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Magnetotransport in the doped Mott insulator

Ekkehard Lange and Gabriel Kotliar
Serin Physics Laboratory, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854

~Received 11 March 1998!

We investigate the Hall effect and the magnetoresistance of strongly correlated electron systems using the
dynamical mean-field theory. We treat the low- and high-temperature limits analytically, and explore some
aspects of the intermediate-temperature regime numerically. We observe that a bipartite-lattice condition is
responsible for the high-temperature resultsxy;1/T2 obtained by various authors, whereas the generic behav-
ior is sxy;1/T, as for the longitudinal conductivity. We find that Kohler’s rule is obeyed neither at high nor
at intermediate temperatures.@S0163-1829~99!06203-7#
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I. INTRODUCTION

The Hubbard model1–3 of strongly correlated electron sys
tems has been an enduring problem in condensed-m
theory. It is believed to capture some of the anomalous ph
ics of heavy-fermion systems and high-Tc superconductors.4

Its crucial feature is the interplay of itineracy and a loc
interactionU that is either comparable with or much grea
than the bare bandwidth.

In this paper, we investigate the impact of a magne
field on the charge transport in strongly correlated elect
systems within the Hubbard model. This issue involves d
ferent quantities that are closely related, and should there
be considered within thesameapproximation scheme. W
meet this condition by using the dynamical mean-field the
which becomes exact in the limit of infinite dimensions.
major though nontrivial simplification of this approach
that transport properties are described solely by the sin
particle spectrum.5–8 While the dynamical mean-field theor
still captures many properties of real three-dimensio
transition-metal oxides, it fails to describe cuprate superc
ductors equally well, mainly because it does not prope
take into account magnetic correlations. Nevertheless,
important to explore this approximation scheme fully in o
der to establish a sound starting point for future impro
ments.

The Hall constant of the single-band Hubbard model
already been considered within the dynamical mean-fi
theory by Pruschke, Jarrell, and Freericks8 and Majumdar
and Krishnamurthy.9 The former authors computed the Ha
constant and Hall angle as functions of temperature for v
ous doping levels at—in our units—U52A2D(D is the half-
bandwidth! using the noncrossing approximation~NCA! and
a quantum Monte Carlo~QMC! technique to solve the
single-impurity problem. Majumdar and Krishnamurth
mainly focused on the relation between the infini
frequency Hall constant investigated by Shastry, Shraim
and Singh,10 and the dc Hall constant, using the iterate
perturbation theory~IPT! of Ref. 11.

In addition to the Hall effect and the ordinary resistivit
we investigate the magnetoresistance. We tie our nume
analysis at intermediate temperatures to analytical res
valid in the low- and high-temperature limits. This allows
disentangle the coherent and incoherent contributions of
PRB 590163-1829/99/59~3!/1800~8!/$15.00
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single-particle spectrum to the magnetotransport and to g
some understanding of either. We always mainly focus
the parameter regime close to the density-driven Mott tr
sition. This paper is organized as follows: In Sec. II, w
briefly summarize the dynamical mean-field theory with
the single-band Hubbard model, and derive expressions
the quantities to be calculated. Then, by using a Fermi-liq
parametrization for the spectral function, we examine
quantities in the low-temperature regime~Sec. III!, and study
their dependences on temperature and on the doping le
Moreover, we discuss the impact of correlations close
half-filling. In Sec. IV, we employ a recently develope
scheme to expand transport coefficients in powers ofT
~Ref. 12! within the U5` Hubbard model to study the op
posite limit of high temperatures. We show that the hig
temperature behaviors of the Hall constant and Hall an
can be affected by specific lattice symmetries, and that
Hall angle increases at most linearly with temperature. Th
we explore the intermediate-temperature regime numeric
~Sec. V! by either using the NCA or the IPT, depending o
whether our focus is more on higher or lower temperatur
respectively. Finally, in Sec. VI, we summarize and discu
our results.

II. FORMALISM

We consider theNs-fold degenerate Hubbard model

H52t (
^ i j &s

cis
1 cj s1

U

2 (
isÞs8

nisnis8 , ~1!

where, in the first term, the sum is over nearest neighb
The indexs can be thought of as a spin or an orbital inde
and will run from 1 toNs . For a single band,Ns52. In the
limit of infinite spatial dimensions,d→`, the irreducible
self-energy and all vertex functions collapse onto a sin
site.5,13 As a consequence, these functions no longer dep
on momentum. This, in turn, implies that all vertex corre
tions of the conductivity tensor vanish,6–8 which therefore
can be calculated from the single-particle spectral functio

A~v,ekW !52
1

p
ImG~v,ekW !. ~2!

HereG(v,ekW) is the retarded Green’s function,
1800 ©1999 The American Physical Society
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G~v,ekW !5
1

v1m2ekW2S~v!
, ~3!

where m is the chemical potential andS(v) is the
momentum-independent self-energy. The Green’s func
~3! must be calculated by solving a single-impurity Anders
model supplemented by a self-consistency condition.7 In
terms of the spectral function~2!, the ordinary conductivity,
the Hall conductivity, and the magnetoconductance read14

sxx5Nspe2E de fxx~e!E dvF2
] f ~v!

]v GA~v,e!2, ~4!

sxy5
Ns2p2e3H

3 E de fxy~e!E dvF2
] f ~v!

]v GA~v,e!3,

~5!

Dsxx5
Ns2p3e4H2

5 E de fM~e!E dvF2
] f ~v!

]v GA~v,e!4.

~6!

HereH is the magnetic field ande denotes the charge of a
electron, hencee,0. Furthermore,f (v)51/@exp(bv)11#
is the Fermi function, whereb51/T is the inverse tempera
ture. Since the spectral function depends onkW only via the
band dispersionekW , we could write all sums over the Bril
louin zone as integrals over the following transport fun
tions:

fxx~e!5
1

N(
kW

~ekW
x
!2d~e2ekW !, ~7!

fxy~e!5
1

N(
kW

det~kW !d~e2ekW !, ~8!

fM~e!5
1

N(
kW

M ~kW !d~e2ekW !. ~9!

HereN denotes the total number of lattice sites. Upper in
ces indicate differentiations with respect to a componen
the Bloch vector such as in, say,

ekW
x
5

]ekW

]kx
. ~10!

Finally, the integrands of Eqs.~8! and ~9! contain the func-
tions

det~kW !5UekW
x
ekW

x
ekW

xy

ekW
y
ekW

x
ekW

yyU , ~11!

M ~kW !5ekW
xxx

ekW
x
~ekW

y
!222ekW

xxy
~ekW

x
!2ekW

y
1ekW

xyy
~ekW

x
!3

2~ekW
x
!2@ekW

xx
ekW

yy
2~ekW

xy
!2#. ~12!

On a hypercubic lattice ind dimensions,

ekW52
2t

A2d
(
i 51

d

cos~kia!. ~13!
n

-

-
f

Henceforth, we set the lattice spacinga and the half-band-
width D[2t equal to 1. For the band of Eq.~13!, the non-
interacting density of states,D(e), and the transport func
tions ~7!–~9! can easily be calculated to be

D~e!5A2/pe22e2
, ~14!

fxx~e!5
1

4d
D~e!, ~15!

fxy~e!52
1

4d2 eD~e!, ~16!

fM~e!52
1

16d2 D~e!. ~17!

Obviously,sxx , sxy , andDsxx are of the orders 1/d, 1/d2,
and 1/d2, respectively. Consequently, the Hall constant a
the magnetoresistance are of zeroth order ind, and are given
by

RH5
sxy

sxx
2 H

, ~18!

Dr52
Dsxx

sxx
2

~19!

as d→`, respectively. Equations~6!, ~17!, and ~19! imply
that the magnetoresistance is strictly non-negative in infin
dimensions. This means that the coupling of the magn
field to the orbital motion of the electrons enhances the
sistivity. At any finite dimension, there is an additional co
tribution from the Hall conductivity to the magnetoresistan
which is of opposite sign,Dr52r2(Dsxx1rsxy

2 ), where
r51/sxx . In this work, rather than using the Gaussian de
sity of states~14!, we choose the semicircular one,

D~e!5
2

p
Q~12ueu!A12e2, ~20!

since then thee integrals in Eqs.~4!–~6! can be performed
analytically. HereQ(x) is the Heaviside function, which is
either 1 or 0 depending on whetherx is greater or smaller
than 0, respectively.

To calculate the spectral function~2!, we employ two
methods: At low temperatures, we use the IPT modified
finite doping levels as described in Ref. 11. This meth
becomes exact in various limits at zero temperature, and
been extended to finite temperatures in Ref. 15. At high te
peratures, we use the NCA for the infinite-U case.16 This
approach has been shown to give results which are in g
agreement with both QMC~Ref. 17! and numerical
renormalization-group calculations18 at high temperatures.

Before proceeding, we discuss the relevant energy sca
We are primarily interested in the physics close to ha
filling, d→0, wheren512d denotes the average occupan
per lattice site. To understand the physics in this regime,
employ the relation of the dynamical mean-field theory to
single-impurity Anderson model. Ford!1, we are in the
local-moment regime, and an Abrikosov-Suhl resonan
shows up in the local spectral function
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A~v!5E
2`

`

de D~e!A~v,e! ~21!

for low enough temperatures. Its width defines an ene
scaleT* ,19,20 which is not to be confused with the quasipa
ticle damping@Eq. ~23!# that we will introduce further down
The emergence of a resonance at the Fermi level indicat
Kondo-like screening of the local moment. In fact, the loc
spin susceptibility crosses over from local- to screen
moment behavior at a ‘‘Kondo temperature’’Tcoh.19,20 Tcoh
defines the coherence temperature below which Fermi-liq
theory is applicable.20 Generally,Tcoh!T* . The emergence
of two low-energy scales is known from Kondo-lattic
systems.21 Finally, our high-energy scale isD, since we are
only interested in temperatures much smaller than the M
Hubbard gap,T!U.

For temperatures most pertinent to experiments, the m
netotransport is governed by both the coherence peak an
incoherent backround of the spectrum. It is of fundamen
interest to separate both contributions. In the Fermi-liq
regime, the transport is entirely determined by the cohere
peak, and our analysis of Sec. III addresses its contribu
only. Our high-temperature analysis of Sec. IV, on the ot
hand, captures the contribution of the completely incoher
lower Hubbard band to the magnetotransport.

III. LOW-TEMPERATURE LIMIT

At very low temperatures, Fermi-liquid theory applie
Then the Green’s function~3! can be approximated by ex
panding the self-energy to second order inv, thus capturing
finite-lifetime effects of the quasiparticles:

S~v!5~121/Z!v1av21 ig~v!. ~22!

Here, Z5@12] ReS(v)/]vuv50#21 is the quasiparticle
residue at the Fermi level, anda5 1

2 ]2 ReS(v)/]v2uv50 .
Moreover,

g~v!5g̃@T21~v/p!2#[g0~T!@11~bv/p!2# ~23!

is the quasiparticle damping. Due to Eq.~22!, the spectral
function becomes

A~v,e!5Lg~v!S v

Z
2av21m̃2e D , ~24!

where LG(v)5(1/p)@G/(G21v2)# is the Lorentzian nor-
malized to unity, andm̃5m2ReS(0) is the effective chemi-
cal potential. In the limitsv→0 andT→0, Eq.~24! reduces
to the correct result, limv→0limT→0A(v,e)5d(e2m̃).22 Us-
ing also the sum rules *2`

` de @LG(e)#n115(2n
21)!!/(2pG)nn! for integer n, and the fact that the width
of LG(e) is 1/t52G, we can check that Eqs.~4!–~6! reduce
to the standard Boltzmann-theory results asT→0.
Since A(v,e) of Eq. ~24! is only the low-frequency par
of the spectral function, it only carries a small fraction
the total spectral weight determined by the sum rule. Wh
calculating transport coefficients, this does not matter: In
herent contributions missing in Eq.~24! are cut off by
2] f (v)/]v.
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Before proceeding, we investigate how the quasipart
damping depends on the correlation strength. From E
~20!, ~21!, and ~24!, we obtain the width of the Abrikosov
Suhl resonance:

T* .ZD. ~25!

T* is a measure for the Fermi energy of the quasipartic
At zero temperature,T* is the only energy scale in the prob
lem. Then, the self-energy is given b
S(v)5av/T* 1 ib(v/T* )2 for v!T* , with some con-
stantsa and b. By comparing this expression to the Ferm
liquid expansion~22!, we find 1/T* }121/Z and g̃}1/T* 2.
The former relation is consistent with Eq.~25! since in the
vicinity of the density-driven Mott transition,Z;d.20 By
inserting the other relationg̃}1/T* 2 into the definition ofg0
in Eq. ~23!, and by also using Eq.~25!, we obtain

g05A
T2

Z2D
, ~26!

whereA is a dimensionless number and which is valid clo
to the density-driven Mott transition.

Using Eqs.~23! and~24!, we find that to leading order in
T, the conductivities~4!–~6! do not depend ona:

sxx5
Nse

2

2g0
fxx~m̃ !E~1!, ~27!

sxy5
Nse

3H

4g0
2

fxy~m̃ !E~2!, ~28!

Dsxx5
Nse

4H2

8g0
3

fM~m̃ !E~3!, ~29!

where the numbersE( l ) are given by

E~ l !5E
2`

` dx

4 cosh2S x

2D F11S x

p D 2G l . ~30!

Numerically, we obtainE(1)50.822 467,E(2)50.711 748,
and E(3)50.635 279. Using Eqs.~18!, ~19!, and ~27!–~29!,
we find

RH5
1

Nse

fxy~m̃ !E~2!

@fxx~m̃ !E~1!#2
, ~31!

Dr5
H2

2Nsg0

ufM~m̃ !uE~3!

@fxx~m̃ !E~1!#2
. ~32!

As already mentioned, the coupling of the magnetic field
the orbital motion of the electrons gives rise to a posit
contribution to the resistivity.

The Hall constant~31! does not depend on the quasipa
ticle damping. However, the ordinary resistivity and t
magnetoresistance do. Near the density-driven Mott tra
tion, these quantities are given, due to Eq.~26!, by



b
-
-
em
f t
-
,
T
be
ge
in

o
m
a
ur

fo

-

th

-
d
al
e

r

e
e

we

PRB 59 1803MAGNETOTRANSPORT IN THE DOPED MOTT INSULATOR
r5
2AT2

Nse
2Z~m̃ !2Dfxx~m̃ !E~1!

, ~33!

Dr5
H2Z~m̃ !2D

2NsAT2

ufM~m̃ !uE~3!

@fxx~m̃ !E~1!#2
. ~34!

The impact of correlations on both quantities is described
their dependence onZ: While they enhance the ordinary re
sistivity by a factor of 1/Z2, they lower the magnetoresis
tance byZ2, in each case relative to a noninteracting syst
with the same density of states. Also, the dependences o
quantities~33! and ~34! on the doping level are mainly de
termined by Z: As the Mott transition is approached
d→0, r diverges and the magnetoresistance vanishes.
former fact indicates that the effective charge carriers
come localized. But then, the magnetic field can no lon
affect the orbital motion of the electrons, hence the vanish
magnetoresistance.

Finally, the Fermi-liquid relationsr}T2/Z2 and Dr
}Z2/T2 imply the validity of Kohler’s rule23

Dr

r
}S H

r D 2

. ~35!

IV. HIGH-TEMPERATURE LIMIT

To single out the contributions of the incoherent parts
the spectrum, we now consider the limit of very high te
peratures. For the Hubbard interaction to retain its import
impact on the electron dynamics in the high-temperat
limit, we have to chooseU5` from the outset. Then, the
spectral function~2! no longer receives contributions from
the upper Hubbard band. We start by deriving a sum rule
the local spectral function~21!. On average, each site hostsn
electrons and 12n holes, sinceU5` means that the maxi
mum occupancy is 1. Thus we find

E
2`

`

dv A~v! f ~v!5n/Ns , ~36!

E
2`

`

dv A~v!@12 f ~v!#512n. ~37!

These equations imply the sum rule

E
2`

`

dv A~v!512n1n/Ns . ~38!

Next we derive the high-temperature expansion for
chemical potential, which is defined by Eq.~36!. In the limit
T→`, the spectral function~21! becomes temperature inde
pendent except for the presumably temperature-depen
peak center,2m(T). Therefore, we introduce tilded spectr
and Green’s functions that are obtained from their untild
counterparts by replacingv→v2m. For instance,

Ã~v!5A~v2m!. ~39!

Equation ~36! can now be rewritten as*2`
` dv Ã(v) f (v

2m)5n/Ns . By expandingf (v2m) about the peak cente
y

he

he
-
r
g

f
-
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e

r

e

ent

d

of Ã(v), v50, by further expressing all derivatives of th
Fermi function by the Fermi function itself, and by using th
moments

ml5E
2`

`

dv Ã~v!v l , ~40!

along with their expansion in powers of 1/T,

ml5 (
n50

`

bnml
~n! , ~41!

we can systematically expandf @2m(T)# in powers of 1/T.
To first order in 1/T, we find

f @2m~T!#5
n

Ns
F 1

m0
1bd

m1
~0!

m0
3 G1o~b2!, ~42!

wherem0512n1n/Ns according to Eq.~38!.
Likewise, we can expand conductivities~4!–~6! in powers

of 1/T. In terms of the quantities

Cl5E de fxx~e!E dv Ã~v,e!2v l , ~43!

Cl
H5E de fxy~e!E dv Ã~v,e!3v l , ~44!

Cl
M5E de fM~e!E dv Ã~v,e!4v l , ~45!

which are to be calculated in the high-temperature limit,
find

sxx5Nspe2bA~12A!C0 , ~46!

sxy5
Ns2p2e3H

3
bA~12A!@C0

H2b~122A!C1
H#, ~47!

Dsxx5
Ns2p3e4H2

5
bA~12A!C0

M , ~48!

whereA[(n/Ns)/(12n1n/Ns). Using Eqs.~18! and ~19!,
these results can be translated into resistivities,

r5
T

pe2NszC0

, ~49!

RH5
2~TC0

H2h C1
H!

3eNszC0
2

, ~50!

Dr5
2pH2uC0

Mu

5NszC0
2

T, ~51!

where we have definedz[A(12A) andh[122A, or

z5
~12n!n/Ns

~12n1n/Ns!
2

. ~52!
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h5
12n2n/Ns

12n1n/Ns
. ~53!

Before discussing these findings, we investigate the
pendences of coefficients~43!–~45! on band filling and on
temperature. Their doping dependence can roughly be
mated by assuming that the weight of the full spectral fu
tion @Eq. ~2!# is similar to that of the local one in Eq.~21!.
This implies

Cl'C̃l~12n1n/Ns!
2, ~54!

Cl
H'C̃l

H~12n1n/Ns!
3, ~55!

Cl
M'C̃l

M~12n1n/Ns!
4, ~56!

whereC̃l , C̃l
H , andC̃l

M are doping independent. Equation
~54!–~56! can be shown to be a good approximation in t
vicinity of half-filling.

The temperature dependence of coefficients~43!–~45! is
more subtle because it can be affected by symmetry.C0 and
C0

M are positive and negative definite, respectively, a
therefore tend to constants determined by the limiting fo
of the spectral function asT→`. However, C0

H receives
contributions of either sign, leading to the possibility th
these contributions may cancel each other out in leading
der due to some symmetry. As an example, we will dem
strate further down that perfect nesting leads toC0

H;1/T.
Then both contributions in Eq.~50! matter, and the Hall
constant tends to a constant asT→`. For a general band
structure, however, there is no reason whyC0

H should vanish
asT→`, sosxy;1/T like the longitudinal conductivity, and
hence,RH;T in this limit. In the case of the simple tight
binding band of Eq.~13!, we evaluate the coefficients ap
pearing in Eqs.~49!–~51! numerically within the NCA for
d50.1: Setting d53, we find limT→`C051.894
31022, limT→`TC0

H522.65431024, limT→`C1
H527.602

31024, and limT→`C0
M524.52931024.

We now demonstrate that any band structure implying
symmetry properties

D~2e!5D~e!, ~57!

fxy~2e!52fxy~e! ~58!

in fact leads toC0
H;1/T. These properties can be satisfie

for instance, on account of the perfect-nesting condition

e~kW1QW !52e~kW ! ~59!

for some vectorQW . In the case of nearest-neighbor hoppi
on a cubic lattice@Eq. ~13!#, QW is the vector pointing to the
corner of the Brillouin zone, i.e.,QW 5(p,p, . . . ). Upon
solving the dynamical mean-field equations, an even den
of states as in Eq.~57! is seen to lead to an even loc
spectral function asT→`:

lim
T→`

Ã~2v!5 lim
T→`

Ã~v!. ~60!
e-

ti-
-

d

t
r-
-

e

,

ity

Finally, by again using the dynamical mean-field equatio
we can show that Eq.~60! implies a symmetry property fo
the full spectral function:

lim
T→`

Ã~2v,2e!5 lim
T→`

Ã~v,e!. ~61!

Equations~58! and ~61! prove that limT→`C0
H50. The first

order in 1/T does not vanish, henceC0
H;1/T as claimed

above.
We now discuss our results for the three quantities in E

~49!–~51!. Both the ordinary resistivity and the magnetor
sistance exhibit a linear-inT behavior at high temperatures
with prefactors that diverge in the empty-band limit or
half-filling is approached. Asn→0, we find r,Dr;T/n,
which simply reflects the fact that if the charge carriers va
ish, the conductivity has to vanish too. Close to half-fillin
we find

r;T/d, ~62!

Dr;T/Ns
2d. ~63!

At the Mott transition, these quantities diverge because
calized charge carriers cannot give rise to a finite conduc
ity either.

The temperature dependence of the Hall constant dep
on whether the given band structure satisfies conditions~57!
and~58!. If they are satisfied,RH;const, otherwise, we ex
pectRH;T. This result is consistent with previous works o
the high-temperature Hall effect by Brinkman and Rice24

Oguri and Maekawa,25 and Shastry, Shraiman, and Singh10

The high-temperature expansions of all these works w
carried out for a cubic lattice with nearest-neighbor hoppi
Therefore, they all obtainedsxy;1/T2, leading to a
temperature-independent Hall constant at high temperatu
Our analysis shows that this result is not generic. Rather,
expectsxy;1/T and thusRH;T for a general band structur
at high temperatures. To check this, we calculate the infin
frequency Hall constantRH* of Ref. 10 to leading order in
1/T on a two-dimensional cubic lattice where electrons c
hop with amplitudest and t (d) to, respectively, nearest
neighbor sites and diagonally across the unit cell. In esse
RH* is given by ^@ Ĵx ,Ĵy#&. For this quantity to be of orde
1/T rather than 1/T2, electrons must be able to circum
scribe a finite area enclosing a finite flux with just three ho
This is made possible by the inclusion of diagonal hopst (d).
To leading order in 1/T,26 we find RH* 5@6t2t (d)/(t2

12t (d)2)2#@(11d)T/ed(12d)#. A high-temperature be-
haviorRH;T is also striking from the viewpoint of conven
tional band theory, where a temperature dependence can
arise below a scale set by the Debye temperature.

As for the doping dependence of the Hall constant,
find either RH;1/Nsdueu or RH;T/Nsdueu close to half-
filling. In any case, the Hall constant exhibits a 1/d behavior.
The sign of the Hall constant is governed by the coefficie
C0

H andC1
H . As can be seen from Eq.~44!, they are a com-

bined result of the band structure, entering via function~8!,
and the correlations, taken into account by the spectral fu
tion. In the case of the simple tight-binding band~13!, the
Hall constant is positive in the vicinity of half-filling.
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Finally, Eqs.~62! and ~63! indicate that Kohler’s rule is
replaced byDr/r;const3H2 in the high-temperature limit
Moreover, the Hall angle, defined by cotuH5r/RH , increases
at most as cotuH;T as a function of temperature, if the sym
metry properties~57! and ~58! are satisfied. Otherwise
cotuH;const.

V. INTERMEDIATE TEMPERATURES

The behavior of the Hall coefficient at intermediate te
peratures and for some values of the parameterU were stud-
ied numerically in Refs. 8 and 9. In these works, it w
stressed that the Hubbard model in infinite dimensions re
duces many observable features of the high-temperature
perconductors. Other works have shown, however, that
portant quantities of these systems such as the specific
are not properly described within the infinite-d Hubbard
model, and that this model is more appropriate for describ
some transition-metal oxides where, due to the orbital deg
eracy, short-ranged magnetic correlations are weaker tha
the cuprates. Nevertheless, given that we do not yet un
stand the physics of the cuprates, we feel that the observa
of similarities between experimental results on the Hall
fect in cuprates and numerical results for the infinite-d Hub-
bard model deserves further investigation. The magnetore
tance is a second probe of the effects of a magnetic field
this section, we carry out a comparative study of these
quantities with the goal of elucidating which elements of t
physics of the large-d Hubbard model result in the observe
similarities with the cuprates. To this effect, we restrict t
discussion to the simple band structure~13!.

The Hall constant is shown in Figs. 1–3: We know fro
Sec. III that the Hall constant starts at its noninteract
value atT50. We also know that within the infinite-U Hub-
bard model, it rapidly converges to a positive value beyo
the high-energy scaleD ~cf. Fig. 1!. Moreover, this positive
value goes like 1/d in the vicinity of half-filling. In between
these limiting cases, we expect a smooth crossover, impl
a sign change of the Hall constant as a function of temp
ture. At finite U, however, the Hall constant goes through
maximum as a function of temperature~Figs. 2 and 3!. For
large enoughU and small enough doping levels, this max
mum is positive. For temperatures greater than the M
Hubbard gap, the dynamics of the electrons is increasin
insensitive to the interactionU, which is why the Hall con-

FIG. 1. Hall constant atU5` andd50.1.
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stant becomes electronlike again at very high temperatu
The position of the maximum depends only weakly on t
doping level and is roughly located atT'0.16D, which is
aboveT* ~Figs. 2 and 3!. Upon increasingU, the maximum
becomes little by little more asymmetric, and ultimately a
proaches theU5` form of the Hall constant discusse
above. This indicates that the decrease of the Hall consta
a function of temperature beyond its maximum is due to
excitation of charge across the Mott-Hubbard gap. This d
not imply that the relevant temperature scale isU22D,
since, in dynamical mean-field theory, the two Hubba
bands are only separated by a pseudogap.27,20 In fact, Figs. 2
and 3 show that the relevant temperature scale of the
crease is roughly 0.1D. At first glance, the curves of Figs.
and 3 bear some similarities to what is found experimenta
in cuprates.28,29 In cuprates, the width of the lower Cu ban
is roughly 0.5 eV, implying 0.1D;250 K. This scale does
in fact roughly characterize the experimentally observ
decrease.29 Yet, despite these similarities, there is a cruc
difference: In cuprates, the two relevant bands are separ
by a real gap of approximately 3 eV, which is about s
times as large as the width of the lower Cu band. By co
trast, in Fig. 3, these bands are separated by onl
pseudogapwhich is only about as large as the width of th
lower Hubbard band, namely,U22D52D. Therefore, the
situation in cuprates is much closer toU5` in our model.
Given that the maximum in the Hall constant found in Ref
is a finite-U effect, we conclude that the dynamical mea
field theory cannot describe the experimentally observed
crease of the Hall constant as a function of temperature

FIG. 2. Hall constant atU52.82 for various doping levels.

FIG. 3. Hall constant atU54 for various doping levels.
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less a reason is found to introduce a much smaller Hubb
gap within the framework of the large-d Hubbard model than
what is really observed experimentally.

We now turn to the Hall angle. From our analytical inve
tigation, we know that cotuH;T for T.D and cotuH;T 2 for
T,Tcoh. In cuprates such as La22xSrxCuO4, a quadratic
temperature dependence of the Hall angle is observed in
underdoped compounds,30 where at the same time the Ha
constant is holelike. In Figs. 4 and 5, the Hall angle is sho
as a function ofT2 in the intermediate-temperature regim
0.15D<T<0.3D, where the Hall constant is positive. Figu
4 shows that cotuH becomes smaller upon decreasing t
doping level, as seen in the experiment.29 However, none of
the curves displays a linear behavior, although a linear
becomes better asU→` and for sufficiently small tempera
tures and doping levels~Fig. 5!. Note that a linear extrapo
lation of the U5` curve in Fig. 5 would lead to a finite
intercept.

Further evidence that the infinite-d Hubbard model in the
intermediate-temperature regime is not able to explain
magnetotransport observed in cuprates is provided by
study of the magnetoresistance. In the Fermi-liquid regi
T,Tcoh, we obtainedDr/r;1/T4, while in the opposite
limit, at very high temperatures, this ratio saturates to
temperature-independent value. Figure 6 displaysDr/r at
U54 for intermediate temperatures. Experimentally, a 1T4

dependence is observed in the normal state of high-pu
cuprates.31 In contrast, the curves of Fig. 6 increase as

FIG. 4. Hall angle atU54 for two doping levels.

FIG. 5. Hall angle for variousU and d50.1. The NCA curve
corresponds toU5`.
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function of temperature in the regime where the Hall co
stant decreases as a function of temperature. This fac
related to the appearance of a minimum whose location
pends on the doping level and which is also a finite-U effect.
In fact, as can be seen in Fig. 7, this minimum is absen
U5`. There, in agreement with our analytical predictio
the ratioDr/r approaches a constant value beyond the hi
energy scaleD and cannot, therefore, obey Kohler’s rule n
the modified version thereof suggested by Terasakiet al.32

This is also true at intermediate temperatures.

VI. CONCLUSIONS

In summary, we have studied the Hall effect and mag
toresistance close to the density-driven Mott transition wit
the single-band Hubbard model in infinite dimensions. W
have shown that the orbital magnetoresistance is always
negative in this approximation. To elucidate the emerg
dependences on temperature, on the doping level, and o
correlation strength, we have analytically considered
asymptotic regimes at very low and high temperatures.
have interpolated between these limiting cases by also c
puting all considered observables numerically.

In the Fermi-liquid regime, we found that correlation
suppress the magnetoresistanceDr by a factorZ2, whereZ
is the quasiparticle residue which is linear in doping close
the Mott transition. Moreover, we have derivedDr;1/T2.
We found that Kohler’s rule is obeyed only in this low
temperature regime.

For temperatures greater than the half-band-widthD but

FIG. 6. Dr/r vs temperature atU54 for various doping levels.

FIG. 7. Dr/r as a function ofT at U5` andd50.1.
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much smaller than the Mott-Hubbard gap~which, therefore,
was assumed to be infinite!, we have obtained the following
analytical results: First, the zero-field resistivityr and the
magnetoresistivity are linear in temperature, and diverge
1/d close to the Mott transition. HenceDr/r;const, which
replaces Kohler’s rule. Second, the Hall constant always
verges as 1/d close to half-filling. Finally, we have pointe
out that the high-temperature behavior of the Hall effect c
cially depends on the band structure: Generically, both
longitudinal and Hall conductivities go like 1/T. This implies
that the Hall constant displays a linear-in-T behavior, and the
Hall angle cotuH saturates asT→`. If, on the other hand, a
bipartite-lattice condition is satisfied,RH;const and cotuH
;T.

In the intermediate-temperature regime, we have inve
gated the Hall constant, the Hall angle, and the magnet
s

ev

e

o

as

i-

-
e

ti-
e-

sistance numerically. We have argued that none of the res
ing temperature dependences can account for wha
observed experimentally in the normal state of the cupr
superconductors. On the other hand, direct comparison
experiment has shown that the dynamical mean-field the
provides a surprisingly accurate description of thre
dimensional transition-metal oxides,7 and our results should
serve as a qualitative guide for what we would expect
these systems.
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