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We systematically study the scaling properties of the magnitude and sign of the fluctuations in
correlated time series, which is a simple and useful approach to distinguish between systems with
different dynamical properties but the same linear correlations. First, we decompose artificial long-
range power-law linearly correlated time series into magnitude and sign series derived from the
consecutive increments in the original series, and we study their correlation properties. We find
analytical expressions for the correlation exponent of the sign series as a function of the exponent of
the original series. Such expressions are necessary for modeling surrogate time series with desired
scaling properties. Next, we study linear and nonlinear correlation properties of series composed
as products of independent magnitude and sign series. These surrogate series can be considered
as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data,
a problem still open in many fields. We find analytical results for the scaling behavior of the
composed series as a function of the correlation exponents of the magnitude and sign series used in
the composition, and we determine the ranges of magnitude and sign correlation exponents leading
to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear
properties of the composed series depend on the correlation exponents of their magnitude and sign
series. Based on this information we propose a method to generate surrogate series with controlled
correlation exponent and multifractal spectrum.

PACS numbers: 05.40.– a, 05.45.Tp

I. INTRODUCTION

A wide variety of phenomena in different fields rang-
ing from Physiology to Economy show complex dynamics
generating output signals that appear to be erratic and
noisy but that, in fact, possess long-range correlations
with scale-invariant structure. In addition, it has been
observed that the presence of such correlations is linked
to relevant properties of the system under study; for ex-
ample, the correlations in the series of heartbeats change
from healthy to pathological conditions [1] or under dif-
ferent physiological states[2].

In many cases, given a time series xi, i = 1, 2, . . . , N ,
its increments ∆xi = xi+1−xi are more relevant than the
series itself because the dynamical properties of the in-
crements provide with interesting clues about the under-
lying dynamics of the system and could help to develop
useful models.

For nonlinear systems it is important to go beyond the
study of linear correlations because they do not account
for all dynamical properties of such systems — e.g. incre-
ment time series with the same linear correlations could
correspond to systems with completely different nonlin-
ear and multifractal behaviors [3]. A simple approach to
break this degeneration consists in studying separately
the correlations of magnitude and sign of the increment
time series. The correlations in the series of magnitudes

(also known as volatility series) have been related to the
presence of nonlinear correlations and multifractal struc-
ture [3–5] whereas, the properties of the sign series are
solely determined by the linear correlations [3, 4] and
have been studied in the context of first-passage time in
scale-invariant correlated processes [6].

In addition, from the intuitive point of view, magni-
tude and sign time series contain different and comple-
mentary information about the original signal: the mag-
nitude measures how big are the changes and the sign
indicates their direction. An example of this, is the dy-
namics of the heart [3] which is thought to be the result of
two competing forces, the sympathetic and parasympa-
thetic branches of the autonomous nervous system, that
leads to complex variability with scale invariant char-
acteristics. Roughly speaking, the first one is responsi-
ble for slow (small in magnitude) increases (positive in
sign) of the heart-rate, while the second is usually associ-
ated with fast (large in magnitude) decreases (negative in
sign). Other examples of the usefulness of the magnitude
and sign analysis are also found in Fluid Dynamics [7],
Geological [8, 9], Geophysical [10, 11] and Economical
time series [12].

Despite the importance of the magnitude and sign time
series we have just mentioned, there are still open ques-
tions: for example, given a time series with known long-
range correlations a key question is whether there are
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correlations present also in the magnitude and sign time
series? The approach to address this question is what
we call here the decomposition problem. In principle,
the systematic study of this problem is a complicated
task, since the original time series can have very dif-
ferent nature, as mentioned above. Instead, we study
the decomposition problem in artificial time series which
are commonly used to model the behavior of long-range
correlated time series. In particular, we consider frac-
tional Gaussian noises (fGns) and fractional Brownian
motions (fBms) to model respectively stationary and
non-stationary long-range correlated time series.

Furthermore, a second important problem (still open
in many cases) is how the magnitude and sign of the
increments are coupled to form the whole signal: for ex-
ample, in the human heart, when analyzing the incre-
ments of the interbeat interval time series, it is not clear
yet the relationship between the magnitude (how big the
change in the cardiac rhythm is) and the sign (the direc-
tion of the change). Obviously, a systematic study of the
coupling between magnitude and sign series would be of
great interest to improve the understanding of the rela-
tion between them and the behavior of the underlying
mechanisms of control. Specifically, we investigate how
the correlations of the whole signal are controlled by the
correlations in the magnitude and sign time series, as well
as by the coupling between them. However, the coupling
mechanism of magnitude and sign will be different in time
series of different nature, since the underlying dynam-
ics will be different as well, and this variety of potential
coupling mechanisms makes a systematic analysis diffi-
cult. Nevertheless, we can approach this problem from
a different point of view: we can study systematically
the correlation properties of time series with uncoupled
magnitude and sign. Such time series can be artificially
generated by multiplying magnitude and sign time se-
ries (each one with known correlations) obtained from
different fGns or fBms. In this way, we guarantee that
both magnitude and sign series are independent and thus
uncoupled. Such analysis is what we call here the compo-
sition problem. The composition problem can be useful
to understand the behavior of complex systems charac-
terized by the coupling of two different mechanisms, each
controlling the dynamics of magnitude and sign respec-
tively. In addition, the results of the composition prob-
lem are a reference of uncoupling, and then can be used
to detect the existence of coupling mechanisms when an-
alyzing real complex time series.

This article is organized as follows: In section II we
describe the methods and algorithms used in this arti-
cle. Specifically, in subsection II A we describe the DFA
(Detrended Fluctuation Analysis), the method used here
to quantify the linear correlations, in II B we explain the
MFDFA (Multifractal Detrended Fluctuation Analysis),
the algorithm we use to obtain multifractal spectra of
time series and subsection II C introduces the Fourier Fil-
tering Method which allows us to generate signals with
given correlation exponent.

In section III we systematically study the decompo-
sition problem, i.e. the correlation properties of the
magnitude and sign time series obtained from long-range
power-law linearly correlated time series. In section IV
we investigate the composition problem, i.e. we system-
atically study the correlations properties of composed
time series with uncoupled magnitude and sign series.
The multifractal properties of such composed series are
analyzed in Sec. V and, finally, section VI presents the
conclusions of this work.

II. METHODS

A. Detrended Fluctuation Analysis (DFA)

Here we quantify the linear correlations of time se-
ries by using the Detrended Fluctuation Analysis (DFA)
[13], a modified version of the Fluctuation Analysis
(FA) which is able to eliminate the effects of the non-
stationarity. This method provides a single quantitative
parameter — the scaling exponent α — to represent the
correlation properties of a long-range correlated series.

DFA consists of the following steps [13]:

(i) Starting with a correlated series {xi} of size N we
first integrate the series and obtain

y(j) ≡
j∑
i=1

[xi − µ] (1)

where µ is the mean value of the entire series.

(ii) The integrated series y(j) is divided into boxes of
equal length `.

(iii) In each box of length `, we calculate a linear fit
of y(j) which represents the linear trend in that
box. The y coordinate of the fit line in each box is
denoted by y`(j).

(iv) The integrated series y(j) is detrended by subtract-
ing the local trend y`(j) in each box of length `.

(v) For a given box size `, the root mean-square (r.m.s.)
fluctuation for this integrated and detrended series
is calculated:

F (`) =

√√√√ 1

N

N∑
j=1

[y(j)− y`(j)]2 (2)

(vi) The above computation is repeated for a broad
range of scales (box sizes `) to provide a relation-
ship between F (`) and the box size `.

For a power-law correlated time series, there exist
a power-law relation between the average root-mean-
square fluctuation function F (`) and the box size `:
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FIG. 1: (Color online) (a) Example of correlated series ob-
tained with the Fourier filtering method and αin = 1. (b)
Series of its magnitudes and (c) series of its signs.

F (`) ∼ `α. Thus, the fluctuations can be characterized
by a scaling exponent α, a self-similarity parameter which
quantifies the long-range power-law correlation proper-
ties of the signal.

If the power-law correlated time series is stationary
(α < 1), the autocorrelation function decays as a power-
law, C(`) ∼ sgn(1− γ)/`γ and the exponent α is related
to the exponent γ by [14–16]:

α =
2− γ

2
. (3)

Note that for the special case γ = 1 (α = 0.5) the
autocorrelation function vanishes.

In addition, it can be shown, via the Wiener-Khinchin
theorem, that the power spectrum of the series is also a
power-law, whose exponent β is indeed related to α: [16]

α =
β + 1

2
(4)

Here it is worth mentioning that, although Wiener-
Khinchin theorem is only for α < 1, this relationship
between α and β is also valid for α > 1.

Values of α < 0.5 indicate the presence of anticorrela-
tions in the time series, α = 0.5 absence of correlations
(white noise) and α > 0.5 indicates the presence of pos-
itive correlations in the time series. In particular, for
α = 1.5 the series correspond to the well-known Brown-
ian motion.

The performance of DFA has been systematically stud-
ied for time series with different trends [17, 18], missing
data[19], different artifacts[20], linear and non-linear pre-
processing filters [21] and coarse-graining of the time se-
ries values [22].

B. Multifractal Detrended Fluctuation Analysis
(MFDFA)

DFA studies the scaling of the second-order moment
as a function of the window size ` and thus, it only takes
into account the linear correlations present in the series.
MFDFA can be understood as a generalization of DFA
in the sense that it analyzes the scaling of all possible
moments of order q (including negative ones) [23]. To do
so, Eq. (2) is generalized as follows:

Fq(`) =

 1

N

N∑
j=1

|y(j)− y`(j)|q
 1

q

(5)

For long range power-law correlated time series, the
fluctuations Fq(`) scale as a power-law of the form:

Fq(`) ∼ `h(q) (6)

where h(q) is the scaling exponent of the fluctuations
of order q as a function of the window size `. Obvi-
ously, the DFA exponent α is a particular case for q = 2,
i.e. α = h(2). For series with only linear correlations
h(q) = α ∀q, i.e. there is a single scaling exponent and
the series is monofractal. On the other hand, when non-
linear correlations are present in the series, each moment
scales with a different exponent h(q) and the series will
be multifractal.

The scaling exponents h(q) can be related to the clas-
sical multifractal box-counting scaling exponents τ(q) by
means of the expression:

τ(q) = qh(q)− 1 (7)

Finally, calculating the Lengendre transform we can ob-
tain the multifractal spectrum (see [23]):

ζ = τ
′
(q) (8)

f(ζ) = qζ − τ(q) (9)

where f(ζ) denotes the fractal dimension of the subset of
the series characterized by ζ. For the particular case of
monofractal time series, as all the moments scale with the
same exponent, h(q) = α, h′(q) = 0 and the multifractal
spectrum will be a delta function:

f(ζ) = δ(ζ − α). (10)

In contrast, for a multifractal series, f(ζ) will have a
non-zero width, ∆ζ, which can be used as a measure of
the strength of the nonlinearities present in the series.

C. Fourier Filtering Method

To generate artificial series with long-range power-law
correlations we use the Fourier Filtering Method (FFM)
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[24, 25]. This method makes use of Eq.(4) to obtain a
series with DFA exponent α.

It works as follows:

(i) Generate a white noise η(i), i.e. a series of uncor-
related Gaussian-distributed numbers all with the
same mean and variance, and compute its Fourier
transform, η̂(f).

(ii) The series with the desired correlation exponent α is
obtained as:

x(i;α) ≡ F−1
[
η̂(f)

fα−1/2

]
, (11)

where F−1[·] denotes the inverse Fourier transform.
To check this, simply take into account that the
Fourier transform of x(i;α) is a power law of expo-
nent α−1/2 and thus its power spectrum follows a
power law with exponent 2α−1 which, according to
Eq.(4), gives a DFA exponent α. Time series gen-
erated by FFM are normalized to zero mean and
unit variance.

III. DECOMPOSITION OF A TIME SERIES:
CORRELATIONS IN THE MAGNITUDE AND

SIGN

Our aim is to quantify the correlations in the magni-
tude and sign time series obtained from the decomposi-
tion of a long-range correlated time series with a given
input correlations. To systematically analyze the corre-
lation properties of the magnitude and sign series, we
generate artificial series of length 220 ' 106 using FFM
with different input values of the correlation exponent
(αin) equally spaced in the (0,2) interval. Fig. 1 shows
an example of a correlated series obtained for αin = 1, as
well as its magnitude and sign series.

For each individual series we obtain its corresponding
magnitude and sign series, compute their correlation ex-
ponents (αmag and αsign respectively) and average them
over an ensemble of 200 experiments for each input αin

value. We also compute the correlation exponent of the
generated time series (αout) which could be slightly dif-
ferent from αin due to statistical fluctuations and finite
size effects (Fig. 2).

In Fig. 3 we show the results. We observe three differ-
ent regions:

(i) αin ≤ 0.5. Despite the anticorrelations of the time
series, both magnitude and sign are essentially un-
correlated. In all cases the magnitude series show a
perfect fit to a power-law with exponent αmag = 0.5
for all considered scales. These series are virtually
indistinguishable from random i.i.d. series. But,
on the other hand, the sign series (especially for
αin > 0.2) show values of αsign . 0.5 thus imply-
ing the presence of anticorrelations.
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FIG. 2: (Color online) Finite size effects. (a) Distributions of
αout, αmag and αsign for two ensembles of 65,000 series gen-
erated by using the Fourier Filtering Method with αin = 0.7.
Open symbols: length of the series N = 220 ' 106, full sym-
bols: length of the series N = 210 ' 103. Due to statistical
fluctuations, the values of the correlation exponent αout are
not exactly equal to αin, instead they are normally distributed
with a variance that decreases as N increases. A similar be-
havior is observed for αmag and αsign. (b) Mean values and
standard deviations (error bars) of the distributions of of αout,
αmag and αsign for experiments similar to those in (a) for se-
ries size ranging from N = 210 to N = 220. In all three cases
the mean values seem to approach an asymptotic value as N
grows. In particular, both αout and αsign tend to the same
value, αin, the convergence being slower for αsign. The fact
that αout and αsign have the same asymptotic limit is observed
only within the region 0.5 ≤ αin < 1, whereas in the region
αin > 1, αmag tends asymptotically to the same limit as αout

(see section III).

0 0.5 1 1.5 2
α

in

0

0.5

1

1.5

2

α

α
out

α
mag

α
sign

slope 0.5

slope 1.0

FIG. 3: (Color online) Averaged correlation exponents for the
composed signal (αout), magnitude (αmag) and sign (αsign) as
a function of αin. For each value of αin we generate 200 series
of length N = 220 to obtain the averages.



5

1 2 3 4 5

log
10

(l)

0.0

1.0

2.0

lo
g

1
0
(F

si
g
n
 )

α
in

 = 0.2

α1
 = 0.36

α 2
 = 0.50
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and αin = 0.2. The global scaling exponent, αsign = 0.46,
indicates the presence of anticorrelations, but the direct in-
spection of Fsign(`) reveals the existence of a crossover around
`c = 190. Below `c the sign series indeed exhibits anticorre-
lations (α1 = 0.36) but such behavior disappears for ` > `c
(α2 = 0.50).
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FIG. 5: (Color online) F (`) vs. ` for anticorrelated series
(αin = 0.3) and for surrogate series obtained by means of sign
or magnitude randomization: Generate a sign with αin = 0.3,
decompose it into its magnitude and sign series, randomize
the sign or magnitude series and obtain two surrogate series,
one multiplying the randomized sign by the original magni-
tude (4) and the other multiplying the randomized magni-
tude by the original sign (�). Both curves have been obtained
for signals with N = 220 and averaging over 200 experiments.

We find that only at short scales sign series show
clear anticorrelated behavior while at intermediate
and large scales, the behavior is uncorrelated. This
effect is shown in Fig. 4, where we plot the typical
behavior of Fsign(`) for the sign series in the region
αin ≤ 0.5. At small `, Fsign(`) scales with exponent
α1 = 0.36 and, after a transition regime, the rest
of the curve shows an scaling exponent α2 = 0.50
corresponding to uncorrelated behavior.

For this reason, the global exponent αsign, obtained
as a fit for the whole ` range (Fig. 3), is affected by
these first values of the Fsign(`) curve , thus leading
to αsign . 0.5.

In summary, for large enough scales, both magni-
tude and sign series are uncorrelated. Having this
in mind, the anticorrelations in the series (present
at all scales) must be a result of the coupling be-

tween magnitude and sign because none of them are
significantly anticorrelated themselves. To check
this, we perform the following experiment: Gen-
erate a signal with αin = 0.3, decompose it into
its magnitude and sign series, shuffle the sign (thus
destroying all possible coupling between magnitude
and sign) and finally multiply the randomized sign
series by the original magnitude series to obtain
a surrogate signal with uncoupled magnitude and
sign. We also do the same experiment but random-
izing the magnitude series. The results shown in
Fig. 5 confirm our initial guess: the two surrogate
series lose their anticorrelations since F (`) scales
as `0.5. Note that in the second experiment, where
we randomized the magnitude, the surrogate se-
ries still preserves certain anticorrelations at small
scales coming from those present in the original
sign series. Nevertheless, for ` large enough, the
random behavior is recovered and the fluctuations
scale with α = 0.5.

An important conclusion drawn from here is the
fact that it is not possible to obtain long-range an-
ticorrelated binary sequences from the sign of an
anticorrelated time series. This limitation has also
been found in other methods described in the bibli-
ography for the generation of long-range correlated
binary sequences [26–28].

(ii) 0.5 < αin < 1. In this region sign series show correla-
tions in the whole interval, while magnitude series
are correlated only beyond αin = 0.75. Neverthe-
less, the correlations in the original signal are con-
trolled by those in the sign no matter if the magni-
tude series are correlated or not. These results are
in agreement with [29] where an analytical relation
between C(`) and Csign(`) was found:

C(`) = sin
[π

2
Csign(`)

]
(12)

valid for γ < 1 and C(`) > 0, i.e. 0.5 < α < 1. Tak-
ing into account that the correlations will be much
smaller than one for large enough `, the sine in 12
can be approximated by its argument and, assum-
ing power-law dependence for the autocorrelation
function, we get:

1

`γout
' π

2

1

`γsign
(13)

and using (3) we obtain:

αsign ' αout −
log(π/2)

2 log `
(14)

Note that, according to 14, in Fig. 3, αsign is always
slightly smaller than αout. In fact, αsign → αout

only asymptotically (see Fig. 2.b). This behavior
has been already observed by Carretero-Campos et
al. [6] studying the sign series in the context of
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the distribution of first-passage times in correlated
time series.

Within this region, sign series provide an easy
method to obtain correlated binary sequences with
a correlation exponent αsign which is virtually the
same as the exponent of the original series αin.
For example, this method is useful to study DNA
sequences that have been frequently modeled as
correlated binary sequences with correlation expo-
nents 0.5 < α < 1 [30].

Here, contrary to what we observed in the previous
region, the coupling between magnitude and sign
does not seem to play a relevant role. Indeed, as we
will show in section IV, even under the assumption
of independence between magnitude and sign, the
correlations of the signal are controlled by those in
the sign, as long as αmag, αsign ∈ (0.5, 1).

(iii) 1 < αin < 2. Both αmag and αsign continue increas-
ing with αin. Now, αmag is the one which tends
asymptotically to αout, i.e. in this region correla-
tions of the composed signal are controlled by the
magnitude. On the other hand, αsign grows as a
function of αin with slope 1/2 thus, in this region:

αsign =
1

2
(1 + αin) (15)

This behavior can be explained analytically by
using the properties of the distribution of first-
passage times for linearly correlated series found
in [6]. It is also easy to show that αsign cannot be
larger than 3/2 (See appendix A for a proof of both
properties).

In summary, we have for the correlation exponent αsign

as a function of αin the next asymptotic behavior:

αsign =


1
2 αin < 1

2
αin

1
2 ≤ αin < 1

1
2 (1 + αin) 1 ≤ αin < 2

3
2 2 ≤ αin

(16)

For the correlation exponent αmag the asymptotic behav-
ior consists of an uncorrelated zone for αin <

3
4 , a transi-

tion for 3
4 < αin <

5
4 and a region where αmag ' αin for

αin >
5
4 . The correlations observed for the series of mag-

nitudes |∆xi| are in good agreement with those obtained
for the series (∆xi)

2 in [5].

IV. COMPOSITION OF MAGNITUDE AND
SIGN SERIES

As we stated in the introduction, we are also interested
in the properties of the composition of independent se-
ries of correlated signs and magnitudes. Our interest is
double: On the one hand, we study the behavior of time

series whose magnitude and sign are controlled by inde-
pendent mechanisms. One of them controls the magni-
tudes of the increments while their signs are controlled
by the other. This can be considered as the simplest ap-
proach to model real signals. On the other hand, by un-
derstanding the behavior of time series with independent
magnitude and sign, we are able to identify when mag-
nitude and sign are not independent and consequently,
we can establish a coupling detection method. Thus, by
investigating the correlation properties of such composed
time series, we can elucidate whether the magnitude and
sign of a real time series are uncoupled or not.

The procedure to generate a composed time series with
independent magnitude and sign works as follows. In
order to obtain independent series of magnitude and sign,
using FFM we generate two independent correlated series
with input correlation exponents αin1 and αin2, x(i;αin1)
and x(i;αin1) respectively. Then the magnitude series is
obtained as:

xmag(i) = |x(i;αin1)| (17)

whose correlation exponent, αmag depends on αin1

(Fig. 3). Correspondingly, we obtain the sign series as:

xsign(i) = sgn[x(i;αin2)] (18)

whose correlation exponent, αsign depends on αin2

(Fig. 3). Finally, the composed series is given by:

xcomp(i) = xmag(i) · xsign(i) (19)

Here we systematically study the correlations of the
composed series with αin1, αin2 in the range [0.5, 2] lead-
ing to αmag ∈ [0.5, 1.5] and αsign ∈ [0.5, 2] (Fig. 3). Note
that we do not explore the region αin1, αin2 < 0.5 be-
cause, as we have shown above, for these values both
magnitude and sign are essentially uncorrelated. De-
pending on αmag and αsign we have observed 3 different
behaviors:

A. Case αsign < 1

Here, independently of the exponent αmag, the corre-
lations in the composed series are controlled by those in
the sign. Given a time series obtained as the product
of two independent magnitude and sign series we show
in Appendix B that its autocorrelation function can be
written as:

C(`) = Csign(`)
(π − 2)Cmag(`) + 2

π
(20)

where C(`), Cmag(`) and Csign(`) are the autocorrelation
functions of the composed signal at distance `, its mag-
nitude and its sign respectively.

Depending on αmag we distinguish two regimes:
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FIG. 6: (Color online) Example of composed series generated
by multiplying sign and magnitude from independent original
series for αsign < 1. (a) αmag < 1. For ` large enough (` > 30)
F (`) scales with α ' αsign according to Eq. (23). (b) αmag >
1. F (`) scales with α = αsign in the whole range. Note that,
contrary to Eq. (23), Eq. (24) is not an approximation for
large `. The size of the time series is 220 and the results are
averaged over 200 experiments.

(i) αmag < 1. If the series are power-law correlated we
have:

Cmag(`) ∼ `−γmag and Csign(`) ∼ `−γsign (21)

where γmag = 2αmag − 2 and γsign = 2αsign − 2
according to (3). Using Eq. (21) in Eq. (20) we
have for the autocorrelation of the composed signal:

C(`) ∼ π − 2

π
`−(γmag+γsign) +

2

π
`−γsign (22)

As we are considering αmag, αsign ∈ [0.5, 1), it fol-
lows that γsign < γmag + γsign and thus, the second
term will be the leading one for large enough `:

C(`) ∼ Csign(`) (23)

(ii) αmag ≥ 1. Now Cmag(`) = constant and it follows
straightforwardly from (20) that:

C(`) ∝ Csign(`) (24)

Here it is important to note that while (23) is an ap-
proximation valid only for large enough `, (24) holds in
the whole range.

In Fig. 6 we show an example of such situations. For a
fixed value αmag we obtain composed series with differ-
ent values of αsign and, in all cases, the resulting corre-
lation exponent is almost the same as αsign in agreement
with Eqs.(23) and (24). According to this, we are able
to generate artificial signals with the desired correlation
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FIG. 7: (Color online) Examples of composed series generated
by multiplying sign and magnitude from independent original
series for the case αmag < 1 and αsign > 1. We obtain a
crossover ` dividing the range into two regions with different
scaling: α1 ' αmag for ` < `c and α2 ' αsign for ` > `c. The
size of the time series is 220 and the results are averaged over
200 experiments. Different F (`)’s have been shifted vertically
for the sake of clarity.

exponent (controlled by αsign) independently of the cor-
relations in the magnitude series. As the correlations in
the magnitude are known to be related to the non-linear
properties of the signal [5] this implies that we can con-
trol the linear and non-linear properties of the composed
signal (see section V).

B. Case αmag < 1, αsign > 1

Here, we observe different behaviors at short and large
scales (Fig. 7). While for small ` the correlation exponent
α1 ' αmag, at large scales, the sign series takes over and
we get α2 ' αsign. The reason for this scaling crossover
can be explained as follows: Taking into account that
αsign > 1, a change of sign within a window of small size
is unlikely to happen [6], thus the fluctuations at such
scales depend only on the fluctuations of the magnitude.
On the other hand, for large enough scales, the changes
of the sign inside a single window will create fluctuations
much higher than those of the magnitude and thus, the
correlation exponent will be close to αsign.

The position of the crossover `c between both regimes
depends on the size N of the series and can be determined
analytically taking into account that the transition be-
tween these two regions should happen at a window size
`c for which the fluctuations due to the oscillations of
both sign and magnitude give the same contribution.

A long-range correlated series with α < 1 is stationary
so, we can write for the fluctuations in the magnitude at
scale `:

Fmag(`) = Amag`
αmag (25)
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where Amag is a constant. Nevertheless, for α ≥ 1 the
series is non-stationary and the fluctuations at a given
scale also depend on N . In the appendix A we show that
the fluctuations in the sign series for α ≥ 1 can be written
as:

Fsign(`) = Bsign
`αsign

Nαsign−1
(26)

where Bsign is a constant.
Clearly, the positive power of N (αsign−1 > 0) dividing

in (26) makes Fsign(`) < Fmag(`) at small scales while
Fsign(`) > Fmag(`) for large ones. This behavior also
justifies the fact, commented above, that at short scales
the series scales with α1 ' αsign and α2 ' αmag for the
larger ones.

Thus, the crossover will be located at the point
`c where the equality between (25) and (26) holds
Fmag(`c) = Fsign(`c) and then:

`c =
Amag

Bsign
N

αsign−1

αsign−αmag ∝ Nk (27)

where

k =
αsign − 1

αsign − αmag
(28)

The analytical results obtained in Eqs. (27) and (28)
are in good agreement with the simulations shown in
Fig. 8. It is worth mentioning that k < 1, provided
that αmag < 1. This means that `c grows slower than
the size of the system and thus the crossover will always
be observable for long enough series.

C. Case αsign > 1, αmag > 1

In this case F (`) might also present a crossover al-
though it will be difficult to observe in practice. To bet-
ter understand the behavior of F (`) in this regime we
follow a procedure similar to that described in the previ-
ous section. As well as in the previous section, αsign > 1
and we have for the fluctuations in the sign:

Fsign(`) = Bsign
`αsign

Nαsign−1
(29)

Now, in addition, the magnitude series is also non-
stationary (αmag > 1) and, from the definition of frac-
tional Brownian motion, the variance of the series grows
as N2(αmag−1). This means that, in order to keep the
series with unit standard deviation the generation pro-
cedure (Sec. II C) carries out an implicit division of the
series by the factor Nαmag−1 [32] and thus we will obtain
for the fluctuations of the magnitude:

Fmag(`) = Bmag
`αmag

Nαmag−1
(30)
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FIG. 8: (Color online) Position of the crossover `c as a func-
tion of the size of the series N . (a) To check that ` grows as a
power-law of the system size N (27), we generate series with
αsign = 1.25 and αmag = 0.52 and sizes in the range [213, 224].
For each size we obtain F (`), average over 1000 series and
determine the position of the crossover `c by fitting F (`) to
the derivative of a sigmoid [31]. This procedure also gives α1

and α2. The fit of the curve `c vs. N (open red circles) to a
power-law (solid blue line) gives an exponent k = 0.345 close
to the value 0.342 predicted by (28). (b) We repeat the ex-
periment for different values of αsign in the range [1,1.5] and
obtain k for each one. Finally, we fit the curve of k vs. αsign

(closed red circles) to (28) (dashed blue line). The value ob-
tained for αmag = 0.52 coincides with the actual value used
for the simulations.

Again, the position of the crossover will be given by
the value `c for which the fluctuations in the magnitude
and sign reach the same value:

Bmag
`
αmag
c

Nαmag−1
= Bsign

`
αsign
c

Nαsign−1
(31)

`c = N

(
Bmag

Bsign

) 1
αsign−αmag

∝ N (32)

This means that the position of the crossover grows pro-
portionally to the size of the series.

Here is important to point out that the normaliza-
tion described above results in a reduction of the fluc-
tuations at short scales [32]. This reduction becomes
more evident as α increases and thus, at short scales
(` � `c), the fluctuations are governed by the small-
est exponent α1 = min{αmag, αsign}, while at large scales
(` � `c) the correlation exponent will be given by
α2 = max{αmag, αsign}.

In order to find out the values of `c we have system-
atically generated pairs of correlated series of signs and
magnitudes with αmag ∈ (1, 2) and αsign ∈ (1, 1.5) and
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FIG. 9: (Color online) Example of composed series generated
by multiplying sign and magnitude from independent origi-
nal series for αmag > 1 and αsign > 1. In this region we do
not observe crossover (see text). (a) Example of series with
αsign < αmag. The exponent of correlation of the composed se-
ries reaches the value αsign (min{αmag, αsign}) for each series.
(b) Example of series with αsign > αmag. The correlations
in the composed series are mainly controlled by those in the
magnitude, although the exponent of correlation is slightly
higher than it. This effect becomes more noticeable as the
difference between both magnitude and sign exponents of cor-
relation decreases because in these cases, the crossover is less
sharp, thus there is a small contribution of the regime after
the transition.

for each of them we obtain αmag, αsign, Bmag and Bsign

and evaluate `c by using (32). We find two different re-
gions:

i) αmag ≥ αsign. In this case, in all experiments we
obtain `c > N implying that the crossover is not
reachable.

ii) αmag < αsign. Here, in a few situations we obtain
`c ≤ N although the values of Fmag(`) and Fsign(`)
are too close to display a clear crossover. In addi-
tion, only values of `c ≤ N/10 can be observed in
practice because DFA is computed, as usual, up to
N/10 [17].

In conclusion, we barely observe crossovers within this
region and the composed series will show a single scal-
ing in the whole range, the correlation exponent being
α = α1 ' min{αmag, αsign}.

Another conclusion we can extract from this case is
that it is not possible to generate series with an exponent
of correlation greater than α = 1.5 when composing se-
ries by means of independent magnitudes and signs. We

1.2 1.4 1.6 1.8

α

0.0

0.5

1.0

FIG. 10: (Color online) Distribution of exponents of series
obtained with αmag ' 1.9 and αsign ' 1.5. The size of the
series is 220 and results are averaged over 105 series.

try to obtain the greatest possible exponent for composed
series, by using αin = 2 for the magnitude (αmag ' 1.9)
and αin = 2 for the sign (αsign ' 1.5). Then, we com-
pose each pair of magnitude and sign series, obtain α of
the composed series and represent the distribution. The
results (Fig. 10) show a distribution with a sharp peak
at α = 1.5 (min{αmag, αsign}) in agreement with what
we explained previously. By visual inspection, the few
series we have observed with α > 1.5 correspond to sit-
uations where the scaling of the composed series is not
very good, together with those few situations where the
crossover is observable. Lastly, table I summarizes the
results obtained in this section.

αsign αmag α crossover

< 1 [0.5, 2] αsign no

> 1 < 1
` < `c α1 = αmag `c ∝ Nk

` > `c α2 = αsign k =
αsign−1

αsign−αmag

> 1 > 1 min{αmag, αsign} not observable

TABLE I: Results obtained for composition of independent
magnitudes and signs.

V. MULTIFRACTAL PROPERTIES OF
COMPOSED SERIES

In the previous section we have studied only linear
correlations of the composed series. However, it has
been reported [4, 5] that series with correlated magni-
tude (αmag > 0.5) and uncorrelated sign (αsign = 0.5)
also present nonlinear correlations (multifractal proper-
ties). Thus, in this section we are going to analyze the
multifractal properties of the composed series.

However, our results for composed series presented in
section IV indicate the existence of crossovers in the scal-
ing at `c whenever αsign > 1. Such behavior could lead to
the existence of two different multifractal spectra below
and above `c. Furthermore, it is not even guaranteed
that `c = constant for the different moments of order
q, thus precluding a straightforward calculation of both
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spectra.
For this reason, we restrict ourselves to the regime

αsign < 1 where, first, the composed time series posses
single scaling and, second, the linear correlations in the
composed time series are directly controlled by the sign
series (α = αsign). In addition, we have observed that
when αmag > 1.2, there are numerical instabilities when
calculating the multifractal spectra of composed series.
Then, we study here the multifractal properties of com-
posed time series with αmag and αsign in the intervals
[0.5, 1.2] and [0.5, 1] respectively.

Specifically, we calculate the multifractal spectrum for
each composed series using MFDFA (see Sec. II B) and
study systematically two properties: the width of the
multifractal spectrum, ∆ζ, and the location of its center,
ζmax

Concerning the properties of the spectral width, we
observe that ∆ζ depends only on αmag, and it is prac-
tically independent of the αsign value. Both properties
are shown in Fig. 11 a), where we also notice that the
dependence of ∆ζ on αmag is essentially linear. This is
an interesting property: given an input αmag value in the
composition, we control directly the strength of the non-
linearities of the composed time, since such strength is
quantified by ∆ζ.

We also study how the linear correlations present in
the composed series, which are controlled by αsign (α =
αsign), affect the location of the center of the multifrac-
tal spectrum, ζmax. We observe that, for a fixed αmag

value (and then for constant ∆ζ) the whole multifractal
spectrum is displaced proportionally to the αsign value
(see Fig. 11 b). Indeed, if we calculate numerically the
location of the center of the spectrum, ζmax, we obtain a
very good linear dependence of ζmax on αsign (Fig. 11 c),
with slope ' 1.

In conclusion, the multifractal properties of composed
time series obtained by multiplying independent mag-
nitude and signs are completely controlled by only two
parameters, the correlation exponents αsign and αmag.
While the first one controls the linear correlations of the
composed series (α) and the location of the center of
the multifractal spectrum (ζmax), the second quantifies
the width of the spectrum (∆ζ) and then the strength of
the nonlinearities in the composed series. Obviously, this
procedure can be used as an algorithm for the generation
of complex artificial time series possessing not only pre-
scribed linear long-range correlations (as FFM) but also
controlled multifractal properties.

VI. CONCLUSIONS

We have presented a systematic study of the corre-
lation properties of the decomposition of artificial long-
range power-law linearly correlated time series into their
magnitude and sign series as well as the correlation prop-
erties, including nonlinear ones, of the composed series
obtained as products of independent magnitude and sign
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FIG. 11: (Color online) (a) Relation between ∆ζ and αmag

of composed series by means of independent magnitudes and
signs. ∆ζ increases linearly with αmag when the magnitude
series leave the uncorrelated regime (αmag > 0.5), whereas
αsign does not play an important role in the value of ∆ζ.
Series are 218 long and results are averaged over an ensemble
of 50 series. (b) Example of multifractal spectra of 218 long
series with αmag = 0.95 and αsign in the interval [0.5, 1]. To
obtain the multifractral spectra, the MFDFA analysis (5) has
been carried out for moments q ∈ [−5, 5]. Despite varying
αsign, ∆ζ is practically the same for all cases. Spectra are
centered in ζmax ' αsign. (c) Relation between αsign and ζmax

for the multifractal spectra obtained in b). The data were
linearly fitted with slope 0.95.

series.

Regarding the decomposition problem, we have stud-
ied the correlations of the magnitude and sign of a vari-
ety of fractional Gaussian noises and fractional Brown-
ian motions generated by means of the Fourier Filtering
Method, one of the most widely used to generate artifi-
cial linear correlated series. The results are summarized
in Fig. 3. In addition, we have obtained analytical ex-
pressions for the correlation exponent of the sign series
αsign (Eq. 16), in particular, we show that αsign ≤ 3/2
independently of the correlations of the original series.
These results, together with those obtained here numer-
ically for the magnitude shown in Fig. 3) (also in agree-
ment with Kalisky et al. [5] for the square of the series),
will be of great help in order to model surrogate time
series. For example, the sign series obtained from the
decomposition are often used to generate correlated bi-
nary series in the study of DNA sequences [13, 25, 30] or
disordered binary solids [33] as well as to generate distri-
butions of first-passage times of correlated series [6]. It is
also worth mentioning that, following the results shown
in section III(i) it is clear that long-range anticorrelated
binary sequences cannot be obtained using this method,
a drawback shared with other methods [26–28].

Apart form the utility of the decomposition to generate
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surrogate series, the comparison of the results obtained
here for artificial linear series with those obtained from
real data would help to unveil the existence of coupling in
the mechanisms responsible for the magnitude and sign
of the increments or to discard it. This information is
instrumental for the study of the underlying processes
generating complex non-linear time series such as those
obtained from physiological systems.

By means of the composition, we studied the corre-
lations in series obtained as the product of independent
series of correlated magnitudes and signs.

First, we explore the linear correlations as measured
by the DFA exponent and find that, only for those com-
posed series with αsign < 1, we obtain a scale free behav-
ior, i.e. a fit to a single power-law of F (`) in the whole
range. In addition, the correlation exponent of the com-
position is given by αsign independently of αmag. On the
other hand, for αsign ≥ 1, we observe clear crossovers
for αmag < 1 whose position, `c, can be obtained ana-
lytically (Eq. 27). Here the composed signal scales with
α1 ' αmag for ` < `c whereas for ` > `c it scales with
α2 ' αsign. For αmag ≥ 1 we show that the crossovers, al-
though theoretically predicted, are difficult to detect in
practice and the composed signal approximately scales
with a single exponent given by α1 = min{αmag, αsign}.
As a consequence of this and taking into account that
αsign ≤ 3/2, the composition cannot produce signals with

correlation exponents above 3/2. Results are summarized
in table I.

Finally, we analyze the nonlinear properties of the
composed signals by means of MFDFA in the region
αsign < 1. As a measure of the nonlinearity in the sig-
nal we use the width of the multifractal exponent (∆ζ)
and show that it grows almost linearly with αmag thus
indicating that the nonlinear properties of the composed
signals are controlled by the correlations in the magni-
tude. In addition, we also find that ∆ζ is independent
of αsign. This last result is interesting because it means
that we can generate surrogate signals for which we can
fix both the linear correlations (αsign) and the strength
of the nonlinearity (∆ζ).
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Appendix A: Fluctuations of the sign of
nonsationary series (α ≥ 1)

Let us consider a long-range fractal correlated series
with α ≥ 1 (fBM), if we denote as x the size of a seg-
ment without changes of sign inside it (i.e. segments of
constant sign, or simply “segments” from now on), it is
known [6] that the distribution of x follows a power-law

with exponent α−3 which, once normalized, can be writ-
ten as follows:

p(x) =
(2− α)N2−α

N2−α − 1
xα−3 (A1)

The mean value 〈x〉 of the constant-sign segments will be
given by:

〈x〉 =

∫ N

1

p(x) dx =

(
2− α
α− 1

)
N −N2−α

N2−α − 1
(A2)

and the mean number of such segments inside a series of
length N :

n =
N

〈x〉
=

(
α− 1

2− α

)
N2−α − 1

1−N1−α (A3)

When evaluating the fluctuations at a given window
size `, only the portion of the signal covered by segments
with x < ` will give a nonzero contribution: for the re-
maining of the signal the full window of size ` will be
located inside a segment of constant sign and then with-
out internal fluctuation and its contribution to Fsign(`)
will be zero [34].

In order to evaluate the portion of the signal covered
by segments with x < `, first we evaluate the probability
that a given segment is smaller than `:

P (x < `) =

∫ `

1

p(x) dx = 1− N2−α − `2−α

`2−α [N2−α − 1]
, (A4)

the average size of those segments:

〈x<`〉 =

∫ `
1
x p(x) dx

P (x < `)
=

(
2− α
α− 1

)
`α−1 − 1

1− `α−2
(A5)

and the fraction of the series covered by segments with
x < `:

f(x < `) =
nP (x < `) 〈x<`〉

N
=

`α−1 − 1

Nα−1 − 1
' `α−1

Nα−1

(A6)
If we denote by i the number of 1’s in a window of size

` it is straightforward to obtain that the variance of the
window is given by:

var(i, `) =
4i

`
− 4i2

`2
(A7)

Taking into account that for N large enough we will find
all possible values of i ∈ {1, 2, ..., ` − 1}, we can assume
that the averaged variance in windows of size ` located
within segments with x < ` will be:

var(`) = f(x < `)〈var(i, `)〉i =

=
`α−1

Nα−1
1

`− 1

(
2

3
`− 2

3`

)
∝
(
`

N

)α−1
(A8)
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and the average standard deviation inside windows of
size `

σ(`) =
√

var(`) ∝
(
`

N

)α−1
2

(A9)

Fsign(`) measures the rms fluctuations of the integrated
signal with respect to ` and then:

Fsign(`) ∝ σ(`) · ` ∝ `
1
2 (α+1)

N
1
2 (α−1)

=
`αsign

Nαsign−1
(A10)

where αsign = 1
2 (α + 1) is the DFA exponent of the sign

series for 1 ≤ α < 2.
For higher values of α equations from (A1) to (A3) are

no longer valid [6] and now the number of segments, n,
is constant and independent of N . For a given window
length `, only n out of N/` windows will contribute with
non-vanishing variance and thus we can write:

var(`) =
n`

N
〈var(i, `)〉i =

=
n`

N

1

`− 1

(
2

3
`− 2

3`

)
∝ `

N
(A11)

Fsign(`) ∝ `
3
2

N
1
2

=
`αsign

Nαsign−1
(A12)

where αsign = 3
2 is the DFA exponent of the sign series

for α ≥ 2.
Note that both results (Eqs. A10 and A12), agree with

the fact that the fluctuations in a non-stationary series
should depend on the size of the series, N .

Appendix B: Autocorrelation function of a time
series with uncoupled magnitude and sign.

The autocorrelation function of a time series {xi} at
distance `, normally distributed with zero mean and unit
standard deviation, is given by:

C(`) =
〈xixi+`〉 − 〈xi〉〈xi+`〉

σ2
= 〈xixi+`〉, (B1)

where 〈·〉 denotes average over the series. Obviously we
can write:

C(`) = 〈sgn(xi)|xi|sgn(xi+`)|xi+`|〉 (B2)

C(`) = 〈sgn(xi)sgn(xi+`)|xixi+`|〉, (B3)

where sgn(·) denotes the sign function. If we consider
that magnitude and sign are not coupled (i.e. they are
independent random variables) we can assume that

C(`) = 〈sgn(xi)sgn(xi+`)〉〈|xixi+`|〉 (B4)
C(`) = Csign(`)〈|xixi+`|〉, (B5)

where Csign(`) is the autocorrelation function at distance
` of the sign time series. On the other hand, we can
write for the autocorrelation function of the magnitude
time series:

Cmag(`) =
〈|xixi+`|〉 − 〈|xi|〉〈|xi+`|〉

〈|xi|2〉 − 〈|xi|〉2
, (B6)

and, taking into account that {xi} are normally dis-
tributed with zero mean and unit variance, it follows
that:

〈|xi|〉 =

√
2

π
and 〈|xi|2〉 = 1 (B7)

Replacing in (B6) we get:

〈|xixi+`|〉 =
(π − 2)Cmag(`) + 2

π
(B8)

and finally replacing 〈|xixi+`|〉 in (B4):

C(`) = Csign(`)
(π − 2)Cmag(`) + 2

π
(B9)


