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Magnetotransport in the doped Mott insulator
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We investigate the Hall effect and the magnetoresistance of strongly correlated electron systems using the
dynamical mean-field theory. We treat the low- and high-temperature limits analytically, and explore some
aspects of the intermediate-temperature regime numerically. We observe that a bipartite-lattice condition is
responsible for the high-temperature restlj~ 1/T? obtained by various authors, whereas the generic behav-
ior is o~ 1/T, as for the longitudinal conductivity. We find that Kohler’s rule is obeyed neither at high nor
at intermediate temperaturd§0163-182€09)06203-7

[. INTRODUCTION single-particle spectrum to the magnetotransport and to gain
some understanding of either. We always mainly focus on

The Hubbard modét? of strongly correlated electron sys- the parameter regime close to the density-driven Mott tran-
tems has been an enduring problem in condensed-mattéition. This paper is organized as follows: In Sec. II, we
theory. It is believed to capture some of the anomalous phydriefly summarize the dynamical mean-field theory within
ics of heavy-fermion systems and hig‘]g_superconductoé_ the single-band Hubbard model, and derive expressions for
lts crucial feature is the interplay of itineracy and a localthe quantities to be calculated. Then, by using a Fermi-liquid
interactionU that is either comparable with or much greater parametrization for the spectral function, we examine all
than the bare bandwidth. guantities in the low-temperature regirt&ec. Ill), and study

In this paper, we investigate the impact of a magnetictheir dependences on temperature and on the doping level.
field on the charge transport in strongly correlated electroMoreover, we discuss the impact of correlations close to
systems within the Hubbard model. This issue involves dif-half-filling. In Sec. IV, we employ a recently developed
ferent quantities that are closely related, and should thereforgcheme to expand transport coefficients in powers af 1/
be considered within theameapproximation scheme. We (Ref. 12 within the U=c Hubbard model to study the op-
meet this condition by using the dynamical mean-field theoryposite limit of high temperatures. We show that the high-
which becomes exact in the limit of infinite dimensions. A temperature behaviors of the Hall constant and Hall angle
major though nontrivial simplification of this approach is can be affected by specific lattice symmetries, and that the
that transport properties are described solely by the singlddall angle increases at most linearly with temperature. Then
particle spectrumi-® While the dynamical mean-field theory we explore the intermediate-temperature regime numerically
still captures many properties of real three-dimensionalSec. V) by either using the NCA or the IPT, depending on
transition-metal oxides, it fails to describe cuprate superconwhether our focus is more on higher or lower temperatures,
ductors equally well, mainly because it does not properlyrespectively. Finally, in Sec. VI, we summarize and discuss
take into account magnetic correlations. Nevertheless, it igur results.
important to explore this approximation scheme fully in or-
der to establish a sound starting point for future improve- Il. FORMALISM
ments.

The Hall constant of the single-band Hubbard model has
already been considered within the dynamical mean-field U
theory by Pruschke, Jarrell, and Freerftled Majumdar H=—t>, ClhCiot = > NNy, (1)
and Krishnamurthy. The former authors computed the Hall (ij)o 2
constant and Hall angle as functions of temperature for vari
ous doping levels at—in our unitsd= 22D (D is the half-
bandwidth using the noncrossing approximatiMCA) and
a quantum Monte CarldQMC) technique to solve the
single-impurity problem. Majumdar and Krishnamurthy
mainly focused on the relation between the infinite-
frequency Hall constant investigated by Shastry,
and Singht® and the dc Hall constant, using the
perturbation theoryIPT) of Ref. 11.

In addition to the Hall effect and the ordinary resistivity,
we investigate the magnetoresistance. We tie our numerical 1
analysis at intermediate temperatures to analytical results Alw,e0) =~ —IMG(w, &) 2
valid in the low- and high-temperature limits. This allows to
disentangle the coherent and incoherent contributions of thelere G(w, €) is the retarded Green’s function,

We consider théN-fold degenerate Hubbard model

ic#a’

where, in the first term, the sum is over nearest neighbors.
The indexo can be thought of as a spin or an orbital index,
and will run from 1 toNg. For a single band\;=2. In the

limit of infinite spatial dimensionsd—o, the irreducible
self-energy and all vertex functions collapse onto a single
- site>13 As a consequence, these functions no longer depend
Shraimagn momentum. This, in turn, implies that all vertex correc-
iterated-(jons of the conductivity tensor vani€h® which therefore
can be calculated from the single-particle spectral function
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1 Henceforth, we set the lattice spaciagand the half-band-
G(w,eg)= , (3)  width D=2t equal to 1. For the band of E¢L3), the non-
ot p—e—2(w) interacting density of statef(e), and the transport func-

where u is the chemical potential and (w) is the tions (7)—(9) can easily be calculated to be

momentum-independent self-energy. The Green’s function
(3) must be calculated by solving a single-impurity Anderson
model supplemented by a self-consistency conditidn. 1
terms of the spectral functiof®), the ordinary conductivity, be(€)=—D(e), (15)
the Hall conductivity, and the magnetoconductance éad: 4d

D(e)=\2/me 2, (14)

f(w 1
Oyx= Nsﬂ'ezf de qSXX(E)f do| — &(—w) A(w,€)?, (4) Pyy(€)=— HZED(G), (16)
Ng272eH f(w 1
ro= g | dedto) | do| - w0, ul€)== 162D 7
©) Obviously,oyy, oy, andAao,, are of the orders 1/d?,
N2 m3e?H2 () and 162, respectively. Consequently, the Hall constant and
Aoy~ s - f d€¢M(6)f dol — - Alw,e)*. the magnetoresistance are of zeroth ordet, iand are given
(6)
HereH is the magnetic field and denotes the charge of an Ry= Oxy (18)
electron, hence<0. Furthermoref(w)=1[exp(Bw)+1] a)Z(XH ’
is the Fermi function, wher@=1/T is the inverse tempera-
ture. Since the spectral function dependsl?ounly via the Aoyy
Ap=—— (19

band dispersiore;, we could write all sums over the Bril-
louin zone as integrals over the following transport func-
tions: asd—o, respectively. Equation&), (17), and (19) imply
1 that the magnetoresistance is strictly non-negative in infinite
X . dimensions. This means that the coupling of the magnetic
P €)= NEK (6'2)25(6_6")’ @) field to the orbital motion of the electrons enhances the re-
sistivity. At any finite dimension, there is an additional con-
1 . tribution from the Hall conductivity to the magnetoresistance
Pyl €)= NZ detk) o(e— €g), (8)  which is of opposite signAp=—p?(Acy+pos,), where
K p=1lo,. In this work, rather than using the Gaussian den-
sity of stateg14), we choose the semicircular one,

1 _
Pu(e) =52 M(K)&(e—€p). 9 )
k D(e)=—0(1—|e|)V1- € (20)
HereN denotes the total number of lattice sites. Upper indi- T
ces indicate differentiations with respect to a component osince then thee integrals in Eqs(4)—(6) can be performed
the Bloch vector such as in, say, analytically. Here® (x) is the Heaviside function, which is
either 1 or 0 depending on whetheris greater or smaller
than 0, respectively.
To calculate the spectral functiof2), we employ two
] ) ] methods: At low temperatures, we use the IPT modified for
Finally, the integrands of Eq#8) and(9) contain the func-  finite doping levels as described in Ref. 11. This method
tions becomes exact in various limits at zero temperature, and has
been extended to finite temperatures in Ref. 15. At high tem-

Jeg
ok,

X
€k

(10

e €& peratures, we use the NCA for the infinite-caset® This
detk) = PRI 1D approach has been shown to give results which are in good
K"k Tk agreement with both QMC(Ref. 17 and numerical
> XXX X, Y2 XXy, X2 Y . XYy, X3 renormalization-gr_oup calcqlatioﬁ%at high temperatures.
M(K) =€ "€ (€ —2¢€; "(€) €.+ €. (€p) Before proceeding, we discuss the relevant energy scales.
(Y= ()], (12 Wg are primarily int_ere-_sted in the physics close to half-
K Lk €k k filling, 6—0, wheren=1- § denotes the average occupancy

per lattice site. To understand the physics in this regime, we
employ the relation of the dynamical mean-field theory to the

op M single-impurity Anderson model. Fof<1, we are in the
— > cogkia). (13  local-moment regime, and an Abrikosov-Suhl resonance
Vad i< shows up in the local spectral function

On a hypercubic lattice id dimensions,

€i=—
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Before proceeding, we investigate how the quasiparticle
damping depends on the correlation strength. From Egs.
(20), (21), and(24), we obtain the width of the Abrikosov-

for low enough temperatures. Its width defines an energyuhl resonance:
scaleT*,¥%2%which is not to be confused with the quasipar- .
ticle damping Eq. (23)] that we will introduce further down. T*=2ZD. (25)

The emergence of a resonance at the Fermi level indicates-a is a measure for the Fermi energy of the quasiparticles.
Kondo-like screening of the local moment. In fact, the local- 5¢ ,arq temperaturel* is the only energy scale in the prob-
spin susceptibility crosses over from local- to screenedTem Then the self-energy is given by
1] 20 . I
Teoh S (w)=aw/T* +ib(w/T*)? for w<T*, with some con-

moment behavior at a “Kondo temperatur@,,.**
defines the coherence temperature below which Fermi-liqui tantsa and b. By comparing this expression to the Fermi-
liquid expansion(22), we find 1T* «1—1/Z and 'y 1/T*2,

theory is applicablé® Generally, T.,<T*. The emergence
The former relation is consistent with E(5) since in the

of two low-energy scales is known from Kondo-lattice
system&! Finally, our high-energy scale B, since we are ', '~ | : . .

y y g 9y yicinity of the density-driven Mott transitionZ~ 8.2° By
inserting the other relatiofec 1/T* 2 into the definition ofy,

only interested in temperatures much smaller than the Mot
Hubbard gapT<U. ! ° !

For temperatures most pertinent to experiments, the mad? Ed. (23), and by also using E¢25), we obtain
netotransport is governed by both the coherence peak and the
incoherent backround of the spectrum. It is of fundamental T2
interest to separate both contributions. In the Fermi-liquid 70:A%’ (26)
regime, the transport is entirely determined by the coherence
peak, and our analysis of Sec. Ill addresses its contributiowhereA is a dimensionless number and which is valid close
only. Our high-temperature analysis of Sec. IV, on the otheto the density-driven Mott transition.

hand, captures the contribution of the completely incoherent Using Eqs.(23) and(24), we find that to leading order in
lower Hubbard band to the magnetotransport. T, the conductivitieg4)—(6) do not depend omw:

A(w)=ﬁcdeD(e)A(w,e) 21)

Ne? .
lll. LOW-TEMPERATURE LIMIT 0= 2;0 d’xx(M)E(l)a 27
At very low temperatures, Fermi-liquid theory applies.
Then the Green'’s functiof8) can be approximated by ex- 3
panding the self-energy to second ordewinthus capturing To= Nse"H b () E?) (28)
finite-lifetime effects of the quasiparticles: OV ’
S(w0)=(1-1Z) o+ av’+iy(w). (22 442
A :w(ﬁ (~)E(3) (29)
Here, Z=[1- dRe(w)/dw|,—o] * is the quasiparticle Txx 8y8 ML ’
residue at the Fermi level, angd=34? RS (w)/dw?|,—q.
Moreover, where the numberg() are given by
W) =T+ (0l m)2]=yo(T)[1+(Bolm)?] (23 O x 30
is the quasiparticle damping. Due to E2), the spectral a4 cosﬁ(i 1+ X
function becomes 2

) ~
A(w,e)ZLy(w)(——awz-f-/L—f), (24)

z
where L(w)=(1/7)[T/(I'’+ w?)] is the Lorentzian nor-
malized to unity, angh= u— Re (0) is the effective chemi-
cal potential. In the limitss—0 andT—0, Eq.(24) reduces
to the correct result, lig_olim_oA(w, €)= 8(e—u).?? Us-
ing also the sum rules [*_ de[Lp(e)]""1=(2n

—1)1/(2=T)"n! for integern, and the fact that the width
of Lr(e€) is 1/7=2I", we can check that Eq§4)—(6) reduce

Numerically, we obtainE*)=0.822 467,E(?)=0.711 748,
and E®=0.635279. Using Eqg18), (19), and (27)—(29),
we find

1 dy(WE®

"N [ (ED P o
2 DIE®
H? (R .

P N0 [ (EDT

to the standard Boltzmann-theory results &s—0. As already mentioned, the coupling of the magnetic field to
Since A(w,€) of Eq. (24) is only the low-frequency part the orbital motion of the electrons gives rise to a positive

of the spectral function, it only carries a small fraction of contribution to the resistivity.

the total spectral weight determined by the sum rule. When The Hall constant31) does not depend on the quasipar-

calculating transport coefficients, this does not matter: Incoticle damping. However, the ordinary resistivity and the

herent contributions missing in Eq24) are cut off by magnetoresistance do. Near the density-driven Mott transi-
—of(w)/dw. tion, these quantities are given, due to E2p), by
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2AT? @3 of A(w), w=0, by further expressing all derivatives of the
p= = = ' 33 Fermi function by the Fermi function itself, and by using the
NSeZZ(M)2D¢XX(M)E(1) moments

_ HZ()’D |$u(p)|E? 7 doFe!
YT NAT [(E 34 m"ffwd“’A(“’)“" (40)

The impact of correlations on both quantities is described bylong with their expansion in powers ofT1/

their dependence ofi: While they enhance the ordinary re-

sistivity by a factor of 122, they lower the magnetoresis- ” -

tance byZ?, in each case relative to a noninteracting system m = Zo g m™, (41)
with the same density of states. Also, the dependences of the "

quantities(33) and (34) on the doping level are mainly de- we can systematically exparffi—u(T)] in powers of 1T.
termined by Z: As the Mott transition is approached, To first order in 1T, we find

6—0, p diverges and the magnetoresistance vanishes. The

former fact indicates that the effective charge carriers be- nl 1 m{%
come localized. But then, the magnetic field can no longer fl=rMl=m 8= +0o(B?), (42)
affect the orbital motion of the electrons, hence the vanishing Lo Mg

magnetoresistance.
Finally, the Fermi-liquid relationspxT?/Z? and Ap
«Z?/T? imply the validity of Kohler's rulé®

wheremy=1—n+n/Ng according to Eq(38).
Likewise, we can expand conductivitie®—(6) in powers
of 1/T. In terms of the quantities

Ap [H)\2?
7“(?) ' (35 = f de sl €) f doA(w,€)%0), 43

IV. HIGH-TEMPERATURE LIMIT H ~ 3
C =f degbxy(e)f do A(w,€)°w', (44)
To single out the contributions of the incoherent parts of
the spectrum, we now consider the limit of very high tem-
peratures. For the Hubbard interaction to retain its important C|M:f de ¢M(€)J doA(w, €)' (45)
impact on the electron dynamics in the high-temperature
limit, we have to choos&) =2 from the outset. Then, the \hich are to be calculated in the high-temperature limit, we
spectral function(2) no longer receives contributions from find
the upper Hubbard band. We start by deriving a sum rule for

the local spectral functio(21). On average, each site hosts oy=Ngme?BA(1—A)Cy, (46)
electrons and % n holes, sincdJ =« means that the maxi-
mum occupancy is 1. Thus we find N2 72e3H
) oxy=——3—BA(L-A)[Cy-B(1-2A)C{], (47
f dw A(w)f(w)=n/Ng, (36
o Ns2me*H? "
AUXX:TﬁA(l—A)CO , (48
do A 1-f =1-n. 3
f—oc @A)l ()] @7 whereA=(n/Ng)/(1—n+n/Ng). Using Egs.(18) and(19),

. . these results can be translated into resistivities,
These equations imply the sum rule

T

Jﬂcde(w)=l—n+ n/N;. (38) P NLCy (49)
Next we derive the high-temperature expansion for the 2(TC5’— ,7(;?)
chemical potential, which is defined by E&6). In the limit HE % (50)
T—, the spectral functiof21) becomes temperature inde- 3eNs{Co
pendent except for the presumably temperature-dependent
peak center;- u(T). Therefore, we introduce tilded spectral 2wH?|CY|
and Green’s functions that are obtained from their untilded Ap= 5N—§CST’ (51)
S

counterparts by replacing— »— u. For instance,
_ where we have defineg=A(1—-A) and n=1-2A, or
Alw)=Alw—pu). (39

~ 1- N
Equation (36) can now be rewritten ag” . dw A(w)f(w _ _(A=mn/Ns (52)

—w)=n/Ng. By expandingf(w— u) about the peak center (1-n+n/Ng?’
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1-n—n/Ng Finally, by again using the dynamical mean-field equations,
T~ 1-n+n/N. (53)  we can show that Eq60) implies a symmetry property for
s the full spectral function:

Before discussing these findings, we investigate the de- o~ L~
pendences of coefficientd3)—(45) on band filling and on imA(—o,— €)= lim A(w,€). (61)
temperature. Their doping dependence can roughly be esti- T T
mated by assuming that the weight of the full spectral f“nC‘Equations(Ss) and (61) prove that |irT’r_,mC5'=0. The first

tion [Eq. (2)] is similar to that of the local one in Eq21). . qer in 1T does not vanish, henog"~1/T as claimed
This implies above

~ We now discuss our results for the three quantities in Egs.
Ci=Ci(1-n+n/Ng)?, (54 (49)—(51). Both the ordinary resistivity and the magnetore-
sistance exhibit a linear-im behavior at high temperatures,
C{"%Ef*(l—n+n/Ns)3, (550  with prefactors that diverge in the empty-band limit or as
half-filling is approached. As1—0, we find p,Ap~T/n,
M_RM/q 4 which simply reflects the fact that if the charge carriers van-
Cli~Cri(1=n+n/Ny)%, (56) ish, the conductivity has to vanish too. Close to half-filling,

whereG,, G, and€M are doping independent. Equations V€ find

(54)—(56) can be shown to be a good approximation in the

vicinity of half-filling. p~TI86, (62)
The temperature dependence of coefficidd®—(45) is Ap~TINZS. 63

more subtle because it can be affected by symmé&gyand

Co' are positive and negative definite, respectively, andy; the Mott transition, these quantities diverge because lo-
therefore tend to constants determined by the limiting formegjized charge carriers cannot give rise to a finite conductiv-
of the spectral function a§—=. However, Cl receives ity either.

contributions of either sign, leading to the possibility that = The temperature dependence of the Hall constant depends
these contributions may cancel each other out in [eading Ofon whether the given band structure satisfies conditi6is

der due to some symmetry. As an example, we will demongnd (58). If they are satisfiedR,~ const, otherwise, we ex-
strate further down that perfect nesting leadsOlp~1/T.  pectR,~T. This result is consistent with previous works on
Then both contributions in Eq50) matter, and the Hall the high-temperature Hall effect by Brinkman and Rite,
constant tends to a constant &s»>. For a general band Oguri and Maekaw&® and Shastry, Shraiman, and Singh.
structure, however, there is no reason v@{y should vanish  The high-temperature expansions of all these works were
asT—x, soo,,~ LT like the longitudinal conductivity, and carried out for a cubic lattice with nearest-neighbor hopping.
hence,Ry~T in this limit. In the case of the simple tight- Therefore, they all obtainedo,,~ 1/T?, leading to a
binding band of Eq(13), we evaluate the coefficients ap- temperature-independent Hall constant at high temperatures.
pearing in Eqs(49—(51) numerically within the NCA for  Our analysis shows that this result is not generic. Rather, we
6=0.1: Setting d=3, we find Ilim_.Cy=1.894 expecto,,~1/T andthuRy~T for a general band structure
X102, IimTHwTCQ =—2.654x 1074, IimTﬁxC? =—7.602 at high temperatures. To check this, we calculate the infinite-

X 1074, and limy_.C§ = —4.529< 10" . frequency Hall constanR}; of Ref. 10 to leading order in
We now demonstrate that any band structure implying thel/T on a two-dimensional cubic lattice where electrons can
symmetry properties hop with amplitudest and t(¥ to, respectively, nearest-
neighbor sites and diagonally across the unit cell. In essence,
D(—€)=D(e), (57 Ry is given by([J,,d,]). For this quantity to be of order
/T rather than 172, electrons must be able to circum-
Duy(— €)= — yy(€) (58)  scribe a finite area enclosing a finite flux with just three hops.

This is made possible by the inclusion of diagonal hdps

'To leading order in 1,%° we find Rf=[6t2t(d/(t?
+2t@2)2][(1+ ) T/es(1—6)]. A high-temperature be-
. - havior Ry~ T is also striking from the viewpoint of conven-
e(k+Q)=—e(k) (59 tional band theory, where a temperature dependence can only
- , . arise below a scale set by the Debye temperature.

for some vectoQ. In the case of nearest-neighbor hopping a5 for the doping dependence of the Hall constant, we
on a cubic latticd Eq. (13)], Q is the vector pointing to the find either Ry~ 1/Ndle| or Ry~T/N.d|e| close to half-
corner of the Brillouin zone, i.e.(_j:(ﬂ',ﬂ', ...). Upon filling. In any case, the Hall constant exhibits & behavior.
solving the dynamical mean-field equations, an even densityhe sign of the Hall constant is governed by the coefficients
of states as in Eq(57) is seen to lead to an even local CQ andCT. As can be seen from E@4), they are a com-

in fact leads toCE~l/T . These properties can be satisfied
for instance, on account of the perfect-nesting condition

spectral function a§ — bined result of the band structure, entering via functi®n
and the correlations, taken into account by the spectral func-
limA(— )= limA(w). (60)  tion. In the case of the simple tight-binding ba(iB), the

Too Too Hall constant is positive in the vicinity of half-filling.
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FIG. 1. Hall constant at) =« and §=0.1. FIG. 2. Hall constant at) =2.82 for various doping levels.

Finally, Egs.(62) and (63) indicate that Kohler's rule is stant bep_omes electronli_ke again at very high temperatures.
replaced byA p/p~ const< H? in the high-temperature limit. The position of the maximum depends only weakly on the
Moreover, the Hall angle, defined by éqt=p/R,, increases doping level and is roughly located &&0.16D, which is

at most as cat,~T as a function of temperature, if the sym- 2P0V€T" (Figs. 2.and 8 Upon increasindJ, the maximum

metry properties(57) and (58) are satisfied. Otherwise, becomes little by little more asymmetric, and uItimater ap-
COtfy~const. proaches theU=c form of the Hall constant discussed

above. This indicates that the decrease of the Hall constant as
a function of temperature beyond its maximum is due to the
V. INTERMEDIATE TEMPERATURES excitation of charge across the Mott-Hubbard gap. This does

) N i i not imply that the relevant temperature scaleUs-2D,
The behavior of the Hall coefficient at intermediate tem-gince in dynamical mean-field theory, the two Hubbard

peratures z_;\nd for some values of the paramdterere st_ud- bands are only separated by a pseuddgapin fact, Figs. 2

ied numerically in Refs. 8 and 9. In these works, it wasang 3 show that the relevant temperature scale of the de-
stressed that the Hubbard model in infinite dimensions reprosyease is roughly OCL. At first glance, the curves of Figs. 2
duces many observable features of the high-temperature synq 3 hear some similarities to what is found experimentally
perconductors. Other works have shown, however, that imy, cuprate€®2 In cuprates, the width of the lower Cu band
portant quantities of these systems such as the specific hqgtroughly 05 eV implyiné 0Mm~250 K. This scale does
are not properly described within the infinieHubbard iy t5ct roughly characterize the experimentally observed
model, and that this model is more appropriate for describingjecreasé® Yet, despite these similarities, there is a crucial
some transition-metal oxides where, due to the orbital degenitference: In cuprates, the two relevant bands are separated
eracy, short-ranged magnetic correlations are weaker than areal gap of approximately 3 eV, which is about six
the cuprates. Nevertheless, given that we do not yet undefjnes as large as the width of the lower Cu band. By con-
stand the physics of the cuprates, we feel that the observatiqpt  in Fig. 3, these bands are separated by only a
of similarities between experimental results on the Hall ef'pseljdogapNhich,is only about as large as the width of the
fect in cuprates and numerical results for the infitetub-  |5\ver Hubbard band namely) — 2D =2D. Therefore, the
bard model deserves further investigation. The magnetoresigs; ation in cuprates,is much closer b= in our mo,del.
tance is a second probe of the effects of a magnetic field. Igsjyen that the maximum in the Hall constant found in Ref. 8
this section, we carry out a comparative study of these tWos 5 finitel) effect, we conclude that the dynamical mean-
quantities with the goal of elucidating which elements of theg |4 theory cannot describe the experimentally observed de-

physics of the larget Hubbard model result in the observed ¢e 456 of the Hall constant as a function of temperature un-
similarities with the cuprates. To this effect, we restrict the

discussion to the simple band struct(ie). 20
The Hall constant is shown in Figs. 1-3: We know from o010
Sec. Ill that the Hall constant starts at its noninteracting s—exon

value atT=0. We also know that within the infinite- Hub-

bard model, it rapidly converges to a positive value beyond

the high-energy scalP (cf. Fig. 1). Moreover, this positive

value goes like ¥ in the vicinity of half-filling. In between s
these limiting cases, we expect a smooth crossover, implying 05
a sign change of the Hall constant as a function of tempera- A
ture. At finite U, however, the Hall constant goes through a 0.0 at——p
maximum as a function of temperatuieigs. 2 and 3 For w‘*‘f

large enoughJ and small enough doping levels, this maxi- —05 L= : L . :
mum is positive. For temperatures greater than the Mott- 000 005 010 0.5 020 025 00
Hubbard gap, the dynamics of the electrons is increasingly

insensitive to the interactiod, which is why the Hall con- FIG. 3. Hall constant at)=4 for various doping levels.
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FIG. 4. Hall angle at)=4 for two doping levels. FIG. 6. Ap/p vs temperature dt =4 for various doping levels.

less a reason is found to introduce a much smaller HubbargimCtIon of temperature in the regime where the Hall con-

gap within the framework of the largé-Hubbard model than Stant decreases as a function of temperature. This fact is
what is really observed experimentally related to the appearance of a minimum whose location de-

We now turn to the Hall angle. From our analytical inves- pends on the doping level and which is also a fikkedfect.

tgation, we know that ok~ D and co, T for ) 17010 . 0hcerntn i our anaytal preciton,
T<Tcon. In cuprates such as ba,SrCuQ,, a quadratic .~ » I ag ytical p ,

temperature dependence of the Hall angle is observed in thtge ratioA p/ p approaches a constant value beyon,d the high-
underdoped compouna%,where at the same time the Hall €N€ray scal® and cannot, therefore, obey Kohler’s rule nor

constant is holelike. In Figs. 4 and 5, the Hall angle is show he modified version thereof suggested by Terasaial.

as a function ofT? in the intermediate-temperature regime, his is also true at intermediate temperatures.
0.1 =T=0.3D, where the Hall constant is positive. Figure
4 shows that c#; becomes smaller upon decreasing the

doping level, as seen in the experirr_]é%t-.lowever, none of  |n summary, we have studied the Hall effect and magne-
the curves displays a linear behavior, although a linear figresistance close to the density-driven Mott transition within
becomes better d3— and for sufficiently small tempera- the single-band Hubbard model in infinite dimensions. We
tures and doping levelgig. 5. Note that a linear extrapo- haye shown that the orbital magnetoresistance is always non-
lation of theU=cc curve in Fig. 5 would lead to a finite pegative in this approximation. To elucidate the emerging
Intercept. dependences on temperature, on the doping level, and on the
Further evidence that the infiniteHubbard model in the correlation strength, we have analytically considered the
intermediate-temperature regime is not able to explain th%symptotic regimes at very low and high temperatures. We
magnetotransport observed in cuprates is provided by oujave interpolated between these limiting cases by also com-
Study of the magnetoreSiStance. In the FermI-IIqUId regim%uting all considered observables numerica”y_
T<Tcon, We obtainedAp/p~1/T*, while in the opposite In the Fermi-liquid regime, we found that correlations
limit, at very hlgh temperatures, this ratio saturates to %uppress the magnetoresistam by a factorZZ’ whereZ
temperature-independent value. Figure 6 displAy8p at s the quasiparticle residue which is linear in doping close to
U=4 for intermediate temperatures. Experimentally, 51/ the Mott transition. Moreover, we have derivag~ 1/T2.
dependence is observed in the normal state of high-purityve found that Kohler's rule is obeyed only in this low-
cuprates? In contrast, the curves of Fig. 6 increase as 3emperature regime.

For temperatures greater than the half-band-wldtbut

VI. CONCLUSIONS

60 T T
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FIG. 5. Hall angle for varioud) and §=0.1. The NCA curve

corresponds tdJ =co. FIG. 7. Ap/p as a function ofl at U=~ and §=0.1.
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much smaller than the Mott-Hubbard gaphich, therefore, sistance numerically. We have argued that none of the result-
was assumed to be infinjteve have obtained the following ing temperature dependences can account for what is
analytical results: First, the zero-field resistivilyand the observed experimentally in the normal state of the cuprate
magnetoresistivity are linear in temperature, and diverge asuperconductors. On the other hand, direct comparison with
1/6 close to the Mott transition. Hendep/p~ const, which  experiment has shown that the dynamical mean-field theory
replaces Kohler's rule. Second, the Hall constant always diprovides a surprisingly accurate description of three-
verges as ¥ close to half-filling. Finally, we have pointed dimensional transition-metal oxidésand our results should
out that the high-temperature behavior of the Hall effect cruserve as a qualitative guide for what we would expect in
cially depends on the band structure: Generically, both théhese systems.

longitudinal and Hall conductivities go like T/ This implies

that the Hall constant displays a lineardnbehavior, and the ACKNOWLEDGMENTS
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