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Abstract: In this paper, we propose a global personalized head-related transfer function (HRTF)
method based on anthropometric measurements and ear images. The model consists of two sub-
networks. The first is the VGG-Ear Model, which extracts features from the ear images. The second
sub-network uses anthropometric measurements, ear features, and frequency information to predict
the spherical harmonic (SH) coefficients. Finally, the personalized HRTF is obtained through inverse
spherical harmonic transform (SHT) reconstruction. With only one training, the HRTF in all directions
can be obtained, which greatly reduces the parameters and training cost of the model. To objectively
evaluate the proposed method, we calculate the spectral distance (SD) between the predicted HRTF
and the actual HRTF. The results show that the SD provided by this method is 5.31 dB, which is better
than the average HRTF of 7.61 dB. In particular, the SD value is only increased by 0.09 dB compared
to directly using the pinna measurements.

Keywords: head-related transfer function; spherical harmonics transform; personalized; ear image;
anthropometric measurements

1. Introduction

In recent years, virtual reality (VR) and augmented reality (AR) have developed
rapidly. Virtual stereo, as an important part of virtual reality, has been widely used in
games, video conferencing, humanoid robot interaction, hearing aids, and other fields [1].
In short, the quality of spatial sound is particularly important for achieving high-fidelity
immersive experiences in virtual environment.

To generate virtual audio, it is necessary to study the spatial cues of the human
auditory system. The positioning factors of spatial hearing are mainly based on binaural
and monaural cues [2]. Binaural cues include the interaural time difference (ITD) and the
interaural level difference (ILD). ITD describes the time difference between the same sound
reaching the two ears, and ILD describes the difference in binaural intensity caused by the
weakening of the sound caused by the diffraction effect of the pinna and head. These cues
are closely related to the perceived horizontal direction of the sound source. The monaural
cues include the scattering and diffraction effects of the pinna, torso, etc. on the sound [3,4].
The listener can distinguish the spatial direction of the sound source to a certain extent
based on these cues.

At present, spatial audio technology has supported playback on various devices.
The head-related transfer function is essential for the headset to reproduce virtual audio.
The head-related transfer function (HRTF) or head-related impulse response (HRIR) in the
time-domain describes the sound filtering effect of the head, torso, and pinna in the process
from the sound source to the eardrum of the listener in a free-field environment. The HRTF
depends on the morphological characteristics of the listener. Due to different anatomical
parameters, the HRTFs of users are also different. When using non-personalized data,
users are prone to “head-center effect, front-to-back position confusion, and up-and-down
confusion” [5,6].

Appl. Sci. 2022, 12, 8155. https://doi.org/10.3390/app12168155 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168155
https://doi.org/10.3390/app12168155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0288-7031
https://doi.org/10.3390/app12168155
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168155?type=check_update&version=1


Appl. Sci. 2022, 12, 8155 2 of 15

To avoid the above problems and reduce sound source localization errors, the person-
alized HRTF that matches the morphological characteristics of each listener needs to be
individually designed. To this end, researchers have proposed a variety of HRTF person-
alization methods, including acoustical measurement methods [7–9], database matching
methods [10,11], numerical modeling methods [12–14], and anthropometric parameter re-
gression methods. Among them, the acoustical measurement method is the most accurate,
Li et al. [9] provides an overview of some state-of-the-art measurement methods, but these
methods require specialized equipment and environment. Therefore, the anthropometric
parameter regression method is widely studied because the predictive model can be reused
once it is determined.

For instance, Lei et al. [15] proposed to use principal component analysis (PCA) to
obtain the weight matrix and feature matrix of HRTF, use canonical correlation analysis to
remove redundant information of anthropometric features, and use generalized regression
network (GRNN) to analyze the relationship between anthropometric features and HRTF
weight matrix.

Grijalva et al. [16] proposed to use the isometric mapping (ISOMAP) method to
extract the feature description of HRTF, use artificial neural network (ANN) to establish
the relationship between physiological parameters and low-dimensional HRTF, and use
the domain reconstruction method to reconstruct the HRTF in the complete space.

With deep learning showing great ability in optimizing estimation [17], Chun et al. [18]
proposed a deep neural network (DNN) model. After inputting the head, torso, and pinna
information, they let the DNN select the importance of training features and directly obtain
the HRTF, thus simplifying the operation steps of the entire model.

As measurements related to the pinna are still challenging to obtain in real life,
Lee et al. [19] further proposed to use a convolutional neural network (CNN) to extract
features from ear images instead of directly measuring the human pinna. The model
provides the Log Spectral Distance (LSD) of 4.47 dB, which are lower by 0.85 dB than the
DNN-based method using anthropometric data without pinna measurements. However,
this model uses different machine learning models for different azimuths and elevation,
and a total of 1250 models (25 azimuths and 50 elevations) have been established, which
is inconvenient to use. In recent years, some studies have proposed to use HRTF as
a function defined on a spherical surface to reproduce binaural signals using spherical
harmonics. Ben-Hur et al. [20] demonstrated that accurate positioning performance can
be restored to a greater extent by using spherical harmonic representation as low as 4th
order. Wang et al. [21] proposed a global HRTF personalization method, which using spher-
ical harmonic transform as a compact representation of the HRTF magnitude spectrum,
showing significant improvements upon finite element acoustic calculations.

Kulkarni and Colburn [22] proposed to truncate the HRTF log-magnitude spectrum
after Fourier series expansion, and the resulting smooth HRTF still remains perceptually
relevant. On this basis, Romigh et al. [23] explored a method for smoothing HRTFs
by utilizing a truncated spherical harmonic expansion, and the results showed that the
significant smoothing of HRTF in frequency brought by the low-order spherical harmonic
representation does not affect the perceived position of the sound.

Based upon this previous work, we propose two hypotheses: (1) After truncating
SH, the expanded and reconstructed HRTF are perceptually indistinguishable from the
original. (2) The higher the accuracy of the ear recognition model, the more personalized
and accurate the extracted ear features.

In this paper, we propose an acoustic model consisting of two sub-networks. The first
network extracts ear features using the VGG-Ear model, where VGG-Ear involves transfer
learning from the VGG19 network proposed by the Visual Geometry Group at Oxford
University. The second network combines parameters such as ear features, head and torso
measurements, and frequency points to predict the spherical harmonic (SH) coefficients.
Finally, we use the inverse spherical harmonic transform (SHT) to obtain the personalized
HRTF. At the same time, the performance of the proposed method is compared with method
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with precise pinna measurements. The spectral distance (SD) is then used to evaluate the
error between the estimated HRTF and the actual HRTF.

The structure of this paper is as follows. In Section 2, the database and related
parameters used in the experiments are presented. Section 3 introduces the framework and
individual component modules of personalized HRTF. Section 4 analyzes the experimental
results and evaluates the performance of the proposed method. Section 5 summarizes the
whole paper and looks forward to future work.

2. Database
2.1. CIPIC Database

In the process of designing and implementing personalized HRTF, the HRTF database
publicly provided by the Center for Image Processing and Integrated Computing (CIPIC) [24]
of the University of California is used. The database contains the head-related impulse
response (HRIR) of 45 subjects at 25 azimuths and 50 elevations, with a sampling length of
200 and a sampling rate of 44.1 kHz. The spatial sampling is roughly evenly distributed on
a sphere with a radius of 1 m. The horizontal azimuth ranges from −80◦ to +80◦, and the
elevation ranges from −45◦ to 230.625◦. The sampling points are shown in Figure 1.

Figure 1. Location of sampling points: (a) front view and (b) side view [24].

The database also provides anthropometric parameters and ear images of each subject,
including 17 head and torso parameters and 10 pinna parameters. The specific measurement
parameters are shown in Figure 2.

Figure 2. Anthropometric measurements: (a) head and torso measurements and (b) pinna
measurements [24].

2.2. Ear Image Database

The ear images from AWE database used in this work have been provided by the
University of Ljubljana, Slovenia [25–27]. The AWE database contains 1000 ear images of
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100 subjects, and each object has 10 images of different quality and size. The sample image
is shown in Figure 3.

Figure 3. An example of the AWE ear database [25].

3. Proposed Method

The whole model is divided into two parts. The first part uses the VGG-Ear model pre-
trained in the AWE database to extract ear features. The second part uses anthropometric
parameters, ear features, and frequency index to predict SH coefficients. Finally, HRTF is
represented by spherical harmonic basis functions and SH coefficients.

3.1. VGG-Ear Model

The precise pinna measurements in Figure 2b are difficult in practice, and anthropo-
metric data may lose information for estimating HRTF. Therefore, the method proposed
in this paper uses ear images directly. In addition, there are few human ear images in
the CIPIC database. When the number of network layers is small, the feature extraction
accuracy is not high, and the problem of over-fitting is easy to occur. Therefore, this paper
uses the pre-trained VGG19 network and then performs transfer learning on the AWE
database to obtain the VGG-Ear model, and then uses the VGG-Ear model to extract the
features of the ear images in CIPIC as the first output of the network.

3.1.1. Transfer Learning

Convolutional Neural Networks (CNN) have shown impressive performance in vari-
ous computer vision tasks in recent years, such as image classification, face recognition [28],
object detection [29], etc. It is well known that deep CNN networks require abundant
training data to achieve better results. Although ear recognition has grown in popularity in
recent years, unlike the field of face recognition, ear datasets are limited to thousands of
images and hundreds of identities. Therefore, how to utilize the concepts of deep learning
to identify limited ear datasets is a big challenge.

Transfer learning is a CNN architecture trained on a large dataset and then reused to
train other datasets. Transfer learning leverages the knowledge gained from previous train-
ing to improve its learning ability in new complex tasks. This method dramatically reduces
the depth of traditional deep learning models, better alleviates the common overfitting
problem of small samples and has remarkable achievements in the field of medical images.

Ž. Emeršič et al. [30] proposed using transfer learning to use active data augmentation
and selective learning on existing models to significantly improve the recognition rate of ear
images. Alshazly H. et al. [31] proposed to train different networks by randomly initializing
the weights and fine-tuning the pretrained model to build the best model and improve the
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recognition performance. The above methods fully demonstrate the effectiveness of the ear
recognition model based on transfer learning.

This paper compares the existing commonly used pre-training networks VGG19 [32],
ResNet50 [33], InceptionV3 [34], Xception [35], and MobileNet [36] on the AWE dataset,
and the optimal model VGG-Ear is obtained.

3.1.2. Ear Data Augmentation

Since the process of deep learning often requires a large number of labeled training
samples, the existing ear datasets have limited data, which can easily lead to over-fitting
problems. Therefore, data augmentation is often used in image research to increase the num-
ber of training samples. By artificially introducing appearance variations, multiple variants
of the original image can be generated without additional labeling costs. The data augmen-
tation step is the preprocessing of the original dataset before being fed into the model.

Due to the limited number of images in the AWE dataset, we applied data augmenta-
tion to increase the amount of data and take into account the appearance changes caused
by image changes. This paper used the Imgaug tool to enhance the original data set with
translation slight rotation. Below is a list of enhancement programs that we used to increase
the amount of available training data:

• Add Gaussian noise to the image.
• Rotate the image by −40 to + 40 degrees.
• Gaussian blurring the image (σ varies from 1 to 4).
• Adjust brightness of the image (γ varies from 0.5 to 2).
• Crop and occlude the image by 10% to 40%.

Figure 4 shows some example images of data augmentation. We augment each training
image to 30 images by randomly performing the above image augmentation techniques.

Figure 4. Augmentation example.

3.1.3. The VGG-Ear Architecture

In the model design, the network weights pre-trained on ImageNet are first loaded,
and the last fully connected layer of the network is removed. Then we add the Pooling
layer, Softmax layer, and the class prediction is 100 output neurons. Figure 5 shows the
architecture diagram of the VGG-Ear. To evaluate the results of the networks, the AWE
dataset was split into two groups: 80% for training and 20% for testing. Due to the limited
training images, we applied the data from the augmentation techniques described above to
them, yielded 24,800 training samples. Then we split the boosted training set into 80% for
training and 20% for validation.
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Figure 5. The architecture diagram of the VGG-Ear.

The model adopts the categorical cross-entropy loss function as the cost function and
uses a gradient descent-based back propagation method to update the weights by mini-
mizing the cost function. The algorithm is further optimized using the gradient adaptive
Adam method during this process, and the learning rate is set to 0.001.The technique of
dropout (0.2) is used to improve the convergence speed further and prevent over-fitting.

After obtaining the most accurate ear recognition model, we replace the Softmax
layer with the fully connected layer (nodes = 10), and use these nodes as the output of
the VGG-Ear.

3.2. Deep Learning Model Design

We process the HRIR data provided in the database to obtain HRTF of different
frequencies and then use spherical harmonic basis functions and SH coefficients to represent
HRTF. Then a deep learning model is designed to predict the SH coefficients using head,
torso parameters, frequency index, and the ear features output by the VGG-Ear Model.

Figure 6 shows the block diagram of the model. The input of the deep learning model
is the ear features obtained by the VGG-Ear model (10-d vector), head and torso param-
eters from CIPIC database (17-d vector), and frequency index (44-d vector). The specific
frequency index is 44 frequency points from 1 to 87 with a uniform interval of 2, and the
corresponding frequency range is 0–15 kHz. These parameters are separately input into
the fully connected (FC) layer for encoding, and another FC layer is used to fuse the infor-
mation. Finally, it is sent to the 1D convolutional neural network to obtain the predicted
SH coefficients.

Figure 6. Block diagramof a deep learning network for predicting SH coefficients.
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By incorporating frequency information, the proposed personalization method can
obtain HRTF prediction results for all 1250 directions (25 azimuths and 50 elevations) in
one training. Therefore, the proposed method requires fewer models and fewer parameters
in terms of the number of models to train.

3.2.1. Spherical Harmonic Decomposition

The spherical harmonics (SH) are a set of the orthogonal basis of spherical coordinates.
The target HRTF amplitude H(θ, φ) along the direction can be expressed as the weighted
sum of real-valued spherical harmonic functions, as the function below:

H(θ, φ) = ∑
l,k

Yk
l (θ, φ)βk

l (1)

where H(θ, φ) represents the HRTF, in which the azimuth θ ∈ [0, π] is measured from the z-
axis and the elevation φ ∈ [0, 2π] is measured from the x-axis. Yk

l (θ, φ) denotes the spherical
harmonic basis function of order l and degree k; βk

l is the SH decomposed coefficients.
The real spherical harmonics are defined as follows. The real spherical harmonics

have the same orthonormality properties as the complex spherical harmonics.

Yk
l (θ, φ) =


√

(2l+1)
2π

(l−|k|)!
(l+|k|)! Pk

l (cos θ) cos (kφ) k > 0√
(2l+1)

4π Pk
l (cos θ) k = 0√

(2l+1)
2π

(l−|k|)!
(l+|k|)! P|k|l (cos θ) sin (|k|φ) k < 0

(2)

where Pk
l is the associated Legendre function of order l and degree k. Figure 7 shows

the real parts of the first 4th order SH basis. The spherical harmonic function of order
0 is an omnidirectional sphere, so the recorded sound field has no azimuth information.
The 1st order spherical harmonic function is three 8-shaped, which respectively receive the
information components in the x, y, and z directions. The number of components added
to each order is 2×(l+1), so the number of L-order spherical harmonic basis functions
is (L + 1)2.

Figure 7. Spherical harmonic bases up to L = 4.

The process of SHT is to calculate the coefficients of each SH basis function [37].
Representing (1) in matrix form, we have:

h = Yb (3)
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where
h = [h(θ1, φ1), ...h(θs, φs)]

T

Y = [y00, y1−1, y10, ...yll ]

Yk
l = [Yk

l (θ1, φ1), ...Yk
l (θs, φs)]

T

b = [b00, b1−1, b10, ...bll ]

. (4)

In Equation (4), h contains the original magnitude values on S spatial directions, Y
contains SH base values of up to order L, and b is the SH coefficients. To calculate the vector
b, we use the least-squares (LS) approach the decomposition coefficients. That is:

b = (YTY + λI)−1YTh (5)

The spherical harmonic coefficient b includes the spatial orientation characteristics of
the HRTF at a certain position in space, and the reconstructed HRTF at a certain position can
be obtained by multiplying the spherical harmonic coefficient and the spherical harmonic
basis function.

Ref. [23] proposes and verifies that the HRTF model based on 4th order SH can retain
accurate localization performance. The audience is not sensitive to fine spectral details
in the HRTF amplitude spectrum. Therefore, in the method of this paper, the truncation
order of SH is set to L = 4, the amplitude operation is performed on the HRTF of the
subject, and the SHT is performed for each frequency to obtain the corresponding SH base
coefficients (b vector). Finally, the b vector of each frequency bin is connected as a reference
value for the model.

3.2.2. Implementation Details

In this paper, we adopt the SOFA format data provided by the HRTF dataset. SOFA is
a file format for storing spatially oriented acoustic data like head-related transfer functions
(HRTFs) and binaural or spatial room impulse responses (BRIRs, SRIRs). SOFA has been
standardized by the Audio Engineering Society (AES) as AES69-2015. Establish a spherical
coordinate system in which the azimuth θ and elevation φ represent the spatial position.
For statistical and perceptual feasibility, we obtain HRTFs by 256-point discrete Fourier
transform of HRIRs, and employ log-magnitude spectra to further compensate for the
perceptual sensitivity of loudness.

Since the size of anthropometric data is different, the auricle parameters of small data
may have less impact on deep learning than head and torso parameters. Therefore, ignoring
the subject, using the mean and variance of all training data, and using the sigmoid function
to normalize each input element of the model, we obtain:

zi = (1 + e
−(zi−µi)

σi )
−1

(6)

where zi is the i-th component of the input and normalized feature vector, and µi and σi are
the mean and standard deviation of all the training subjects, respectively.

3.2.3. Architecture Used to Obtain SH Coefficients

The model uses a back-propagation algorithm to update the weights by minimizing
the MSE between the reference value (SH coefficients) and the estimated value. During this
process, the Adam optimization technique was used to apply 1st order moment decay
rates and 2nd order moment decay rates of 0.9 and 0.999, and the learning rate was
set to 0.0003. At the same time to improve the convergence speed and prevent over-
fitting, layer normalization and Max Pooling layer are applied after each 1D-CNN. Finally,
the configured model was trained for 1000 epochs.

4. Performance and Evaluation

In this section, we objectively evaluate the proposed personalized HRTF estimation
method. To avoid confusion, the performance of the proposed method is compared with
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other HRTF estimation methods: (1) an HRTF estimation method based on our model but
using accurate pinna measurements instead of ear images (using 27 parameters), called
“Full-measurements HRTF”; (2) an HRTF estimation method using average HRTF of 32
subjects, called “Average HRTF”; (3) Towards Fast And Convenient End-To-End HRTF [38],
called “TFACE HRTF”; and (4) the proposed method is called “Proposed HRTF”.

All methods are implemented using Pytorch version 2.4.0 and Python version 3.8.0.
The CIPIC dataset includes HRTF (left ear) of 32 subjects, 17 head and torso measurements,
and left ear images of subjects. Due to the small amount of data in the dataset, to avoid the
problem of over-fitting, this paper divides the data into a training set and test set through
“leave-one-out validation”, and then conducts 32 cross-validation rounds and takes the
average of the validation results.

4.1. Objective Evaluation

The spectral distortion (SD) error was used to evaluate the accuracy of personalized
HRTF. The indicator is defined as follows:

SD(d)(H, Ĥ) =

√√√√ 1
K

fmax

∑
k= fmin

(20 log10 ‖
H(k)d

Ĥ(k)d
‖)2 (7)

where H(k)d and Ĥ(k)d denote the magnitude of the true HRTF and the predicted HRTF
in direction d, k presents the frequency, fmin = 3 kHz and fmax = 15 kHz, with K being the
total frequency points. The pinna usually affects the personalized HRTF in the range of
3∼15 kHz, and the magnitude of the low-frequency HRTF is generally flat, the SD value of
the low-frequency should be discarded. Hence, this paper only calculates the average SD
value in the frequency range 3∼15 kHz, that is, the frequency index is 9–44.

Then we cover the entire discrete space and use global SD to evaluate global performance.

SD(H, Ĥ) =

√√√√ 1
D

D

∑
d=1

LSD(d)(H, Ĥ) (8)

where D is the number of directions.

4.2. Ear Model Results

The state-of-the-art networks are compared with a 3-layer simple Convolutional
Network (SimpleNet) to verify the effectiveness of transfer learning, while selecting the best
performing network to extract ear features from images. Table 1 presents the comparison
of these networks in terms of parameters and depths.

Table 1. Comparison of state-of-the-art models in terms of parameters and depths.

Model Trainable Parameters Non Trainable Parameters No. of Layers

VGG19 51,813 20,024,384 19
ResNet50 206,949 23,587,712 50

InceptionV3 206,949 21,802,784 159
Xception 54,528 20,861,480 126

MobileNet 103,525 3,228,864 28
SimpleNet 19,392 0 3

Figure 8 shows the Cumulative Match Characteristic (CMC) curves of the algorithms
mentioned in Table 1 on the test set. The CMC curve [39] is a vital evaluation index for
pattern recognition systems such as the face, fingerprint, etc. It can be seen from the figure
that the Rank1 and Rank5 recognition rates of the VGG19 network are the highest, so
the VGG-Ear model is established to extract ear features. Moreover, the recognition rates
of the transfer learning models are higher than that of the direct convolutional network
(SimpleNet).
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Figure 8. CMC curve.

4.3. SHT Reconstruction Results

To demonstrate the validity of SHT to represent full-space HRTF, this paper plots the
result of SHT performed at approximately 5 kHz for subject003 HRTF magnitude pattern.
At the same time, we compare the original HRTF, the reconstructed HRTF (obtained through
SHT), and another subject (subject010) HRTF, and calculate the root mean square error
(RMSE).

Figure 9a shows the magnitude comparison of the original HRTF and the reconstructed
HRTF of subject003 in 1250 directions, with an RMSE value of 0.19868 dB. It can be seen
that due to the truncation of SHT, the reconstructed HRTF is smoother than the original
value. According to previous studies, these minor spectral distortions are perceptually
indistinguishable. Figure 9b shows the magnitude comparison of subject003 and subject010,
which has an RMSE value of 0.63139 dB. This means that the reconstructed HRTF still
has personalized features, which can be used to study personalized HRTF in this paper.
Figure 9c shows the RMSE values of the original HRTF and the reconstructed HRTF at
different frequencies. It can be seen that the reconstruction error varies with frequency,
but still preserves individualized information. Figure 9d shows the magnitude comparison
of the original HRTF and the reconstructed HRTF of subject003 at order L = 7, with an
RMSE value of 0.14383 dB. Compared with Figure 9a, the higher the truncation order,
the closer the reconstructed HRTF is to the original HRTF.
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Figure 9. Magnitude comparison: (a) Original HRTF and reconstructed HRTF of subject003 at
5 kHz, (b) Original HRTF of subject003 and subject010 at 5 kHz, (c) RMSE of the original HRTF and
reconstructed HRTF at different frequencies, and (d) Original HRTF and reconstructed HRTF at L = 7.

4.4. HRTF Personalization Results

To choose an appropriate truncation order L, this paper compares the “Full-measurements
HRTF" personalization results when L = 4 and L = 7. Figure 10 shows the results of
(L + 1)2 = 25 and (L + 1)2 = 64 SH coefficients. When L = 4 is used, the global SD is
5.22 dB, and the global SD is 5.78 dB when L = 7.

(a) (b)

Figure 10. Coefficients of the SH basis: (a) L = 4 and (b) L = 7.
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When L = 4 is used, the reconstructed HRTF is better. It is possible that the reason is
that the CIPIC dataset is small, and the network structure should not be too deep. Thus, the
larger the L value, the more accurate the SH coefficient needs to be predicted by the model,
and the small model is difficult to learn. Therefore, this paper chooses L = 4 as the order.

Section 4.3 shows the effectiveness of spherical harmonic decomposition in fitting the
global personalized HRTF at a single frequency. In order to prove the effectiveness of the
method for modeling in the frequency range of the human ear audible range, Figure 11
shows a magnitude comparison of the measured, smoothed and predicted HRTF when
(θ, φ) = (0,0). Among them, “Measured HRTF” is the result of the measured HRIR after
256 Fourier transform, “Smoothed HRTF” is the HRTF after the inverse transformation of
the true spherical harmonic coefficients, and “Predicted HRTF” is the HRTF after inverse
transformation of the predicted spherical harmonic coefficients by the model. Due to the
difference in the number of sampling points, it can be seen that “Measured HRTF” is more
refined, and the HRTF generated by the model is similar to “Smoothed HRTF”, but both
lost some details.

Figure 11. Magnitude comparison of measured, smoothed, and predicted at the frontal direction,
where (θ, φ) = (0,0).

The global performance comparison of this method with other methods is given in
Table 2. The HRTF obtained by the proposed method has an SD of 5.31 dB compared to the
original HRTF, and an SD of 4.47 dB compared to the smoothed HRTF. In particular, SD only
drops by 1.7% compared to the Full-measurements HRTF. Note that the Full-measurements
HRTF is obtained using precise pinna measurements, which are practically difficult to
obtain from the human ear. Compared with using the average HRTF, the SD of the HRTF
estimated by both methods based on our model is greatly reduced. Compared to TFACE
HRTF, which also uses pinna images, our model provides SD values with the same error
level for each subject and provides a global personalized HRTF.

Table 2. Comparing Global SD of Different Methods.

Methods Global SD

Average HRTF 7.61 dB
Full-measurements HRTF 5.22 dB

TFACE HRTF 5.31 ± 3.154 dB
Proposed HRTF 5.31 dB
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Figure 12 presents the global SD values of the proposed method on 32 subjects. It can
be seen that the global SD value of the proposed method is 5.31 dB, the highest is 6.95 dB,
and the lowest is 4.39 dB.

Figure 12. Spectral distances for different subjects.

5. Summary

With the continuous development of mobile and wearable devices [40], the person-
alized HRTF will greatly enhance the human auditory perception of audio. This paper
proposes a deep learning model for global HRTF personalization, using features extracted
from ear images to replace pinna measurements, combining head and torso measure-
ments and frequency index to predict SH coefficients, and finally using spherical harmonic
transform as a compact representation of HRTF. With only one training, the HRTF in all
directions can be obtained, which greatly reduces the parameters and training cost of
the model.

The paper uses leave-one-out validation to evaluate the performance of the model and
compares the proposed method with multiple methods. Our results show that predicted
HRTFs can generate HRTFs with the same level of error for all subjects. Moreover, after
using ear images instead of precise pinna parameters that are difficult to measure, the global
SD value increased by only 1.7% (0.09 dB), which is still a good result compared to the
average HRTF. In future work, the impact of HRTF database size on the performance of the
proposed method will be further investigated.
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