

µν +m2V (X)

]

+
1

2

[

Y ′(X)

4e2
FµνF

µν +m2V ′(X)

] 2
∑

I=1

(∂µφ
I∂νφ

I) +
Y (X)

2e2
FµρFν

ρ . (2.5)

Those equations of motion admit asymptotically AdS dyonic black brane solutions that

are given by

ds2 =
1

u2

[

−f(u)dt2 +
1

f(u)
du2 + dx2 + dy2

]

,

Aµdx
µ = At(u) dt+

1

2
B(x dy − y dx) ,

φI = αxI (x1 = x, x2 = y) , (2.6)

f(u) = u3
∫ u

uh

1

2

(

B2κ2NY
(

α2ξ2
)

e2
+

κ2Nρ2e2

Y (α2ξ2)
− 6

L2ξ4
+

2κ2Nm2V
(

α2ξ2
)

ξ4

)

dξ ,

At(u) = e2ρ

∫ uh

u

1

Y (ξ2α2)
dξ ,

where we have taken the cosmological constant to be Λ = −3/L2 with L the AdS radius

and uh stands for the location of the event horizon. ρ and B are the charge density and

the magnetic field, respectively. The temperature of the background geometry is given by

T = −f ′(uh)

4π
=

3

4πL2uh
− B2κ2Nu3hY

(

α2u2h
)

8πe2
− κ2Nρ2e2u3h

8πY
(

α2u2h
) − κ2Nm2V

(

α2u2h
)

4πuh
. (2.7)
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The consistency of a theory imposes some constraints on the couplings that appear in

the Lagrangian. For the present theory (2.1), it has been argued that V (X) and Y (X)

should satisfy the following constraints [27]:

V ′(X) > 0, Y (X) > 0, Y ′(X) < 0 . (2.8)

It has been shown that Y ′(X) < 0 plays a key role in triggering a metal-insulator transition

in the absence of a magnetic field.4 In the following discussion, we will fix the gravitational

constant, the charge unit and the AdS radius to one, i.e. κN = e = L = 1.

3 Magnetotransport

Having setup the holographic system, we study the transport properties in the presence of a

magnetic field in this section. We obtain the analytic result for the electric DC conductivity

and resistivity in terms of horizon data and discuss some generic features without being

concerned with details of the holographic theory. We will show that there is a non-trivial

restriction on Y (X) in order to avoid a negative diagonal conductivity in the magnetic

field. We can also uncover some universal scaling behaviors near the phase transition.

3.1 DC transport and constraint

We now focus on the magnetotransport in the theory (2.1), for which an explicit formula

in terms of horizon data can be obtained by following the method developed in [30, 31].

In the presence of a magnetic field, the DC conductivity is described by a two dimensional

matrix σij with the longitudinal and Hall components given by5

σxx =σyy =
ΩY [Ω + Y (B2Y 2 + ρ2)u2h]

(Ω +B2Y 3u2h)
2 +B2ρ2Y 4u4h

, (3.1)

σxy =− σyx =
BρY 3u2h[2Ω + Y (B2Y 2 + ρ2)u2h]

(Ω +B2Y 3u2h)
2 +B2ρ2Y 4u4h

, (3.2)

Ω =α2[m2V ′Y 2 +
u4h
2
(B2Y 2 − ρ2)Y ′] .

The resistivity matrix Rij is obtained by inverting the conductivity matrix σij :

Rxx =Ryy =
σxx

σ2
xx + σ2

yy

=
Ω[Ω + Y (B2Y 2 + ρ2)u2h]

Y [
(

Ω+ ρ2Y u2h
)2

+B2ρ2Y 4u4h]
, (3.3)

Rxy =−Ryx = − σxy
σ2
xx + σ2

yy

= −BρY u2h[2Ω + Y (B2Y 2 + ρ2)u2h]
(

Ω+ ρ2Y u2h
)2

+B2ρ2Y 4u4h
, (3.4)

From now on all functions will be understood to be evaluated at the horizon u = uh.

One finds that σxx and σxy are controlled by two couplings V and Y . Note that uh is in

general a function of temperature T , as seen from (2.7). So the magnetotransport above

is implicitly temperature-dependent, while the dependence on the remaining scales in the

4See [32–38] for other holographic realizations of metal-insulator transitions driven via other mechanisms.
5The derivation of this result is presented in appendix A.
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system — the magnetic field B, the strength of disorder α as well as the charge density

ρ — is explicitly visible. Notice that due to a scaling symmetry, only three of these four

scales (T,B, α, ρ) are actually physical.

As a consistency check, we first turn off the magnetic field and then the DC conductivity

reduces to a simple expression

σDC ≡ σxx(B = 0) = Y (α2u2h) +
ρ2u2h

α2
(

m2V ′(α2u2h)−
ρ2Y ′(α2u2

h
)u4

h

2Y (α2u2

h
)2

) , (3.5)

which precisely recovers the vanishing magnetic field result in [27]. Note that in absence of

a magnetic field, σxy = Rxy = 0 as a consequence of parity symmetry, and Rxx = 1/σDC .

Another interesting case is to consider the clean limit by taking α → 0, which corre-

sponds to no disorder or momentum dissipation at all. For this limit in which the strength

of disorder α is much smaller than any other scales (T,
√
B,

√
ρ), the dimensionless quantity

X = u2hα
2 is a small quantity. Without loss of generality, we parametrize the couplings Y

and V in the following expansion as X → 0:

Y (X) = 1− kX +O(X2), V (X) =
1

2m2
X +O(X2) , (3.6)

where k > 0 from the requirement (2.8).6 One immediately obtains from (3.1) and (3.2)

that

σxx = 0, σxy =
ρ

B
, (3.7)

which are independent of the temperature as well as the details of the theory we are

considering. This universal feature can be understood as a generic consequence of Lorentz

invariance when α → 0, and can also be obtained from relativistic hydrodynamics. Note

also that the conductivities do not divergent in the clean limit, which is due to a Lorentz

force on the system that violates momentum conservation.

Including the leading correction coming from momentum dissipation, we find that the

diagonal component of conductivity is given by

σxx =
u2h
2
[−k +B−2(u−4

h + ρ2k)]α2 +O(α4) . (3.8)

Since σxx should not be negative, we must have

− k +B−2(u−4
h + ρ2k) > 0 ⇒ u−4

h > (B2 − ρ2)k , (3.9)

no matter the value of B and ρ are. Meanwhile, one finds from (2.7) that

T =
3

4πuh
− (B2 + ρ2)u3h

8π
+O(α2) , (3.10)

and the requirement of T > 0 demands

3

4πuh
− (B2 + ρ2)u3h

8π
> 0 ⇒ u−4

h >
B2 + ρ2

6
. (3.11)

6We point out that Y ′(X) can be zero. The most simple case is that Y is a constant, for which there is

no direct coupling between the charge sector and the translation breaking sector.
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Therefore, there is no regime for a negative longitudinal conductivity provided the following

inequality is satisfied for a general choice of B and ρ.

B2 + ρ2

6
> (B2 − ρ2)k , (3.12)

which is guaranteed only for7

0 6 k 6 1/6 ⇒ −1/6 6 Y ′(0) 6 0 . (3.13)

The key message is that by taking into account magnetic field, we are able to give a

generic constraint on k, without referring to the non-linear details of the coupling functions

Y and V .8 To obtain the constraint (3.13), we have only considered a very generic expan-

sion (3.6) and demanded σxx > 0 in the weak disorder limit. As one can see from (3.1)

and (3.2) that the behaviors of the magnetotransport depend on the details of couplings

in a theory. Although we have obtained a strong constraint on k (3.13) from the weak

disorder analysis, it does not guarantee that σxx > 0 away from the weak disorder regime.

We still need to check explicitly whether the longitudinal conductivity is positive definite

or not for a given model.

3.2 Metal-insulator transition and scaling behavior

Before proceeding to specific examples, let’s understand why a metal-insulator transition

or crossover can be triggered in the present setup. We adopt the following working and

phenomenological definition of a metal versus an insulator behavior:

metal:
dRxx

d T
> 0, insulator:

dRxx

d T
< 0 , (3.14)

and inspect the temperature dependence of Rxx and σxx.
9 We now consider the high

temperature limit where T is the dominant scale in the problem. In this limit the temper-

ature (2.7) at leading order is given by the simple expression

T =
3

4πuh
+O(u2h) , (3.15)

7When talking about pseudo-spontaneous breaking of translational invariance and holographic pinning

mechanism (see e.g. [22, 24]), it is convenient to keep m2 explicitly in the action (2.1) and a typical choice

of graviton mass term V (X) is given by

V (X) =
1

2
X +

β

m2
Xn, n > 5/2 .

Using a simple scaling argument, it is easy to show that for the above case the allowed parameter space

becomes 0 6 k 6 m2/6 (−m2/6 6 Y ′(0) 6 0) instead of (3.13). So it should be careful if one wants to

consider pseudo-spontaneous regime where m2 ≪ 1 and β ≫ m2 for a non-trivial Y (X).
8In contrast, for the case without magnetic field, the inequality (3.12) is satisfied automatically since

k > 0. Thus one is not able to obtain any constraint from (3.12) when B = 0.
9A much strict definition of an insulator would be σ(T = 0) = 0. In the present paper we adopt a more

realistic and phenomenological definition for an insulator in (3.14) typically used in the literature.
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and the corresponding diagonal resistivity and conductivity read

Rxx=1− 2u2h
α2

(

ρ2−B2− k

2
α4

)

+O(u4h)= 1− 9

8π2α2

(

ρ2−B2− k

2
α4

)

T−2+O(T−4) ,

(3.16)

σxx=1+
2u2h
α2

(

ρ2−B2− k

2
α4

)

+O(u4h)= 1+
9

8π2α2

(

ρ2−B2− k

2
α4

)

T−2+O(T−4) ,

(3.17)

where we have used (3.6) as uh → 0 in the high temperature limit. It is then clear that there

is a critical charge density ρc =
√

B2 + kα4/2. When ρ < ρc, Rxx decreases monotonically

with T increased and displays insulating behavior, provided that the temperature is the

largest scale in the problem. On the other hand, Rxx increases with increasing T when

ρ > ρc, displaying metallic behavior. As a consequence, there is a metal-insulator transition

by increasing the charge density at fixed magnetic field and disorder strength. On the other

hand, the phase transition can also be triggered by increasing either the magnetic field B

or the disorder strength α at a fixed charge density. From (3.16) one can also understand

why Y ′(X) < 0 (k > 0) has a dramatic impact on the possibility to have a metal-insulator

transition in the absence of magnetic field.

After understanding the metal-insulator transition triggered by the charge density,

magnetic field and disorder in our generic holographic setup, we would like to see the

possible scaling behavior near the transition. In particular, we are interested in some

robust features that could be potentially connected to experimental measurements. An

interesting feature from (3.16) is that the diagonal component scales with temperature at

densities both below and above ρc. More precisely, Rxx can be written in the form

Rxx ≈ 1− 9

8π2α2
(ρ2 − ρ2c)

1

T 2
= 1± T 2

0 (ρ)

T 2
, (3.18)

with “+” for the insulating behavior and “−” the metallic behavior. The scaling parameter

T0 is given by

T0 =
3

2
√
2πα

|ρ2 − ρ2c |1/2 , (3.19)

and approaches zero at ρ = ρc. Therefore, the Rxx(T ) curves for different ρ can be made

to overlap by the scaling parameter T0 along the T axis, which yields a collapse of the data

onto two curves: an insulating branch for ρ < ρc and a metallic branch for ρ > ρc.

Near the transition point, the dependence of the scaling parameter T0 on the charge

density is symmetric about ρc, and obeys a power law

T0 =
3
√
ρc

2πα
|ρ− ρc|1/2 = C |ρ− ρc|1/2, C =

3

2π

(

B2

α4
+

k

2

)1/4

, (3.20)

for both the insulating and metallic sides of transition. The power is exactly 1/2 and is

model independent, while the coefficient C depends on the theory parameter k and the

state parameter B2/α4. Interestingly, in the absence of magnetic field, C is independent of

the strength of disorder α. Then, we have a quite robust scaling behavior with the power

– 8 –



J
H
E
P
1
0
(
2
0
2
0
)
0
2
3

and the coefficient C found to be essentially disorder independent. It is also manifest that

the metallic and insulating curves are mirror symmetry in the high temperature regime:

Rxx(ρ− ρc, T ) = 1/Rxx(ρc − ρ, T ), suggesting that the mechanism responsible for electric

transport in the insulating and metallic phases are related.

Actually, such kind of features have been reported in some two dimensional samples and

materials [39–43]. In particular, various experimental groups have demonstrated interesting

scaling behaviors for resistivity near the transition point, which shows the collapse of data

into two separated curves and displays remarkable mirror symmetry over a broad interval

of temperatures. This observation has been interpreted as evidence that the transition

region is dominated by strong coupling effects characterizing the insulating phase [44].

Nevertheless, the dependence of T0 near ρc is a power law with the power that is different

from our holographic result 1/2. A number of experiments have yielded scaling exponents

between 1.25 and 1.6 [39–43]. This might be due to the fact that our present holographic

theory falls into a different universality class from those materials. A natural extension is

to consider a holographic setup that is asymptotically Lifshitz with a dynamical exponent

z which parametrizes the relative scaling of space and time. Then the power of the scaling

behavior (3.20) would be modified and could make the model compatible with experimental

data. We will return to these points in our later discussion.

Another situation in experimental measurements is to fix the Landau filling factor

ν = ρ/B. From (3.16), one observes that

Rxx = 1− 9B2

8π2α2

(

ν2 − 1− k

2

α4

B2

)

T−2 +O(T−4) . (3.21)

Therefore, staying at the same filling factor ν > 1, one can observe a transition from the

metallic state in the high B case to the insulating state at lower B. This feature agrees

qualitatively with the experimental observation in [39].

So far we have discussed some generic features without being concerned with details

of the holographic theory. We have a deeper understanding of the role of Y ′(X) < 0 in

triggering a metal-insulator transition in the absence of magnetic field, and find a rigorous

constraint on the theory parameter, (3.13). Some universal scaling behaviors near the

phase transition are also examined. In particular, the transport is found to be scaled with

a single parameter T0 which approaches zero at the transition point. In the following

study we will consider two representative “benchmark” models and will examine their

temperature dependence in various cases.

3.3 Benchmark models

We focus on the following two representative models:

Exponential model : Y = e−κX , V (X) =
1

2m2
X , (3.22)

Linear model: Y = 1 +KX, V (X) =
1

2m2
X . (3.23)

Depending on the theory parameter κ or K, both models can describe either metallic or

insulating phases. The first model was studied in detail in [27], where the electric transport
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properties were investigated and a disorder-driven metal-insulator transition was observed

for κ = 0.5. The linear model was introduced by the authors of [28], where the DC

conductivity was discussed. It is able to have exactly vanishing conductivity at a finite

value of K, while in the first model the electric conductivity saturates to a small but finite

value at large κ.

The constraints (2.8) imply that the theory parameter κ of the Exponential model

should not be negative, i.e. κ > 0, and the requirement of no gradient instability imposes a

further restriction on κ (κ . 0.5 from figure 6 of [27]). For the second model, −1/6 6 K 6 0

with the upper bound from (2.8) and the lower bound from the zero density Schrödinger

potential analysis [28]. We should point out that for both models the allowed parameter

space were examined in the absence of a magnetic field. Note that we have found a non-

trivial constraint on Y shown by (3.13), from which one immediately obtains that 0 6

κ 6 1/6 for the Exponential model (3.22) and −1/6 6 K 6 0 for the Linear model (3.23).

Both are much more rigorous than the parameter space given in the original papers [27]

and [28].10 Interestingly, we will find that the new restriction (3.13) indeed imply a positive

definite longitudinal conductivity for above two models. Nevertheless, whether there is a

good insulating phase will depend on the non-linear details of the theory one is considering.

3.3.1 The Exponential model

For the Exponential model with V and Y given by (3.22), the background geometry reads

ds2 =
1

u2

[

−f(u)dt2 +
1

f(u)
du2 + dx2 + dy2

]

,

f(u) =

√
πu3

4α
√
κ

[

B2
(

erf(α
√
κu)− erf(α

√
κuh)

)

+ ρ2(erfi(α
√
κu)− erfi(α

√
κuh))

]

,

+

(

1− u3

u3h

)

− 1

2
α2u3

(

1

u
− 1

uh

)

, (3.24)

At(u) =

√
πρ

2α
√
κ

(

erfi
(

α
√
κuh

)

− erfi
(

α
√
κu
))

.

We obtain the temperature

T =
3

4πuh
− α2uh

8π
− B2u3h e

−κα2u2

h

8π
− ρ2u3h e

κα2u2

h

8π
, (3.25)

and the conductivities

σxx =σyy =
Ωe−κα2u2

h [Ω + e−κα2u2

h(B2e−2κα2u2

h + ρ2)u2h]

(Ω +B2e−3κα2u2

hu2h)
2 +B2ρ2e−4κα2u2

hu4h
, (3.26)

σxy =− σyx =
Bρe−3κα2u2

hu2h[2Ω + e−κα2u2

h(B2e−2κα2u2

h + ρ2)u2h]

(Ω +B2e−3κα2u2

hu2h)
2 +B2ρ2e−4κα2u2

hu4h
, (3.27)

Ω =
α2e−κα2u2

h

2
[e−κα2u2

h − κu4h(B
2e−2κα2u2

h − ρ2)] .

10We point out that the authors of [28] obtained a weaker constraint on K, −1/6 6 K 6 1/6. Notice that

a positive K violates the requirement (3.12).
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Figure 1. Plots of the DC conductivity for the Exponential model without a magnetic field (left)

and with a magnetic field (right). We fix T = 0 and vary α for different choice of coupling constant

κ. In the present of magnetic field, there is a region with negative σxx developing when κ is large

but still lies in the healthy region proposed by [27]. We have worked in units with the charge density

ρ = 1.

There are five parameters left in the DC transport: the temperature T , the charge density

ρ, the magnetic field B, the disorder strength α and the parameter κ. We are interested

in the behaviors of DC conductivities with respect to the disorder strength and magnetic

field.

At first glance, the exponential form of coupling Y = e−κX will not result in a negative

conductivity, since Y is positive definite for any choice of X. As one can see clearly, when

B = 0, the DC conductivity (3.5) for the Exponential model is indeed positive definite so

long as κ > 0. So, one expects that there would exist no negative longitudinal conductivity

even in the presence of a magnetic field provided κ is in the safe region given in [27],

i.e. 0 6 κ . 0.5. However, as we have argued in subsection 3.1, a negative longitudinal

conductivity will appear when κ > 1/6, and therefore 1/6 < κ . 0.5 has to be excluded

from the allowed parameter space. While the new constraint on κ is obtained from the

weak disorder analysis, to check it away from the weak disorder regime is necessary.

We show σxx as a function of the disorder strength α for different choices of κ in figure 1.

As one can see, even within the safe region for κ proposed in [27], σxx in a presence of

magnetic field indeed becomes negative when κ is large. In particular, the negative region

first develops at small α, which is consistent with our analysis from the weak disorder limit

in subsection 3.1. Since the expression of σxx in (3.26) is quite complicated, we are not able

to fix the upper threshold value of κ analytically. Nevertheless, as shown in figure 2, the

upper limit of κ read from our numerics is κ ≈ 0.167 which coincides quite well with the

constraint (3.13) obtained from the weak disorder argument. Therefore, we obtain a new

bound on κ which satisfies all the consistency conditions and guarantees a non-negative

longitudinal conductivity:

0 6 κ 6 1/6 . (3.28)

The above analysis shows that the allowed range for κ is significantly reduced compared

to the safe region given in [27]. Therefore, it is necessary to reexamine the metal-insulator
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Figure 2. Distribution of the sign of σxx as a function of the disorder strength α and the coupling

constant κ for the Exponential model. The left plot is for (T = 0, B = 10) and the right one

for (T = 0, B = 1000). The blue regions denote negative conductivity and the yellow regions

correspond to positive conductivity. To avoid a negative value of σxx, κ should be smaller than

0.167. We have worked in units with the charge density ρ = 1.

transition in the absence of magnetic field for the new parameter range (3.28). To see the

nature of our holographic matter, we first check the DC conductivity at zero temperature

following the discussion of [27]. While the insulator has dσDC/dT > 0,11 we are able to

distinguish a good insulator for which σDC(T = 0) ≈ 0 from a bad insulator where the

electric conductivity saturates to a finite but relative large value, say σDC(T = 0) > 0.1

in the present study. In the left plot of figure 3, we show σDC at zero temperature as a

function of the disorder strength α for different κ. The larger the value of κ is, the lower

the conductivity becomes. Note however that there is an upper bound on κ. As one can

see, the lowest value of the DC conductivity is about σDC ≈ 0.368 (κ = 1/6, α → ∞), so

there is no good insulator at all. The temperature behavior of σDC for different disorder

strengths α is presented in the right plot of figure 3. There exists a transition from a

metallic phase to a bad insulator by increasing α in the system.

The longitudinal conductivity σxx with respect to the magnetic filed B is presented in

figure 4. As one can see, for a fixed disorder strength α and temperature T , σxx decreases

as B is increased. A heuristic understanding about this feature is as follows. Notice that

we are considering a system with the density of charge carriers fixed. As B is increased,

more charge degrees of freedom are pushed to the orthogonal direction due to the Lorentz

force. While σxx keeps suppressed, one anticipates a more and more pronounced Hall

conductivity σxy. In particular, as shown in (3.7), in the clean limit without any disorder

σxx is vanishing and we are only left with a non-trivial Hall component. To see this feature

11The insulating behavior has been defined as dRxx/dT < 0 in (3.14). In the absence of magnetic field,

one has Rxx(B = 0) = 1/σxx(B = 0) = 1/σDC . Therefore, the insulator can be equivalently defined as

dσDC/dT > 0 in the zero magnetic case.
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Figure 3. Electric DC conductivity σDC for the Exponential model in the absence of an applied

magnetic field. Left: σDC at zero temperature as a function of the disorder strength α for different

theory parameter κ. Right: the temperature dependence of conductivity for κ = 1/6 at different α.

In zero magnetic field σDC is bounded from below and its lowest value is about 0.368. We worked

in units with the charge density ρ = 1.

Figure 4. Magnetotransport for the Exponential model as a function of magnetic field. Both the

longitudinal conductivity σxx (left) and the inverse Hall angle cotΘH = σxx/σxy (right) decrease

monotonically as B is increased. We have fixed T = 0 and ρ = 1.

clearly, we consider the inverse Hall angle cotΘH = σxx/σxy which can be used to measure

the relative magnitude of two conductivities. As one can see from the right plot of figure 4,

the inverse Hall angle cotΘH indeed decreases monotonically as B is increased.
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3.3.2 The Linear model

For the Linear model (3.23), the background profiles for the blackening function and gauge

potential are given by

ds2 =
1

u2

[

−f(u)dt2 +
1

f(u)
du2 + dx2 + dy2

]

,

f(u) = u3
[

ρ2(tanh−1(α
√
−Ku)− tanh−1(α

√
−Kuh))

2α
√
−K

+
B2

6
(3(u− uh) + α2K(u3 − u3h))

]

+

(

1− u3

u3h

)

− 1

2
α2u3

(

1

u
− 1

uh

)

, (3.29)

At(u) =
ρ
(

tanh−1
(

α
√
−Kuh

)

− tanh−1
(

α
√
−Ku

))

α
√
−K

.

The temperature reads

T =
3

4πuh
− α2uh

8π
− B2u3h

(

1 +Kα2u2h
)

8π
− ρ2u3h

8π
(

1 +Kα2u2h
) , (3.30)

and the conductivities are given by

σxx =σyy =
Ω
(

1 +Kα2u2h
)

[Ω +
(

1 +Kα2u2h
)

(B2
(

1 +Kα2u2h
)2

+ ρ2)u2h]

(Ω +B2
(

1 +Kα2u2h
)3

u2h)
2 +B2ρ2

(

1 +Kα2u2h
)4

u4h
, (3.31)

σxy =− σyx =
Bρ
(

1 +Kα2u2h
)3

u2h[2Ω +
(

1 +Kα2u2h
)

(B2
(

1 +Kα2u2h
)2

+ ρ2)u2h]

(Ω +B2
(

1 +Kα2u2h
)3

u2h)
2 +B2ρ2

(

1 +Kα2u2h
)4

u4h
,

(3.32)

Ω =
α2

2
[
(

1 +Kα2u2h
)2

+Ku4h(B
2
(

1 +Kα2u2h
)2 − ρ2)] .

Based on our discussion at the beginning of this subsection, the allowed parameter space

for K has been restricted to

−1/6 6 K 6 0 . (3.33)

As shown in figure 5, this parameter range for K does guarantee a positive definite longi-

tudinal conductivity.

We present σDC(T = 0) as a function of α for different K in the left plot of figure 6.

In contrast to the Exponential model (3.22), the DC conductivity at zero temperature can

get arbitrarily close to zero at large α. In particular, σDC(T = 0) is exactly vanishing

when K = −1/6 in the infinity disorder strength limit α/
√
ρ → ∞. Away from this value,

σDC(T = 0) is bounded from below by its asymptotic value at infinite disorder strength.

As a consequence, we have a good insulator phase so long as K → −1/6. The temperature

dependence of σDC for different disorder strength α is shown in the right plot of figure 6,

from which there is a clear metal-insulator transition driven by the disorder.
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Figure 5. Distribution of the sign of σxx as a function of the disorder strength α and the coupling

constant K for the Linear model. The left plot is for (T = 0, B = 10) and the right one for

(T = 0, B = 1000). σxx becomes negative in blue regions. To avoid a negative longitudinal

conductivity, the value of K should not be less than −1/6.
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100

Figure 6. Electric DC conductivity σDC for the Linear model in zero magnetic field. Left: σDC at

zero temperature as a function of the disorder strength α for different K. Right: the temperature

dependence of conductivity at different α. A metal-insulator transition driven by the disorder is

manifest. We worked in the canonical ensemble with ρ = 1.
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Figure 7. Temperature dependence of the resistivity for different charge densities at zero magnetic

field. Left: the metal-insulator transition by dialing the charge density ρ. Right: scaling of resis-

tivity with scaled temperature. Rxx(T ) dependence for different ρ of the left plot can be made to

overlap by scaling them along the T axis with the scaling parameter T0. Near the transition point

ρc ≈ 2.6, the scaling parameter T0 ≈ 0.36|ρ− ρc|1/2. We have fixed K = −1/6 and α = 3.

3.4 Scaling for resistivity

Our investigation, so far, suggests that there are holographic metal-insulator transitions

that can be driven by the disorder, charge density as well as magnetic field. As we have

discussed in subsection 3.2, the resistivity Rxx exhibits scaling behaviors near the transition

point, showing the collapse of data into two separated curves in high temperature. In this

part we will check the scaling behavior of resistivity for the Linear model (3.23) which

allows a clear metal-insulator transition. We will show that the collapse of resistivity data

into two separated curves holds over a broad interval of temperatures.

Fixing the disorder strength α and dialing the charge density ρ, we present the resistiv-

ity curves Rxx(T ) for both metallic and insulating phases in figure 7 at zero magnetic field.

At low densities, the curves grow monotonically as the temperature decreases, exhibiting

an insulating behavior. In contrast, at high densities, resistivity drops monotonically as

the temperature decreases, characterizing a metallic behavior. However, for a small inter-

mediate rang of charge density above some critical value ρc, the temperature behavior of

Rxx becomes slightly non-monotonic. As shown in the right plot, the Rxx(T ) dependence

for different ρ can be made to overlap by scaling them along the T axis in terms of the

scaling parameter T0. Near the phase transition, T0 is found to be given by T0 ∼ |ρ−ρc|1/2,
just as expected from (3.20). Except for a small region of ρ near ρc, the collapse of data

into two separated curves over a broad interval of temperatures is manifest, in particular

for the insulating side.

In figure 8 we show the temperature dependence of Rxx in a magnetic field correspond-

ing to a Landau-Level filling factor ν = 3/2. To produce these data of figure 8, we have

varied both ρ and B such that ν remains constant. Similar to the case with B = 0, we

find the collapse of data into two separated curves in a perpendicular magnetic field with

ν = 3/2, although ρc is different. One expects to have similar feature when ν > 1, based on

our discussion around (3.21). This suggests that for our holographic quantum matter the

metal-insulator transition at zero magnetic field and at fixed Landau-Level filling factor
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Figure 8. Temperature dependence of the resistivity at Landau-Level filling factor ν = 3/2 for

different charge densities. Left: the metal-insulator transition by dialing the magnetic field B.

Right: scaling of resistivity with scaled temperature T/T0. There exists scaling behavior for both

metal and insulator in varying magnetic field, or equivalently charge density, while keeping ν = ρ/B

fixed. We have fixed K = −1/6 and α = 3.
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Figure 9. Temperature dependence of the resistivity versus disorder strength at zero magnetic field.

Left: the metal-insulator transition driven by the disorder strength α, which corresponds to the right

plot of figure 6 with Rxx(B = 0) = 1/σDC . Right: scaling of resistivity with scaled temperature

T/T0. The collapse of data into two separated curves both in the metallic and insulating sides is

manifest. We have fixed K = −1/6 and ρ = 1.

might be controlled by the same underline physics when viewed in terms of resistivity.

For completeness, we check the case with respect to the disorder strength α. The

temperature dependence of Rxx(B = 0) is presented in figure 9. A strong metallic tem-

perature dependence of the resistivity is observed at disorder strength above some critical

value, while insulating behavior is seen at disorder strength below the critical value. At

the critical disorder strength, there appears to be a transition from a metallic-like phase

to a strongly localized one. It is clear from the right plot that the Rxx(T ) dependence for

different α can be made to overlap by scaling them along the T axis in terms of the scaling

parameter T0.

We close this section by remarking that the scaling behavior of resistivity in our holo-

graphic setup breaks down at sufficiently low temperatures. Indeed, the higher the tem-
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perature is, the better the collapse of resistivity data into two separated curves.12 In this

sense, the scaling behavior of resistivity data is due to the UV AdS4 fix point rather than

the IR fix point. The observation of scaling behavior of resistivity in two-dimensional

metal-insulator transition was argued to be followed directly from the quantum critical

point associated with such a transition [44]. Nevertheless, it seems no quantum critical

point in our holographic quantum matter.

4 AC conductivity and phase diagram

We have shown that the positive definitiveness of the longitudinal DC conductivity im-

poses further constraint on the theory parameters. In particular, for the Exponential

model (3.22), the allowed range for the coupling constant κ is reduced significantly. As a

consequence, the DC conductivity in the absence of magnetic field is bounded from below,

and thus one can not get a good insulating phase for which σDC(T = 0) is very small or

eventually zero. In contrast, for the Linear model (3.23), within the allowed parameter

range for the coupling K (3.33), it can give rise to a manifest disorder-like phenomenology

that includes a very clear disorder-driven metal-insulator transition. To gain better physi-

cal intuition about the transition, we now consider the optical conductivity, from which one

could see how the spectral weight transfers as the disorder effect becomes more and more

important. Then we construct the phase diagrams for the two models in the temperature-

disorder plane, and study the behaviors of specific heat and charge susceptibility across

different phases.

4.1 Optical conductivity

The behavior of the optical conductivity in presence of a magnetic field is complicated,

which obscures the understanding of the spectral weight transfer due to the disorder.13 So

we focus on the electric response by turning off the magnetic field. Following the standard

procedure in holography, we turn on small perturbations around a background:

δAx = ax(u, ω) e
−iωt, δφx = χx(u, ω) e

−iωt ,

δgtx = htx(u, ω) e
−iωt, δgux = hux(u, ω) e

−iωt,
(4.1)

where we have restricted ourselves to the homogeneous perturbations by fixing the momen-

tum k = 0. To fix the redundancy due to the diffeomorphism invariance, one can either

use the gauge fixing or work in the gauge invariant variables. In our case, we will adopt

the radial gauge by setting hux = 0. In order to compute the retarded Green’s function

12The low temperature behavior of Rxx depends on the details of coupling functions Y and X. In the

present study we focus on the Linear model as a benchmark example. It is possible to have a better scaling

behavior at low temperatures by considering a different choice of coupling functions.
13In the presence of a magnetic field there exists a peak at a finite value of frequency due to the cyclotron

resonance [45, 46]. It will be interesting to investigate the interplay between the disorder and cyclotron

resonance, and we leave this issue for future research. The AC conductivity in the presence of lattice

symmetry breaking has been widely investigated in the literature, see e.g. [21, 24, 27, 32, 38, 47] with

homogeneous lattices and [34, 36, 48–50] with inhomogeneous lattices.
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GR
JxJx(ω) for the U(1) current Jx, we impose the ingoing boundary condition near the

horizon, and turn off the source of htx and χx in the UV where u → 0. Then, from the UV

expansion for ax

ax(u, ω) = a(0)x (ω) + a(1)x (ω)u+O(u2), (4.2)

we obtain

σxx(ω) ≡
1

i ω
GR

JxJx(ω) =
1

i ω

a
(1)
x (ω)

a
(0)
x (ω)

, (4.3)

as a function of frequency ω.

We now present our numerical results. Some representative examples of the AC electric

conductivity are shown in figure 10 for the Linear model (3.23). When the disorder strength

is weak, one has a coherent metallic phase where there is a sharp Drude peak at small ω.

As the strength of disorder effect increases, the width of the peak in real part increases,

while the maximum value of the peak decreases. There will be no more Drude peak and

one arrives at an incoherent metallic phase where there is no clear and dominant localized

long lived excitation, see green curves of figure 10 . When the disorder is strong enough,

a “particle-like” peak at low ω is replaced by a “vortex-like” dip, and the spectral weight

transfers to the mid-infrared, resulting in an insulating behavior. The stronger the disorder

effect, the more spectral weight transfer to the mid-infrared. As a consequence, the DC

conductivity keeps decreasing, and then triggers the transition from bad insulator to good

insulator. Therefore, there is a clear disorder-driven transition from a coherent metal with

a sharp Drude peak to a good insulator with a tiny or vanishing DC conductivity at zero

temperature.

For the Exponential model (3.22), within the allowed range of κ (3.28), we can obtain

similar optical conductivity features presented by figure 10, except the one corresponding

to the good insulator. The amount of spectral weight transformation to higher ω is limited

by the bound (3.28) on κ. Within this simple model, the spectral weight transfer efficiency

is not sufficiently compared to the Linear model, resulting a value of DC conductivity that

is too large to be identified as good insulator.

4.2 Phase diagram, specific heat and charge susceptibility

The phase diagrams for the two models in the temperature-disorder plane are constructed

in figure 11. For the Linear model (3.23), the phase diagram incorporates all four phases

of matter for large disorder effect, i.e. K → −1/6. Both the quantum phase transition and

the finite temperature crossover are manifest in the right plot of figure 11. In contrast, for

the other model presented by the left plot of figure 11, there is no good insulator phase in

the allowed range of κ (3.28). For each phase of matter a representative example of optical

conductivity has been shown in figure 10.

Although there are as many as four different phases in the temperature-disorder phase

diagram of figure 11, there is no genuine thermodynamic phase transition in the present

background geometries. All phases share the same symmetries of the underlying theory, and

thus beyond a simple Ginzburg-Landau description. The free energy F can be computed

by adding standard holographic counterterms and is behaved continuously and smoothly
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Figure 10. Representative examples of the AC electric conductivity σxx for the Linear model (3.23)

with unitary charge density ρ = 1. There are four phases: (a) good metal (red) with (α =

0.6, T = 0.5), (b) incoherent metal (green) with (α = 1.5, T = 0.5), (c) bad insulator (blue) with

(α = 4.5, T = 0.3) and (d) good insulator (purple) with (α = 7.8, T = 0.05). As the strength of

disorder effect becomes strong, the Drude peak of the good metal becomes broader and disappears,

and there is a transition to incoherent metal (green). For sufficiently strong disorder effect, a

growing peak in the mid-infrared develops (blue and purple), and the system becomes an insulator.

We choose K = −1/6 which is the threshold value of the parameter range of K.

during the metal-insulator transition. This feature can be understood from the behavior of

the thermal entropy. For the background geometry (2.6), the entropy density is obtained

from the area of the black hole s = 2π/u2h. It is easy to check that the entropy density

s = −∂F/∂T behaves smoothly in the temperature-disorder plane, thus there is no ther-

modynamic phase transition in Landau’s theory. Nevertheless, it would be helpful to see

if there is any other local quantity that is able to distinguish different phases of figure 11.

An interesting probe to the nature of the phase of matter is the specific heat which

characterizes the ability of the material to regulate the temperature within the materials.

A good insulator typically has a higher specific heat because it takes time to absorb more

heat before it actually heats up to transfer the heat. In contrast, a good conductor has a

lower specific heat, requiring very little heat energy to heat the materials. This means that

the heat will be conducted rapidly, and so it will have a high conductivity due to its low

specific heat. The specific heat cV at constant density is determined by cV = T (∂s/∂T )ρ
with s the entropy density.

It is obvious that cV ∼ T 2 at high temperature, since T ∼ 1/uh in the high temperature

limit (3.15). So we focus on the low temperature behavior of cV . For specific, we consider

the Linear model (3.23) which have all four phases we are interested in. Then, using (3.30)
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Figure 11. Phases diagrams for the Exponential model with κ = 1/6 (left) and the Linear model

with K = −1/6 (right), in the absence of an applied magnetic field. Four regions are denoted

by (a) good metal, (b) incoherent metal, (c) bad insulator and (d) good insulator, respectively.

Following [27], the phase boundaries are denoted by the dashed lines corresponding to σDC =

0.1, 0.8, 1.2. There is no region (d) for good insulator in the left plot. Each dark point in the right

plot corresponds to the optical conductivity of figure 10. We have worked in the canonical ensemble

with the charge density ρ = 1.

and setting B = 0, we find the entropy density as a function of temperature

s(T ) = s0 +
4
√
2πs0(s0 + 2πα2K)

√

24 + πα4(1− 6K)
T +O(T 2) , (4.4)

where s0 = π(
√

24 + α4(1 + 6K)2+α2(1−6K))/6 is the entropy density at zero temperature

and the charge density has been fixed to unit, ρ = 1. Note that we always have a non-

vanishing zero temperature entropy s0 as −1/6 6 K 6 0. Then the specific heat at low

temperature is given by

cV =
4
√
2πs0(s0 + 2πα2K)

√

24 + πα4(1− 6K)
T +O(T 2) . (4.5)

One immediately observes that the low-temperature specific heat scales as T no matter the

systems is in a metallic or insulating phase. We point out that the linear-T specific heat is

reminiscent of a gas of fermions where a shell of thickness T of occupied states above the

Fermi surface contributing an energy T each.14 The behavior of cV is present in figure 12.

The temperature scaling behaviors of cV at low temperature (∼ T ) and high temperature

(∼ T 2) are confirmed by the left plot. One also finds that cV increases as α is increased,

which means the insulating phase has a higher specific heat as we anticipate. Compared

with the phase diagram in the right plot of figure 11, the density plot of cV divided by T

in the temperature-disorder plane (right plot of figure 12) exhibits a significantly different

behavior. Therefore, the specific heat is not a good probe to the metal-insulator transition.

14As a contrast, for a gas of free bosons in two spatial dimensions, the low temperature specific heat

scales as T 2 (a sphere of volume T 2 of occupied states in momentum space, each with energy T ).
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Figure 12. Specific heat cV for the Linear model (3.23) at zero magnetic field. The behavior of

cV as a function of T is present in the left plot, and the density plot of cV /T in the temperature-

disorder plane is shown in the right plot. Black dotted lines correspond to σDC = 0.1, 0.8, 1.2 of

figure 11, i.e. the phase boundaries for various phases. We have fixed K = −1/6 and ρ = 1.

Another interesting feature is the linear of the entropy in (4.4) as well as the linear

specific heat of figure 12, which clearly follows from the AdS2 geometry near the extremal

horizon. It was suggested by the authors of [51] that a linear T resistivity of cuprates’

strange metal is connected to a linear entropy density. We now check the temperature

dependence of the resistivity at the same temperature regime. We find that at low tem-

peratures the resistivity behaves as

Rxx = R0 +R1 T +O(T 2) , (4.6)

where R0 is a residual resistivity at zero temperature and R1 is a constant that depends

on α and K. Therefore, there could be a linear T behavior of Rxx but with a residual

resistivity R0 at sufficiently low temperatures. Moreover, its coefficient R1 can change

sign, as seen from figure 13. Therefore, it suggests that the linear temperature dependence

of the entropy does not guarantee a strange metal behavior of the cuprates. This issue is

easy to understand by noting that the arguments of [51] are not applicable in the present

model. The inclusion of axions leads to a temperature dependent shear viscosity to entropy

ratio [52], thus Rxx does not scale like the entropy density.

Since the specific heat can be in principle independent of the charge degrees of freedom,

one might be not surprised that cV is not a good probe to the metal-insulator transition.

Another observable that is closely related to charge carriers is the static charge suscepti-

bility χ = (∂ρ/∂µ)T which measures the equilibrium response of the charge density to a

change in the chemical potential µ. In the holographic setup, µ can be read off from the
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Figure 13. Distribution of the sign of R1 in (4.6) as a function of the disorder strength α and

the coupling constant K for the Linear model (3.23). We have set B = 0 and worked in units with

ρ = 1.

UV data via µ = At(u = 0). For the Linear model (3.23), we obtain

χ =
ρ

µ

(

1− 32ρ2 sinh5(ξ) cosh(ξ)

ξ [ρ2 cosh(6ξ) + cosh(2ξ) (8α4K(6K − 1)− 9ρ2) + 8 (α4K(6K + 1) + ρ2)]

)−1

,

(4.7)

where ξ = α
√
−Kµ/ρ and we have turned off the magnetic field B. When α → 0, one

recovers the charge susceptibility for the Reissner-Nordström black hole:

χRN =
3ρ
(

µ4 + 2ρ2
)

µ (µ4 + 6ρ2)
, (4.8)

with µ = ρ uh in the present coordinate system (2.6).

The behavior of charge susceptibility for different temperature T and disorder strength

α is shown in figure 14. It is clear from the left plot that χ has a T -linear scaling at

high temperatures and goes to a constant at low temperatures. One also finds that χ

increases as the disorder strength α is increased, suggesting the insulating phase has a larger

charge susceptibility. The density plot of χ in the temperature-disorder plane (right plot

of figure 14) exhibits a significantly different behavior from the phase diagram of figure 11.

So χ is not a good probe to characterize the metal-insulator transition. Compared with the

density plots of cV /T and χ, it is noteworthy that both share very similar structure in the

temperature-disorder plane. In particular, cV /T and χ have the same temperature scaling

at high and low temperatures. This suggests that in our present holographic quantum

matter, the process of heat transfer is dominated by the charge degrees of freedom.
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Figure 14. Static charge susceptibility χ for the Linear model (3.23) at zero magnetic field.

The behavior of χ as a function of T is present in the left plot, and the density plot of χ in

the temperature-disorder plane is shown in the right plot. Black dotted lines denote the phase

boundaries of metallic and insulating phases of figure 11. We have fixed K = −1/6 and ρ = 1.

5 Complexity

In the framework of effective holographic theories for condensed matter we have studied

a minimal example of a metal-insulator transition that can be driven by disorder, charge

density as well as magnetic field. A natural question is if there is some other probe to

characterize different phases or phase transitions. As we have just shown, the local quanti-

ties, such as free energy and specific heat, are not able to distinguish such phase transition.

There are increasing evidences that the non-local observables from quantum information

play a key role in strongly coupled quantum systems. One wonders if the complexity, as a

non-local observable from quantum computation, could be a probe to the quantum phase

transition as well as the finite temperature crossover in the present holographic theory.15

In a discrete quantum circuit system, the complexity measures how difficult it is to

obtain a particular target state from a certain reference state. This concept has recently

been generalized to continuous systems, such as complexity geometry [58–61], path-integral

optimization [62, 63] and Fubini-study metric [64]. There are two widely studied propos-

als to compute the complexity in holography: one is known as complexity-volume (CV)

duality [65] and the other as complexity-action (CA) duality [66, 67]. In this section, we

analyze the behavior of complexity during the disorder-driven metal-insulator transition.

We focus on the CV conjecture and leave the CA conjecture and field theoretic methods

for the future. Our main subject is the complexity of formation.

The complexity of formation is defined by the complexity of a thermal state from a

vacuum state. In the holographic setup, it corresponds to the maximal volume of the

15It has been shown that complexity can detect quantum phase transitions and shows signatures of

revivals in a topological system [53]. The behavior of complexity near a holographic phase transition has

been studied e.g. in [54–57].
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codimension-one surface connecting the codimension-two time slices (denoted by tL and

tR) at two AdS boundaries:

δC = CTFD − Cvac = Max
∂Σ=tL∪tR

[

δV (Σ)

GNL

]

. (5.1)

Here δV is the difference of the volume between the AdS black hole and AdS vacuum,

and δC roughly measures the difficulty to build thermal field double (TFD) state from the

vacuum state.

For the background geometry (2.6), the black brane is Reissner-Nordström like with

uh the outer horizon. The maximal volume is given by the tL = tR slice in bulk, i.e. the

co-dimensional one surface connecting the two boundaries through the outer bifurcation

horizon in the Penrose diagram. So the volume integral for the black brane simplifies to

VB = 2Ω

∫ uh

0

du

u3
√

f(u)
, (5.2)

with Ω the area of the spatial geometry when both u and t are fixed. Note that there is

a UV divergence associated with the asymptotic boundary u → 0. This UV divergence is

removed by considering the contribution from the volume of the AdS vacuum:

V0 = 2Ω

∫

∞

0

du

u3
= 2Ω

(∫ uh

0

du

u3
+

1

2u2h

)

. (5.3)

Then we obtain the difference of the volume

δV = VB − V0 = 2Ω

[

∫ uh

0

1

u3

(

1
√

f(u)
− 1

)

du− 1

2u2h

]

,

=
2Ω

u2h





∫ 1

0

dũ

ũ3





1
√

f̃(ũ)
− 1



− 1

2



 ,

(5.4)

where we have introduced the dimensionless variable ũ = u/uh and f̃(ũ) = f(u) that is

convenient for numerical analysis.

To study the behavior of complexity in different phases, we fix the temperature and

vary the disorder strength α. The complexity behavior is shown in figure 15. Both the

Exponential model and the Linear model share very similar behavior. We find that the

complexity of formation increases smoothly as we increase α. So under the phase transition

from a metallic state to an insulating state, the difficulty to build a thermal state from

vacuum state becomes larger. A heuristic picture is as follows. One anticipates that

the wave-function of the charge carriers becomes localized towards the insulating phase.

Therefore, it is harder for a “gate” to couple different degrees of freedom and we need

more gates to reach the desired state. To have a deeper understanding of this behavior, one

needs some microscopic mechanism of the metal-insulator transition and concrete quantum

mechanical theory of complexity.

A more complicated situation arises at sufficiently low temperatures. Instead of a

cancellation of the UV divergence, there is also a new IR divergence due to the infinitely
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Figure 15. Complexity of formation under the variation of α for the Exponential model with

κ = 1/6 (left) and the Linear model with K = −1/6 (right). Different colors correspond to different

temperatures. For other parameters we choose ρ = 1 and B = 0.

long throat of the extremal geometry. To be more specific, we denote the horizon for the

extremal background as u0. For the extremal case f ′(u0) = 0 and near the extremal horizon

one has

f(u) =
1

2
f ′′(u0)(u− u0)

2 +O((u− u0)
3) . (5.5)

Therefore the near horizon geometry takes the form of AdS2 × R2. Then we obtain

from (5.4) that

δV (T = 0) = − 2
√
2Ω

u30
√

f ′′(u0)
ln(u0 − u) + . . . , (5.6)

near the extremal AdS2 region in the far IR. So there is a logarithmic IR divergence for

the T = 0 case. While for finite T case, the volume near the horizon region is finite. This

means that the corresponding “extremal” states at zero temperature are infinitely complex

compared to the finite temperature states, and therefore no physical process is able to

produce the extremal states in a finite amount of time. This feature is known as “Third

Law of Complexity” that was proposed in [68]. The authors of [68] considered a particular

charged black hole geometry. It can be easily seen that this behavior also happens for the

neutral case as long as the disorder is included, for which the near horizon expansion (5.5)

still holds. The temperature dependence of δC as a function of temperature for both

charged (left panel) and neutral (right panel) cases is presented in figure 16. Form our

numerics, we find that the complexity of formation diverges as ln(1/T ) as the temperature

goes to zero. So our study gives a further test for the complexity third law in a neutral

background.

Since δC diverges logarithmically at zero temperature limit, it is not able to character-

ize the metal-insulator quantum phase transition at zero temperature. Note that we have

defined the complexity of formation from the AdS vacuum state. It is possible and inter-

esting to define a reference state other than the AdS vacuum to make the corresponding

complexity of formation to be free from the IR divergence. In order for the new complexity

to be able to characterize the metal-insulator transition, it should be at least sensitive to

the disorder strength α. We leave the study of this possibility for the future.
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Figure 16. Complexity of formation as a function of temperature for the Linear model with

K = −1/6. Left: the charged case with ρ = 1. Right: the neutral case with ρ = 0. Inset: δC

diverges as ln(1/T ) at low temperatures. For the charged case GL
Ω
δC ≈ 572.8− 14.3 ln(T ) and for

the neutral case GL
Ω
δC ≈ 555.3− 19.2 ln(T ). For other parameters we choose α = 10 and B = 0.

Figure 17. Complexity of formation under the variation of α and T for the Exponential model

with κ = 1/6 (left) and the Linear model with K = −1/6 (right). The phase boundaries are denoted

by the dashed lines corresponding to σDC = 0.1, 0.8, 1.2 of figure 11. We consider the parameter

space with T/
√
ρ > 0.02 to avoid the divergence of δC at low temperatures. For other parameters

we choose ρ = 1 and B = 0.

Next, it is also interesting to investigate the complexity behavior across the phase space

at finite temperature. We show the complexity of formation with respect to temperature T

and disorder strength α in figure 17. To avoid the divergence of δC at zero temperature, we

consider the parameter space with T/
√
ρ > 0.02. One can see that δC changes smoothly

across different phase boundaries and is more sensitive to the disorder strength than the

temperature. However, its patten is quite different from the behavior of conductivity in

figure 11, and therefore not a good probe to the metal-insulator phase transition.
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From above analysis we find that complexity of formation changes continuously across

phase transitions, and there is no clear characteristic behavior of complexity in different

phases. Although the complexity has different values in different phases, it seems not to

be a good probe to the metal-insulator phase transition. In particular, δC diverges in low

temperature limit, and thus can not be a probe for ground state physics. Whether there is

a refined version of complexity that is a good probe to the phase transition is an interesting

open problem. Furthermore, it will be also interesting to examine the complexity growth

rate during the phase transition and to check if the Lloyd’s bound is violated or not. We

shall leave them as a future work.

6 Conclusion and discussion

We have investigated magnetotransport in a minimal holographic setup of a two dimen-

sional metal-insulator transition and uncovered some interesting features, shedding light

on this interesting transition and the physical mechanism that drives it.

Thanks to the homogeneous and isotropic of the geometry, we can solve the background

equations of motion exactly and obtain the generic DC conductivities by means of black

hole horizon data only, see (3.1) and (3.2). Without referring to the details of coupling

functions Y (X) and V (X), we are able to obtain some non-trivial constraint on the theory

parameter by considering the weak disorder limit α → 0. More precisely, to avoid a negative

diagonal conductivity σxx, the parameter k in the weak-disorder expansion of Y (X) (3.6)

must fall within the range (3.13). For the Exponential model (3.22), the value of κ was

chosen to be κ = 0.5 in [27], corresponding to k = 0.5, which is obviously outside the

allowed parameter range. Indeed, as we showed explicitly in figure 1, there is an unphysical

negative region for σxx in presence of a background magnetic field. We reexamined this

model with κ in the new parameter range (3.13) and found that there is no good insulator

phase at all. In this sense, the Exponential model is not at good example for describing

holographic metal-insulator transitions. Another model with a linear coupling (3.23) still

works well in the presence of a magnetic field. As the strength of disorder is increased,

the presence of a metal-insulator transition is manifest, see figure 6. From the optical

conductivity in figure 10, one finds a clear disorder-driven transition from a coherent metal

with a sharp Drude peak to a good insulator with a tiny or vanishing DC conductivity

at zero temperature. We have constructed the temperature-disorder phase diagram in

figure 11. While in the present study we have focused on the transport, there may be

stronger constraints which come not only from transport coefficients, but from the full two

point functions and in particular the positivity of the spectral density. A complete analysis

on the spectral densities is necessary to argue that these models are solid, which beyond

the scope of this work.16

We have showed explicitly why Y ′(X) < 0 plays the key role in the metal-insulator

transition by considering the high temperature limit. Scaling of an appropriate physical

observable is one of the hallmarks of a phase transition. In the present work we uncovered

the scaling behavior for the resistivity Rxx near the phase transition, see figures 7, 8

16We thank Elias Kiritsis for raising this point.
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and 9 driven by the charge density, magnetic field and disorder strength, respectively.

Rxx(T ) curves for different values of charge density ρ can be made to overlap by the

scaling parameter T0 along the T axis, which yields a collapse of the data onto two curves:

an insulating branch for ρ < ρc, and a metallic branch for ρ > ρc. The parameter T0

approaches zero at the critical charge density ρc, and increases as a power law T0 ∼
|ρ − ρc|1/2 both in metallic (ρ > ρc) and insulating (ρ < ρc) regions. We also found that

the metallic and insulating curves are mirror symmetry in the high temperature regime:

Rxx(ρ−ρc, T ) = 1/Rxx(ρc−ρ, T ). Our observations means that the mechanism responsible

for the temperature dependence of conductivity on both insulating and metallic sides of

the transition would be the same. We have also found similar scaling behavior for Rxx

in a magnetic field corresponding to a Landau-Level filling factor ν = 3/2. It suggests

that in our holographic matter the metal-insulator transition at zero magnetic field and at

fixed Landau-Level filling factor might be controlled by the same physical mechanism, or

it would originate with some fundamental feature that is common to both.

In condensed matter physics, the observed scaling and mirror symmetry have been

considered as a consequences of a simple analysis assuming that a T = 0 quantum critical

point describes the metal-insulator transition [44]. While it seems no quantum critical point

in our present holographic setup, it is helpful to compare our result to the scaling theory of

localization in [44]. In particular, within quantum critical region the power-law exponent

is T0 ∼ |ρ − ρc|zν1 with z the dynamical critical exponent and ν1 the correlation length

exponent [44]. A number of experiments have yielded scaling exponents that are different

from our holographic model, suggesting that they should be in different universality classes.

The scaling exponent 1/2 of T0 from our holographic setup is partially due to that the

bulk geometry is asymptotically AdS. A straightforward way to obtain a different scaling

exponent in holography is to work with geometries that violate hyperscaling — describing

an anomalous scaling of the free energy parametrized by θ — and/or exhibit non-relativistic

Lifshitz scaling with the dynamical critical exponent z. One could also consider different

types of nonlinear electrodynamics which take into account nonlinear interactions between

the charged degrees of freedom, in particular, the Dirac-Born-Infeld action.

There are four different phases in the temperature-disorder phase diagram as shown by

figure 11: good metal, incoherent metal, bad insulator and good insulator. However, there

is no genuine thermodynamic phase transition and all phases share the same symmetries

of the underlying theory, thus beyond the Landau classification. We have tried to see if

there is any quantity that is able to distinguish these different phases. For local observable,

we considered the specific heat cV and static charge susceptibility χ. We found that cV /T

and χ share very similar pattern in the temperature-disorder plane and change smoothly

across different phases (see figures 12 and 14), but they exhibited a significantly different

behavior from the conductivity in figure 11. For non-local candidate, we examined the

behavior of complexity using the CV conjecture. As shown in figure 17, the complexity

of formation also changes smoothly across different phase boundaries with its patten quite

different from the conductivity in figure 11. Therefore it is not a good probe to the metal-

insulator transition. It is still an open question to find a good probe to the metal-insulator
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transitions.17 We also showed that there is a logarithmic IR divergence for the complexity

of formation at low temperatures (see figure 16). This kind of divergence also happens

for the neutral case once the disorder is considered. Our study provided a further test for

the complexity third law [68] in a neutral background. While the complexity third law

has been confirmed from the holographic viewpoint, demonstrating it from the dual field

theory side (such as tensor network) is also a very interesting direction.

Our present study focused on a dual system in two spatial dimensions, it is interesting

to consider the case in three dimensions and to see if there is a similar behavior near the

metal-insulator transition. Furthermore, insight from holography has also been given into

various bounds and possible universality, it would be helpful to test if the present model

against the aforementioned conjectured bounds [77, 78]. In our present study the disorder

was introduced through a “mean field” approach, where translational symmetry is bro-

ken, but the spacetime geometry is homogeneous. This is the simplest way to incorporate

momentum relaxation, while there are some features concretely differ from the inhomoge-

neous setups (e.g. commensurability [79]). It would be interesting to extend our studies

to more complicated holographic systems which break translations without retaining the

homogeneity of the background such as [80–83]. So far we limited ourselves to the electric

conductivity, it is also worth studying the thermal response and the mechanical response.

We leave the study of all those issues and phenomenological consequences for the future.
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A DC conductivity

In order to study the transport properties of the dual system we follow the method devel-

oped in [30, 31]. The bulk perturbations take the form

δAx = −Ext+ ax(u), δAy = −Eyt+ ay(u),

δgtx = htx(u), δgty = hty(u) ,

δgxu = hxu(u), δgyu = hyu(u) ,

δφx = χx(u), δφy = χy(u) ,

(A.1)

with Ex(Ey) the electric field along the x(y) direction. The linearized Maxwell equa-

tions (2.3) can be shown to imply that

∂uJ
x = ∂uJ

y = 0 , (A.2)

17Instead of the complexity, another important non-local observable is the entanglement entropy, for

which its gravity dual is known as Ryu-Takayanagi formula [69]. It has been shown to be a good probe to

characterize the properties of phase transitions within the holographic scenario, see e.g. [70–76].
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with

Jx =
√−gY [X]F ux = [a′x(u) + u2B hyu(u)]f(u)Y (α2u2)− u2ρ htx(u) ,

Jy =
√−gY [X]F uy = [a′y(u)− u2B hxu(u)]f(u)Y (α2u2)− u2ρ hty(u) .

(A.3)

The asymptotic behaviors near the AdS boundary, u = 0, show that Jx and Jy are nothing

more than the electric currents in the dual field theory. Since they are conserved along the

radial direction, they can be calculated anywhere in the bulk. The strategy is to evaluate

them at the horizon u = uh, where the constraint of regularity imposes a non-trivial relation

between the currents and the electric fields. In particular, the requirement for the fields to

be regular at the horizon implies the following relation:

a′x(u) =
Ex

f(u)
, htx(u) = f(u)hxu(u) ,

a′y(u) =
Ey

f(u)
, hty(u) = f(u)hyu(u) ,

(A.4)

with χx(u) and χy(u) finite at the horizon.

Plugging (A.4) into the xu and yu components of the linearized Einstein’s equa-

tions (2.4), one finds that htx(uh) and hty(uh) are fixed by Ex and Ey. Finally, we are able

to compute Jx and Jy from (A.3) using the horizon data and obtains

(

Jx

Jy

)

=

(

σxx σxy
σyx σyy

)(

Ex

Ey

)

, (A.5)

where the longitudinal and Hall conductivities are given by

σxx = σyy =
Ω(uh)Y (α2u2h)[Ω(uh) + Y (α2u2h)(B

2Y (α2u2h)
2 + ρ2)u2h]

[Ω(uh) +B2Y (α2u2h)
3u2h]

2 +B2ρ2Y (α2u2h)
4u4h

, (A.6)

σxy = −σyx =
BρY (α2u2h)

3u2h[2Ω(uh) + Y (α2u2h)(B
2Y (α2u2h)

2 + ρ2)u2h]

[Ω(uh) +B2Y (α2u2h)
3u2h]

2 +B2ρ2Y (α2u2h)
4u4h

, (A.7)

with Ω(uh) = α2[m2V ′(α2u2h)Y (α2u2h)
2 +

u4

h

2 (B2Y (α2u2h)
2 − ρ2)Y ′(α2u2h)]. The resistivity

matrix R is obtained by inverting the conductivity matrix σ:

Rxx = Ryy = − σxx
σ2
xx + σ2

yy

, Rxy = −Ryx = − σxy
σ2
xx + σ2

yy

. (A.8)
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