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Ferromagnetic insulators with Dzyaloshinskii-Moriya interaction show the magnon Hall effect, i.e., a transverse

heat current upon application of a temperature gradient. In this theoretical investigation we establish a close

connection of the magnon Hall effect in two-dimensional kagome lattices with the topology of their magnon

dispersion relation. From the topological phase diagram we predict systems which show a change of sign

in the heat current in dependence on temperature. Furthermore, we derive the high-temperature limit of the

thermal Hall conductivity; this quantity provides a figure of merit for the maximum strength of the magnon Hall

effect. Eventually, we compare the temperature and field dependence of the magnon Hall conductivity of the

three-dimensional pyrochlore Lu2V2O7 with experimental results.
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I. INTRODUCTION

The Hall and Nernst effects comprise a variety of phe-
nomena, all showing a transverse current in response to a
longitudinal external field [1–3]. In the case of Hall effects,
this field is (typically) an applied voltage, whereas in the
case of Nernst effects, this is a temperature gradient. For
the conventional and anomalous effects, one observes an
electric current; a spin current is measured for their “spin”
counterparts, e.g., the spin Hall effect. Typically, one associates
the observation of a transverse current with the term Hall effect
or Hall geometry, rather than with a Nernst effect or Nernst
geometry. An example of this notation is the phonon Hall
effect [4] which describes a heat current perpendicular to a
longitudinal temperature gradient.

The diversity of Hall effects has been extended by Onose
et al. who discovered the magnon Hall effect (MHE) [5].
For the insulating ferromagnet Lu2V2O7 with pyrochlore
lattice [Fig. 1(a)] they found a transverse heat current upon
application of a longitudinal temperature gradient. Theoretical
understanding of this phenomenon has been provided by
Matsumoto and Murakami, who explained the magnon Hall
effect as a consequence of noncompensated magnon edge
currents in a two-dimensional system [6,7]. Later on, Zhang
et al. recognized that this net edge current results from the
topology of the system, thereby confirming the existence of
topological magnon insulators [8].

The magnon Hall effect is due to the spin-orbit interaction.
In a magnetic system without inversion center—as in
the pyrochlore lattice—it results in the Dzyaloshinskii-
Moriya contribution to the exchange interaction of local-
ized magnetic moments which opens up band gaps in
the magnon dispersion relation. These avoided crossings
give a nonzero Berry curvature and nonzero topological
invariants (i.e., the Chern numbers). The transverse thermal
conductivity κxy is consequently expressed as an integral
of the Berry curvature over the Brillouin zone. The pre-
ceding information reveals a close similarity to the physics
of electronic topological insulators in which spin-orbit-
induced band inversions yield nonzero topological invariants
and topologically protected surface or edge states [9–11].
The transverse thermal conductivity of the MHE is, thus,

in line with several other—mostly electronic—physical
quantities that are expressed in terms of the Berry curvature
and have been studied extensively in the past [12,13].

Although the fundamental physics of the MHE has been
derived by Matsumoto and Murakami [6,7], a number of open
questions needs to be answered. In our theoretical investigation
reported in this paper we deduce a topological phase diagram
for kagome systems. It turns out that for specific systems the
transverse thermal conductivity changes sign in dependence
on temperature; this implies that the orientation of the heat
current can be reversed by tuning the temperature in a device.
Furthermore, we derive the high-temperature limit of the
thermal conductivity which provides a figure of merit for
the strength of the magnon Hall effect. To come closer to
experiment, we extend our analysis of two-dimensional lattices
to the three-dimensional pyrochlore lattice by stacking non-
interacting kagome layers. By comparison of the temperature
and field dependence of the magnon Hall conductivity with
the experimental results of Onose et al. [5], we determine the
Dzyaloshinskii-Moriya parameters of Lu2V2O7.

The paper is organized as follows. In Sec. II we outline
the quantum-mechanical description of magnons in kagome
lattices (Sec. II A) and derive an expression for the transverse
thermal conductivity (Sec. II B). Results are presented in
Sec. III: topology and magnon band structure (Sec. III A), the
topological phase diagram (Sec. III B), the high-temperature
limit of the thermal conductivity (Sec. III C), and a comparison
with experiments for Lu2V2O7 (Sec. III D). We conclude with
Sec. IV.

II. THEORY OF THE MAGNON HALL EFFECT

A. Model Hamiltonian for magnons

For the description of magnons in kagome lattices, we
use the quantum-mechanical Heisenberg model [14]. In the
Hamiltonian

HH = −
1

2

∑

n�=m

J n
m ŝm · ŝn (1)

spin operators ŝn and ŝm at lattice sites n and m are
coupled by exchange parameters J n

m. The latter account for
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ALEXANDER MOOK, JÜRGEN HENK, AND INGRID MERTIG PHYSICAL REVIEW B 89, 134409 (2014)

(a) (b)

x

y

1

1

3

4

2

4

2

(c)

A B

C

A B

C

A B

C

A B

C

a1

a2

x

y

FIG. 1. (Color online) Pyrochlore and kagome lattices. (a) Three-

dimensional pyrochlore lattice, with (111) planes representing

stacked two-dimensional kagome lattices (marked by blue bold lines).

(b) Atomic positions, labeled by numbers, in the pyrochlore lattice.

(c) Two-dimensional kagome lattice with lattice vectors a1 and a2.

Atoms A, B, and C are placed at the corners of the triangles.

Dzyaloshinskii-Moriya vectors are aligned normal to the lattice plane

and are represented by red dots: along +z (−z) for a counterclockwise

(clockwise) chirality: A-B-C (C-B-A).

isotropic symmetric spin-spin interactions, typically termed
“Heisenberg” exchange. The eigenvectors ofHH,

|k〉 =
1

√
N

∑

m

eik·Rm |Rm〉, (2)

are called “one-magnon states”, where N is the total number
of spins, Rm is the vector pointing to lattice site m, and |Rm〉
denotes the state with all spins aligned along the ferromagnetic
ground state except the one at lattice site m; its z component
is reduced by �.

As mentioned above, the spin-orbit interaction is essential
for the MHE; it contributes in two ways to the Hamiltonian:
the magnetocrystalline anisotropy, which is not considered in
this paper, and the Dzyaloshinskii-Moriya interaction [15,16].
The Dzyaloshinskii-Moriya (DM) contribution is anisotropic
as well as antisymmetric and can be written as

HDM =
1

2

∑

m�=n

Dn
m(ŝm × ŝn). (3)

Dn
m is the DM vector between sites m and n (Dn

m = −Dm
n ).

The coupling to an external magnetic field H is introduced
by a Zeeman term,

Hext = −gμB

∑

n

H · ŝn. (4)

g and μB denote the g factor of electrons and Bohr’s magneton,
respectively. The complete Hamiltonian then reads

H = HH +HDM +Hext. (5)

For the time being, we consider only one-magnon states and,
thereby, exclude the kinematic [17] interaction that originates
from the impossibility of locating more than 2s deviations at a

single spin s. We also do not account for the dipole-dipole inter-
action and for higher-order spin interactions (e.g., Ref. [18]).

By means of Moriya’s symmetry rules [16], the DM vectors
of the pyrochlore lattice can be expressed as

D12 =
D̃
√

2
(− y − z), D13 =

D̃
√

2
(−x + y),

D14 =
D̃
√

2
(x + z), D24 =

D̃
√

2
(−x − y), (6)

D43 =
D̃
√

2
(− y + z), D23 =

D̃
√

2
(x − z),

where D̃ denotes the DM constant of adjacent sites. The site
labels 1–4 and the unit vectors x, y, and z of the Cartesian coor-
dinate system are defined in Fig. 1(b) (cf. Refs. [19] and [20]).

In the experiment by Onose et al. [5], an external magnetic
field H is applied along the [111] direction. Only the
components of the DM vectors along this direction contribute
to the MHE; the other components do not contribute up to
second order in the spin deviation from the [111] direction
(cf. the supplemental online material of Ref. [5]). With√

3n = x + y + z we arrive at

D ≡ −n · D12 = n · D14 = −n · D24 =
2

√
6
D̃, (7a)

0 = n · D13 = n · D23 = n · D43. (7b)

Hence, only spins at sites that form a kagome lattice within
the (111) plane are coupled by the DM interaction (here, sites 1,
2, and 4). This suggests a study of (two-dimensional) kagome
lattices instead of (three-dimensional) pyrochlore lattices, as
is done in this paper.

To simplify the calculation for the kagome lattice, we use
the coordinate system shown in Fig. 1(c), in which the kagome
lattice and the xy plane coincide and the [111] direction is
along z. The lattice vectors read

a1 = (1,
√

3)
a

2
, (8a)

a2 = (−1,
√

3)
a

2
(8b)

(a is the lattice constant) in Cartesian coordinates. The DM
vectors are then along the z direction. Their orientation is
given by the chirality of the triangles in the kagome lattice:
those with counterclockwise (clockwise) chirality point along
the +z (−z) direction [cf. the red dots in Fig. 1(c)]. The length
of the DM vectors is D.

By means of ladder operators ŝ± ≡ ŝx ± iŝy and the
definition

J̃ n
m exp

(
iφn

m

)
≡ J n

m + iDn
m (9)

the Hamiltonian reads [5]

H = −
1

4

∑

m�=n

J̃ n
m

[
eiφn

m ŝ−
m ŝ+

n + e−iφn
m ŝ+

m ŝ−
n

]

−
1

2

∑

m�=n

J n
mŝz

mŝz
n − gμBH

∑

m

ŝz
m. (10)

H is the strength of the external magnetic field.
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From Eq. (9) it is obvious that a magnon accumulates an
additional phase φn

m upon propagation from site m to n, which
is brought about by the spin-orbit interaction. This can be
viewed as a result of a textured flux within the plaquettes of
the kagome lattice [21], similar to the Haldane model for an
electronic topological insulator [22]. Thus, we are concerned
with a nonzero Berry curvature �(k) (Ref. [23]) and with
topological invariants.

For a given set of parameters {J n
m,Dn

m}, we solve the
eigenproblem of the complete Hamiltonian H, yielding the
magnon dispersion relations εi(k) [wave vector k = (kx,ky,0),
band index i] and the Berry curvature

�j (k) ≡ i
∑

i �=j

〈i(k)|∇kH(k)|j (k)〉 × 〈j (k)|∇kH(k)|i(k)〉
[εi(k) − εj (k)]2

.

(11)

|i(k)〉 and εi(k) are the eigenvectors and eigenvalues of H,
respectively.

B. Transverse thermal conductivity and Chern numbers

Having solved the magnon Hamiltonian, the transverse ther-
mal conductivity can be computed as follows. By formulating
semiclassical equations of motion for magnon wave packets
which include the anomalous velocity in terms of the Berry
curvature, the intrinsic contribution1 to the transverse thermal
conductivity is expressed as

κxy =
k2

BT

(2π )2�

∑

i

∫

BZ

c2(̺i) �z
i (k) dk2. (12)

The sum runs over all bands i in the magnon dispersion
relation, and the integral is over the Brillouin zone (BZ). The
Bose distribution function ̺i enters the function c2 which is
given by

c2(x) ≡ (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2 Li2(−x). (13)

Li2 is the dilogarithm or Spence function [6,7]. c2 is depicted in
Fig. 2; it accounts via the Bose distribution for the temperature
dependence of κxy .

The transverse thermal conductivity and the Chern number
of band i,

Ci ≡
1

2π

∫

BZ

�z
i (k) dk2, (14)

differ by constant factors and by the c2 function in the
integrand. This establishes a close connection of the magnon
Hall effect with the topology of the magnon dispersion relation
in the kagome lattice.

C. Numerical aspects

To calculate the Chern numbers and the transverse thermal
conductivity [cf. Eqs. (14) and (12)], a k-space integration
has to be performed. All results of this paper are obtained for
Gaussian meshes with 2500 points. This gives an accuracy

1The skew scattering contribution is not considered in this paper.
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FIG. 2. (Color online) Function c2(ε), as defined in Eq. (13),

versus energy ε for selected temperatures (as indicated). The broken

line marks the high-temperature limit of π 2/3 ≈ 3.289 87.

of the (integer) Chern numbers better than 10−5. For almost
closed band gaps the Berry curvature gets locally very large
[cf. the denominator in Eq. (11)]; in these cases, a refined mesh
has to be used: 40 000 points for band gaps less than 0.1 meV.

III. RESULTS AND DISCUSSION

In the following analysis we assume a kagome lattice
with all three basis atoms being identical, i.e., identical spin
and exchange parameters. We consider the Heisenberg ex-
change between nearest (JN) and next-nearest (JNN) sites; the
Dzyaloshinskii-Moriya parameters account only for nearest-
neighbor interactions (D).

A. Magnon dispersion relation and topological invariants

First, we address the close connection of the magnon band
structure, the Chern numbers, and the thermal conductivity.
For this purpose, we introduce Chern numbers of isoenergy
surfaces

Ci(ε) ≡
1

2π

∫

BZ

δ(εi − ε) �z
i (k) dk2 (15)

[cf. Eq. (14)] and the corresponding energy-dependent contri-
bution to the transverse thermal conductivity

κxy(ε) =
k2

BT

(2π )2�

∑

i

∫

BZ

δ(εi − ε) c2(̺i) �z
i (k) dk2 (16)

[cf. Eq. (12)].
Inspection of Fig. 3 provides that the main contributions

to the Chern numbers appear at the band edges of spin-orbit-
induced band gaps, that is, where the Berry curvature is largest
[cf. the denominator in Eq. (11)]. The total Chern numbers are
C1 = 1, C2 = 0, and C3 = −1, indicating that the topological
phase of the magnon dispersion is characterized by (1,0,−1)
(the sum over all Chern numbers is zero in any case).

Because the thermal conductivity is mainly given by the
Chern numbers weighted by the c2 function, κxy(ε) shows the
same features as the Chern numbers. However, it decreases
towards higher energies due to the energy dependence of c2

(see Fig. 2). Furthermore, adjacent peaks show opposite signs,
leading to a partial cancellation in the total conductivity.
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FIG. 3. (Color online) Relation between magnon band structure,

Chern numbers, and thermal conductivity. The magnon dispersion

relation for JN = 4 meV, D = 1 meV, and JNN = 0 is shown in (a).

The band- and energy-resolved Chern numbers Ci(ε) and the energy-

resolved thermal conductivity κxy(ε) at T = 30 K are displayed in (b)

and (c), respectively. The step width of the energy mesh is 1/20 meV.

The energy scale is compressed to account for the finite temperature

(cf. Sec. III D).

These findings suggest a way to maximize the thermal
conductivity. The requirements comprise (i) a wide energy
gap provided by (ii) a large DM constant to obtain large
c2 differences for the band edges, and (iii) a flat first band
for a large c2. These features yield an absolute boundary
of the transverse thermal conductivity at low temperatures.
Considering only the first band, i.e., assuming a wide band
gap, and approximating the lowest band by ε1(k) = 0, for
which c2(0) = π2/3 (Fig. 2), one arrives at

|κxy | =

∣∣∣∣∣
∑

n

κxy
n

∣∣∣∣∣ <
∣∣κxy

1

∣∣ <
k2

Bπ

6�
T |C1|, (17)

where C1 is the Chern number of the first band.

B. Topological phase diagram

A topological phase transition is closely related to a band
inversion that appears due to a variation of parameters that
enter the Hamiltonian: a band gap closes and reopens again,
which is accompanied by a (discrete) change of the respective
topological invariants (cf. Ref. [24] for an electronic topo-
logical insulator). In this section, we discuss the topological
phase diagram of the magnon Hamiltonian. Each system is
characterized by a set of constants D, JN, and JNN, from
which a point (JNN/JN,D/JN) in phase space is defined. It is
conceivable that deformation of the lattice or magnetic doping
are means to change the topological phase. Some regions of the
phase diagram cannot be realized in practice because D < JN

in real systems.
To derive phase boundaries, we write the Hamiltonian as a

3 × 3 matrix,

H(k) =

⎛
⎝

HAA(k) HAB(k) HAC(k)
H∗

AB(k) HAA(k) HBC(k)
H∗

AC(k) H∗
BC(k) HAA(k)

⎞
⎠, (18)

AB AC BC

A
B

C

x

y

R = 0, − a1

R = a2 − a1, − a2

+
+

A
B

C

x

y

R = 0, − a2

R = − a1, a1 − a2

−
−

A
B

C

x

y

R = 0, a1 − a2

R = a1, − a2

+
+

FIG. 4. (Color online) Dzyaloshinskii-Moriya interaction in a

kagome lattice. Lattice vectors R from atom i = A,B,C to the

basis of both nearest (red) and next-nearest (blue) neighbors of

type j = A,B,C are given by arrows. ± represent the signs of the

Dzyaloshinskii-Moriya interaction, in accordance with the chirality.

Lattice vectors a1 and a2 are defined in Fig. 1(c). The dot (•) denotes

the origin of the coordinate system.

with A, B, and C indicating the basis atoms (cf. Figs. 1 and 4).
The matrix elements read

HAA(k) = 0, (19)

HAB(k) = − (JN + iD)s(1 + ei(−kx−
√

3ky )/2)

− JNNs(e−ikx + ei(kx−
√

3ky )/2), (20)

HAC(k) = − (JN − iD)s(1 + ei(kx−
√

3ky )/2)

− JNNs(eikx + ei(−kx−
√

3ky )/2), (21)

HBC(k)= − (JN+ iD)s(1 + eikx ) − 2JNNseikx/2 cos

(√
3

2
ky

)
.

(22)

s is the fixed length of the spin vectors (� = 1).
A topological phase boundary is obtained by requiring two

eigenvalues to be equal. At the K point of the Brillouin zone,
e.g., at kK = (−4π/3,0), H has the form

H(kK ) =

⎛
⎝

0 x x∗

x∗ 0 x

x x∗ 0

⎞
⎠ (23)

with

x ≡ −(JN + iD)s(1 + e2π i/3) − 2JNNse2π i/3. (24)

Its eigenvalues are

λ1 = 2Re(x), (25)

λ2,3 = −Re(x) ±
√

3|Im(x)|. (26)

Thus, the topological phase boundary in terms of the exchange
parameters is given by

D

JN

=
√

3

∣∣∣∣2
JNN

JN

− 1

∣∣∣∣. (27)

Since the degeneracy occurs at each K and K ′ point of the
Brillouin zone, the Chern number of the associated bands
changes by 
C = ±2 when crossing this boundary.

134409-4



MAGNON HALL EFFECT AND TOPOLOGY IN KAGOME . . . PHYSICAL REVIEW B 89, 134409 (2014)

(a)

Γ MK Γ
0

5

10

15

(m
eV

)
JNN

JN
= 0

Γ MK Γ

JNN

JN
= 3− √ √ √3

6

Γ MK Γ

JNN

JN
= 0.5

Γ MK Γ

JNN

JN
= 3+ 3

6

Γ MK Γ

JNN

JN
= 1 (b)

K Γ
4

5

6

7

ε
(m

eV
)

JNN

JN
= 0.7

K Γ

JNN

JN
= 3+ 3

6

K Γ

JNN

JN
= 0.82

ε

FIG. 5. (Color online) Magnon band structures of a kagome lattice for selected nearest- (N) and next-nearest- (NN) neighbor Heisenberg

exchange parameters (as indicated). The Dzyaloshinskii-Moriya parameter D equals JN = 1 meV. (a) Closing and reopening of a band gap at

K , from left to right, according to the phase boundary given by Eq. (27). (b) Degeneracy along the Ŵ-K line. The bands are distinguished by

colors.

A numerical analysis of the band structure (Fig. 5) yields
two additional phase boundaries [Fig. 6(a)]: a linear and a
nonlinear one. The latter approaches the boundary derived
analytically as JNN/JN ց 0.5. All band degeneracies are
located along the Ŵ-K and Ŵ-K ′ lines, respectively. These
are parametrized by ζ ∈ [0,1] with ζ = 0 and 1 for Ŵ and K,
respectively [Fig. 6(b)]. The accumulation at the K point arises
due to the analytically derived boundary, while the one at Ŵ is
identified with the linear boundary in Fig. 6(a); the eigenvalue
analysis of H(0) results in

D

JN

=
√

3

∣∣∣∣
JNN

JN

+ 1

∣∣∣∣. (28)

The nonlinear boundary is associated with the descending
curve in Fig. 6(b), indicating that this degeneracy moves
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FIG. 6. (Color online) Analysis of band degeneracies. (a) Param-

eter combinations D/JN and JNN/JN for which two neighboring bands

are degenerate; red (blue) lines indicate degeneracy of the lower

(upper) two bands 1 and 2 (2 and 3). (b) Point of degeneracy, ζ , along

Ŵ-K line as a function of the parameter ratio JNN/JN. (c) Boundary

between antiferromagnetic (AF) and ferromagnetic (F) phases.

(d) Complete topological phase diagram with regions characterized

by sets (C1,C2,C3) of Chern numbers. The antiferromagnetic phase

is colored red.

along Ŵ-K and Ŵ-K ′ [cf. Fig. 5(b) for D = JN = 1 meV and
JNN/JN = 0.82]. Because this degeneracy appears six times
within the first BZ the Chern numbers of the associated
bands change by 
C = ±6. The additional phase boundary
caused by a degeneracy at Ŵ is not of interest for the present
study as it is located within the antiferromagnetic phase
[Fig. 6(c); the antiferromagnetic phase is identified by negative
magnon energies at nonzero k]. The resulting topological
phase diagram is given in Fig. 6(d).

C. High-temperature limit of the transverse

thermal conductivity

In this section we derive the high-temperature limit of the
transverse thermal conductivity,

κ
xy

lim ≡ lim
T →∞

κxy(T ). (29)

Although we disregard a ferromagnet-to-paramagnet transi-
tion and the influence of magnon-magnon interaction, it turns
out that this quantity is helpful in describing MHE systems.

In the rewritten expression

κ
xy

lim = lim
T →∞

(
κxy(T )

T

/
1

T

)
, (30)

both κxy(T )/T and 1/T tend to zero because c2(̺(ε,T )) →
π2/3 for all ε and the sum of the Chern numbers of all bands
vanishes,

∑
i Ci = 0. Thus,

lim
T →∞

(
κxy(T )

T

)
=

k2
B

2π�

π2

3

∑

i

Ci = 0. (31)

By means of l’Hôpital’s rule it follows that

κ
xy

lim = lim
T →∞

(
−T 2 ∂

∂T

κxy(T )

T

)
(32)

= −
k2

B

(2π )2�
lim

T →∞

∑

i

∫

BZ

T 2 ∂c2(̺i)

∂T
�z

i (k) dk2, (33)

with the final expression

κ
xy

lim = −
kB

(2π )2�

∑

i

∫

BZ

εi(k)�z
i (k) dk2. (34)

Even though the high-temperature limit T → ∞ will never
be reached within the ferromagnetic phase, κ

xy

lim can be used
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FIG. 7. (Color online) Transverse thermal conductivity κxy

versus temperature T (solid lines) for D/JN = 1/4 and selected ratios

JNN/JN (as indicated), with JN = 4 meV. The values of κ
xy

lim are given

within each panel and represented by broken lines.

as a figure of merit to estimate the maximum magnitude of
the thermal conductivity, because κxy(T ) rapidly approaches
κ

xy

lim (Fig. 7). In the present cases, κ
xy

lim is reached at about
T = 300 K. For the parameters JN = 4D = 4 meV and
JNN/JN = 387/800 the high-temperature conductivity is two
orders of magnitude smaller than those for the other parameters
shown in Fig. 7. The overall width of the conductivity as
a function of temperature exceeds the limit insignificantly.
A system’s high-temperature-limit thermal conductivity is
therefore a convenient approximation for the strength of its
magnon Hall effect. Systems with high Curie temperature
(i.e., of the order of room temperature for the presented
results) allow for quantitative prediction as the limit is almost
approached. It turns out, however, that for some regions in the
phase space κ

xy

lim does not reproduce the correct sign of the
thermal conductivity as a function of temperature, as will be
discussed in the following paragraphs. Only the topological
phases (1,0,−1) and (−3,2,1) show conductivities with the
same sign as the associated high-temperature limit.

To motivate a relation of the high-temperature limit κ
xy

lim of
the transverse thermal conductivity with the topological phase
space, we assume a magnonic system with two flat bands;
εi(k) = ε̄i (i = 1,2). This approximation yields

κ
xy

lim ∝ −
1

2π

2∑

i=1

ε̄i

∫

BZ

�z
i (k) dk2 = C1
ε, (35)
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FIG. 8. (Color online) Band structure (left) and integrand of

Eq. (34) (right). Arrows represent the reciprocal lattice vectors and

the dashed green line indicates the Brillouin zone. JN = 10JNN =
8D = 4 meV.

where 
ε = ε̄2 − ε̄1 denotes the energy gap. This expression
states that the sign of κ

xy

lim is given by the sign of the first band’s
Chern number C1.

In the case of a kagome lattice the above constant-energy
approximation is justified as follows. The integrand εi(k)�z

i (k)
contributes sizably to the entire integral mainly in regions of
the BZ in which the Berry curvature is large (Sec. III A), that
is, at avoided crossings as shown in Fig. 8. If there is a single
avoided crossing in each irreducible part of the Brillouin zone
(cf. the dashed circle in Fig. 8), the band structure can be
approximated as constant at the avoided crossings (in contrast
to two or more avoided crossings that are different in energy).
By this approximation, κ

xy

lim reads

κ
xy

lim ∝

⎧
⎪⎨
⎪⎩

−(ε̄1 − ε̄3) > 0 (1,0,−1),
−(ε̄1 − 2ε̄2 + ε̄3) (1,−2,1),
−(3ε̄1 − 4ε̄2 + ε̄3) (3,−4,1),
−(−3ε̄1 + 2ε̄2 + ε̄3) < 0 (−3,2,1).

The sign is unique only within the phases (1,0,−1) and
(−3,2,1) since ε̄3 > ε̄2 > ε̄1. In the other phases, the sign
of the conductivity depends on the ratios of the energies ε̄i

and is not fixed. This, admittedly, crude approximation is
corroborated by the numerical results shown in Fig. 9, where
the line of vanishing high-temperature-limit conductivity is
found within the phase (1,−2,1).
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FIG. 9. (Color online) Topological phase diagram of the high-

temperature transverse thermal conductivity κ
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lim, shown as color scale
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The broken lines represent the analytically derived phase boundaries

given by Eq. (27).
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FIG. 10. (Color online) Sign of the transverse thermal conductiv-

ity κxy within the topological phase space for selected temperatures

T (as indicated). JN = 4 meV.

The above findings open up possibilities of changing a
system’s transverse thermal conductivity and heat current
direction. Traversing through the phase diagram will lead to
a change of the magnitude or even the sign of the thermal
conductivity. Only systems with specific combinations of
exchange parameters show a change of sign of the thermal
conductivity with temperature. These combinations are located
within the region that is covered by the line of zero κxy versus
temperature (Fig. 10). In this phase-space region the conduc-
tivity shows a positive local maximum at low temperatures,
although it converges to a negative limit (Fig. 11).

D. Application to Lu2V2O7

Having studied the fundamental properties of the MHE in
two-dimensional kagome lattices in the preceding sections,
we proceed with an application to the three-dimensional
pyrochlore Lu2V2O7. Instead of considering a “true” three-
dimensional lattice, we treat the system as a stack of non-
interacting kagome layers. This allows the application of the
methods derived so far, in particular the classification by Chern
numbers [cf. the topological phase diagram in Fig. 6(d)].

To come closer to the experiment, the temperature depen-
dence of the magnetization has to be considered. This could be
done within a microscopic picture, that is, by considering the
thermal fluctuations of the local spins which could enter the
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FIG. 11. (Color online) Transverse thermal conductivity κxy ver-

sus temperature T for JNN/JN = 1/2, D/JN = 1/4, and JN = 4 meV

(solid line). The dashed line represents the limit κ
xy

lim = −2.12 ×
10−12 W/K; the dotted line marks the temperature Ts = 113 K of

vanishing conductivity.

exchange parameters [25,26]. For the time being, we restrict
ourselves to a macroscopic picture. To be more specific, we
assume that the spins s scale with temperature in the same way
as the magnetization,

s → s

(
1 −

T

TC

)β

, (36)

with the critical temperature TC = 70 K (Ref. [5]) and the
critical exponent β = 0.362 (Ref. [27]).

From the Curie temperature TC, the spin-wave stiffness
DS = 21 meV Å2, and the lattice constant a = 7.024 Å,
we determine the Heisenberg exchange parameter to
JN = 3.405 meV. JNN is set to zero, so that there is no
interaction between adjacent kagome planes.

To compare the thermal conductivity κ
xy

2D of a two-
dimensional system with that of the associated three-
dimensional one, κ

xy

3D, we introduce a characteristic length
l which equals the spacing of (111) lattice planes. The red
triangles in Fig. 1(a) suggest that l is twice as large as the
height of a tetrahedron with an edge length of a/2; hence,
κ

xy

3D = κ
xy

2D/l with l =
√

6a/3.
Now we compare the theoretical transverse thermal conduc-

tivity with its experimental counterpart [5], with the strength D

of the DM interaction as the only parameter. For realistic values
of D, Lu2V2O7 is within the (1,0,−1) topological phase and
exhibits a MHE with positive transverse thermal conductivity,
in agreement with experiment.

The comparison is shown in Fig. 12, for two selected
values of D =

√
6/2D̃ [cf. Eq. (6)]. The magnetic field was

chosen slightly larger than the saturation field determined by
Onose et al. (Ref. [5]). Reasonable agreement is found for
D̃/JN = 0.39%–0.56%, that is, for parameters two orders of
magnitude smaller than those deduced by Onose et al., who
derived D̃/JN = 32%. A density functional calculation for
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FIG. 12. (Color online) Transverse thermal conductivity κxy of

Lu2V2O7 versus temperature T . Theoretical data for Dzyaloshinskii-

Moriya interactions D = 11 μeV (dashed line) and 15 μeV (wide-

dashed line) are compared with experimental data from Ref. [5] (dots).

The external magnetic field of 0.5 T is chosen slightly larger than the

saturation field in the experiment. The range of the high-temperature

limits of κxy is indicated by the gray area.

134409-7
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FIG. 13. (Color online) Transverse thermal conductivity κxy of

Lu2V2O7 versus applied magnetic field H along [111] at T =
20 K. The theoretical result has been obtained for Dzyaloshinskii-

Moriya interaction D = 15 μeV (broken line). Experimental data

(red dots) for the magnetic field direction along [100] are reproduced

from Ref. [5].

Y2V2O7, which possesses magnetic properties similar to those
of Lu2V2O7, by Xiang et al. (Ref. [28]), yields D̃/JN = 5%.

We attribute the mismatch between our D̃/JN ratio and the
one obtained in Ref. [5] to the approximation of the three-
dimensional systems by a stacking of noninteracting kagome
planes. For example, disregarding the fourth basis atom of
the pyrochlore basis reduces the bandwidths of the magnons;
as a consequence, avoided crossings which give the major
contributions to the conductivity are too low in energy. Thus,
the c2 function is too large, which has to be compensated by a
reduced DM interaction.

In contrast, the approximation in Ref. [5] causes an
overestimation of the DM interaction: in a model for a
pyrochlore lattice, only contributions of the lowest-energy
band at the Ŵ point (Goldstone mode) have been considered.
Thus, the sizable contributions of the avoided crossings at
higher energies are omitted (cf. Fig. 3). This approximation
is valid for very small temperatures, as is evident from the
rapid decrease of c2; it is questionable for elevated temperature
because c2 is sizable at higher energies (compare T = 1 K with

T = 23 K in Fig. 2). We recall that the experimental data used
for estimating D/J in Ref. [5] were taken at T = 20 K, for
which c2 cannot be safely neglected at the avoided crossings.
To compensate for the missing contributions, the value of the
Berry curvature around the Ŵ point is estimated too large and
so the DM constant D̃ is overestimated.

Neither the approximation in Ref. [5] nor ours takes
into account magnon-magnon or magnon-phonon interactions
which may influence the transverse thermal conductivity of
Lu2V2O7 at temperatures close to its Curie temperature.
The mismatches of the D̃/JN ratio can be explained by the
approximations discussed in the preceding paragraphs.

Finally, we address the dependence of the transverse ther-
mal conductivity on the strength of the applied magnetic field
(Fig. 13). The experimental data were obtained for a magnetic
field applied in the [100] direction, in contrast to theory
([111] direction), thus complicating a quantitative analysis.
Nevertheless, the overall trend—namely, the gradual decrease
of the conductivity (in absolute value) for increasing magnetic
field—is reproduced. It is explained by the Zeeman term in the
Hamiltonian [Eq. (10)] which shifts the entire magnonic band
structure towards larger energies and, therefore, to regions with
smaller c2 (Fig. 2).

IV. OUTLOOK

Having analyzed kagome lattices in this paper, an evident
extension of our study is to pyrochlore crystals in which
all exchange interactions are considered. An important issue
is the negative transverse thermal conductivity of In2Mn2O7

(Ref. [29]), in contrast to the positive ones of Lu2V2O7 and
Ho2V2O7; this needs to be explained by a topological phase
diagram. With a phase diagram at hand, one should be able to
predict systems with a strong magnon Hall effect.

It appears of great interest to find a kagome system with
exchange parameters that are located in a region in which the
conductivity changes sign. In this paper we have given a recipe
for such a material. Its overall transverse thermal conductivity
is, however, one order of magnitude smaller than that of
Lu2V2O7, which calls for advanced measurement techniques.
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