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Abstract. The long-range forces between holes in an antiferromagnet are due to magnon exchange. The
one-magnon exchange potential between two holes is proportional to cos(2ϕ)/r 2 where r is the distance
vector of the holes and ϕ is the angle between r and an axis of the square crystal lattice. One-magnon
exchange leads to bound states of holes with antiparallel spins resembling d-wave symmetry.

PACS. 12.39.Fe Chiral Lagrangians – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons
and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid,
etc.) – 75.30.Ds Spin waves – 75.50.Ee Antiferromagnetics

Over the past twenty years, understanding the dynami-
cal mechanism responsible for high-temperature supercon-
ductivity [1] has remained a great challenge in condensed
matter physics. Unfortunately, microscopic systems such
as the Hubbard or t-J model, which may indeed contain
the relevant physics, have thus far neither been solved an-
alytically nor numerically beyond half-filling. While ana-
lytic solutions usually suffer from uncontrolled approxima-
tions, numerical simulations suffer from the fermion sign
problem. Although there have been numerous attempts
to understand high-temperature superconductors via their
undoped antiferromagnetic precursors [2–12], the dynam-
ical role of spin fluctuations remains a controversial issue.
In particular, there seems to be no agreement if two holes
doped into an antiferromagnet can form a bound state or
not. In the following we will use a systematic low-energy
effective field theory for magnons and holes to show that
— by one-magnon exchange — two holes can indeed form
an infinite number of bound states. While it remains to
be seen if this is directly relevant to high-temperature su-
perconductivity, our results shed light on the mechanism
responsible for the formation of charge pairs in the anti-
ferromagnetic phase.

The low-energy physics of antiferromagnets is gov-
erned by magnons [13–15]. In analogy to chiral pertur-
bation theory [16] — the effective theory for the pions of
the strong interactions [17] — a systematic magnon effec-
tive theory was constructed in [18, 19]. There have been
a number of approaches [7, 9, 10, 20–22] that address the
physics of both magnons and holes using effective field the-
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ories. However, the different approaches do not agree even
on basic issues like the fermion field content of the effec-
tive theory or on how various symmetries are realized on
those fields. The effective field theory constructed here is
the condensed matter analog of baryon chiral perturbation
theory — the effective theory for pions and nucleons [23–
26]. It is based on a detailed symmetry analysis and uses a
nonlinear realization of the spontaneously broken SU(2)s

symmetry [27]. Analogies between pion and magnon dy-
namics have been investigated in [28]. While several el-
ements of our effective theory have been used before, it
differs from previous approaches in important respects.
Just like chiral perturbation theory, our effective theory is
based on a systematic low-energy expansion, which pro-
vides quantitatively correct predictions for a wide vari-
ety of microscopic systems including, e.g., the t-J model.
The effective theory itself is model-independent. Material-
specific properties enter the effective theory through a pri-
ori undetermined low-energy parameters, such as the spin
stiffness or the spinwave velocity. The values of the low-
energy parameters for a concrete underlying microscopic
system can be determined by comparison with experi-
ments or with numerical simulations. Precise numerical
simulations of low-energy observables, which are presently
in progress in the t-J model, constitute a most stringent
test of the effective theory.

Magnon-mediated binding between pairs of holes has
been studied before, most notably in the interesting work
of Kuchiev and Sushkov [29]. Based on the microscopic t-J
model, these authors have derived the magnon-mediated
forces between two holes residing in the same hole
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pocket and have solved the resulting Schrödinger equa-
tion. Here, for the first time, we derive the one-magnon
exchange potential between holes in different hole pockets.
Remarkably, in this case the corresponding Schrödinger
equation can be solved completely analytically. The results
of [29] are similar to ours in many respects. For example,
the distance-dependence of the magnon-mediated forces
is the same in both cases, and consequently both energy
spectra contain infinitely many bound states. The effective
field theory derivation of these results is conceptually par-
ticularly clean and transparent, and provides results that
can be extended order by order in a systematic low-energy
expansion.

The magnon field can be represented by a CP (1) pro-
jection matrix

P (x) =
1
2

[�+ e(x) · σ] , (1)

that obeys P (x)† = P (x), TrP (x) = 1, and P (x)2 = P (x).
Here x = (x, t) is a point in (2 + 1)-d space-time,

e(x) = (sin θ(x) cosϕ(x), sin θ(x) sinϕ(x), cos θ(x)) (2)

is the staggered magnetization, and σ are the Pauli matri-
ces. Under global spin rotations g ∈ SU(2)s the magnon
field transforms as

P (x)′ = gP (x)g†, (3)

while under the displacement Di by one lattice spacing in
the i-direction (which changes the sign of the staggered
magnetization) it transforms as

DiP (x) = �− P (x). (4)

Under spatial rotations O, under reflections R, and under
time-reversal T one obtains

OP (x) = P (Ox), Ox = (−x2, x1, t),
RP (x) = P (Rx), Rx = (x1,−x2, t),
TP (x) = DiP (Tx), Tx = (x1, x2,−t). (5)

In order to couple holes to the magnons, a nonlinear re-
alization of the spontaneously broken SU(2)s symmetry
has been constructed [27]. It then manifests itself as a lo-
cal symmetry in the unbroken U(1)s subgroup of SU(2)s.
The local U(1)s transformations are constructed from the
global transformation g ∈ SU(2)s as well as from the lo-
cal magnon field P (x). First, one diagonalizes P (x) by a
unitary transformation u(x) ∈ SU(2)s

u(x)P (x)u(x)† =
1
2

[�+ σ3] , u11(x) ≥ 0. (6)

Under a global SU(2)s transformation g the diagonalizing
field u(x) transforms as

u(x)′ = h(x)u(x)g†, (7)

which defines the nonlinear symmetry transformation

h(x) = exp(iα(x)σ3) ∈ U(1)s. (8)

Under the displacement symmetry Di one obtains

Diu(x) = τ(x)u(x) (9)

with

τ(x) =
(

0 − exp(−iϕ(x))
exp(iϕ(x)) 0

)
. (10)

Next one constructs the anti-Hermitean composite field

vµ(x) = u(x)∂µu(x)† = i

(
v3

µ(x) v+
µ (x)

v−µ (x) −v3
µ(x)

)
, (11)

which transforms under SU(2)s as

vµ(x)′ = h(x)[vµ(x) + ∂µ]h(x)†. (12)

The Abelian component v3
µ(x) transforms like a U(1)s

gauge field, while v±µ (x) represent “charged” vector fields.
Under the displacement symmetry Di the composite vec-
tor field transforms as

Divµ(x) = τ(x)[vµ(x) + ∂µ]τ(x)†, (13)

while under time-reversal

T vi(x) = Divi(Tx), T vt(x) = − Divt(Tx). (14)

Let us consider an effective theory with holes as the only
charge carriers. In [27] we have considered charge carriers
located near momenta (0, 0) and (π

a ,
π
a ) in the Brillouin

zone (where a is the lattice spacing). Here we consider
hole pockets centered at

kα =
( π

2a
,
π

2a

)
, kβ =

( π

2a
,− π

2a

)
, (15)

which have been observed in ARPES measurements
[30–33] as well as in theoretical calculations in the t-J
model [6, 34, 35]. The hole fields ψf

s (x) carry a “flavor”
index f = α, β that characterizes the corresponding hole
pocket. The index s = ± denotes spin parallel (+) or an-
tiparallel (−) to the local staggered magnetization. Under
the various symmetry operations the hole fields transform
as

SU(2)s : ψf
±(x)′ = exp(±iα(x))ψf

±(x),

U(1)Q : Qψf
±(x) = exp(iω)ψf

±(x),

Di : Diψf
±(x) = ∓ exp(ikf

i a) exp(∓iϕ(x))ψf
∓(x),

O : Oψα
±(x) = ∓ψβ

±(Ox), Oψβ
±(x) = ψα

±(Ox),

R : Rψα
±(x) = ψβ

±(Rx), Rψβ
±(x) = ψα

±(Rx),

T : Tψf
±(x) = ∓ exp(∓iϕ(Tx))ψf†

± (Tx),
Tψf†

± (x) = ± exp(±iϕ(Tx))ψf
±(Tx). (16)

Here ω determines the U(1)Q fermion number transfor-
mation. Interestingly, in the effective theory the location
(kf

1 , k
f
2 ) of the hole pockets in the Brillouin zone of the

underlying crystal lattice manifests itself through charges
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kf
i a = ±π

2 of an internal Abelian symmetry Di. Defining
a U(1)s covariant derivative

Dµψ
f
±(x) =

[
∂µ ± iv3

µ(x)
]
ψf
±(x), (17)

the leading terms in the effective Lagrangian are

L[ψf†
s , ψf

s , P ] = ρsTr
[
∂iP∂iP +

1
c2
∂tP∂tP

]

+
∑

f=α,β;s=+,−

[
Mψf†

s ψf
s + ψf†

s Dtψ
f
s +

1
2M ′Diψ

f†
s Diψ

f
s

+σf
1

2M ′′ (D1ψ
f†
s D2ψ

f
s +D2ψ

f†
s D1ψ

f
s )

+Λ(ψf†
s vs

1ψ
f
−s + σfψ

f†
s vs

2ψ
f
−s) +N1ψ

f†
s vs

i v
−s
i ψf

s

+σfN2(ψf†
s vs

1v
−s
2 ψf

s +ψf†
s vs

2v
−s
1 ψf

s )+
G1

2
ψf†

s ψf
sψ

f†
−sψ

f
−s

]

+
∑

s=+,−
[G2ψ

α†
s ψα

s ψ
β†
s ψβ

s +G3ψ
α†
s ψα

s ψ
β†
−sψ

β
−s]. (18)

Here ρs is the spin stiffness, c is the spinwave velocity,
M , M ′ and M ′′ are the rest mass and kinetic masses of
a hole, Λ is a hole-one-magnon, and N1 and N2 are hole-
two-magnon couplings, and G1, G2, and G3 are 4-fermion
contact interactions. All these low-energy parameters take
real values. The sign σf is + for f = α and − for f =
β. Interestingly, the above Lagrangian has an accidental
global U(1)F flavor symmetry that acts as

U(1)F : Fψf
±(x) = exp(σf iη)ψ

f
±(x). (19)

In addition, for c → ∞ it also has an accidental Galilean
symmetry. Both accidental symmetries are explicitly bro-
ken at higher orders of the derivative expansion.

Our treatment of the forces between two holes is analo-
gous to the effective theory for light nuclei [36–39] in which
one-pion exchange dominates the long-range forces. We
now calculate the one-magnon exchange potential. For this
purpose, we expand in the magnon fluctuations m1(x),
m2(x) around the ordered staggered magnetization, i.e.

e(x) = (
m1(x)√
ρs

,
m2(x)√
ρs

, 1) + O[m2] ⇒ v3
µ(x) = O[m2],

v±µ (x) =
1

2
√
ρs
∂µ[m2(x) ± im1(x)] + O[m2]. (20)

Since vertices with v3
µ(x) (contained in Dµ) involve at

least two magnons, one-magnon exchange results from ver-
tices with v±µ (x) only. As a consequence, two holes can
exchange a single magnon only if they have antiparallel
spins (+ and −), which are both flipped in the magnon ex-
change process. It is straightforward to evaluate the Feyn-
man diagram describing one-magnon exchange shown in
Figure 1.

In coordinate space the resulting potentials for the var-
ious combinations of flavors take the form

V ff (r) = σfγ
sin(2ϕ)

r 2
, V αβ(r) = γ

cos(2ϕ)
r 2

, (21)

f−

f
′
− f

′
+

f+

Fig. 1. Feynman diagram for one-magnon exchange between
two holes with antiparallel spins undergoing a spin-flip.

with γ = Λ2/(2πρs). Here r is the distance vector be-
tween the two holes and ϕ is the angle between r and the
x-axis. It should be noted that the one-magnon exchange
potential is instantaneous although magnons travel with
the finite speed c. Retardation effects occur only at higher
orders.

Next we study the Schrödinger equation for the rela-
tive motion of two holes with flavors α and β

( − 1
M ′∆ V αβ(r)

V αβ(r) − 1
M ′∆

) (
Ψ1(r)
Ψ2(r)

)
= E

(
Ψ1(r)
Ψ2(r)

)
. (22)

The components Ψ1(r) and Ψ2(r) are probability ampli-
tudes for the spin-flavor combinations α+β− and α−β+,
respectively. The potential V αβ(r) couples the two chan-
nels because magnon exchange is accompanied by a
spin-flip. The above Schrödinger equation does not yet ac-
count for the short-distance forces arising from 4-fermion
contact interactions. Their effect will be incorporated later
by a boundary condition on the wave function near the
origin. Making the ansatz

Ψ1(r) ± Ψ2(r) = R(r)χ±(ϕ), (23)

for the angular part of the wave function one obtains

−d
2χ±(ϕ)
dϕ2

±M ′γ cos(2ϕ)χ±(ϕ) = −λχ±(ϕ). (24)

The solutions of this Mathieu equation with the lowest
eigenvalue λ (given here only to the leading order γ2) is

χ±(ϕ) =
1√
π

ce0(ϕ,±1
2
M ′γ), λ =

1
8
(M ′γ)2. (25)

The periodic Mathieu function ce0(ϕ, 1
2M

′γ) [40] is illus-
trated for M ′γ = 2.5 in Figure 2.

The radial Schrödinger equation takes the form

−
[
d2R(r)
dr2

+
1
r

dR(r)
dr

]
− λ

r2
R(r) = M ′ER(r). (26)

As it stands, the above equation is ill-defined because an
attractive 1

r2 potential is too singular at the origin. How-
ever, one should keep in mind that we have not yet in-
corporated the short-range contact interactions. A con-
sistent description of the short-distance physics requires
ultraviolet regularization and subsequent renormalization
of the Schrödinger equation as discussed in [41]. Instead
of proceeding systematically in this way, here we model
the short-distance repulsion between two holes by a hard
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Fig. 2. Angular wave function ce0(ϕ, 1
2
M ′γ) (solid curve) and

angle-dependence cos(2ϕ) of the potential (dotted curve).

core of radius r0, i.e. we require R(r0) = 0. The radial
Schrödinger equation for the bound states is solved by
Bessel functions

R(r) = AKν(
√
M ′|En|r), ν = i

√
λ. (27)

The energy (determined from Kν(
√
M ′|En|r0) = 0) is

given by

En ∼ −(M ′r20)
−1 exp(−2πn/

√
λ) (28)

for large n. While the highly excited states have exponen-
tially small energy and exponentially large size, for suffi-
ciently small r0 or sufficiently large coupling Λ the ground
state is strongly bound. It should be noted that the wave
functions with angular part χ+(ϕ) and χ−(ϕ) have the
same energy, i.e. the states are two-fold degenerate. Com-
bining the two degenerate ground states to eigenstates of
the rotation O one obtains the probability distribution
illustrated in Figure 3, which resembles d-wave symme-
try. It should, however, be noted that, due to the non-
trivial rotation properties of flavor, the wave function is
suppressed — but not equal to zero — along the lattice
diagonals. Pairs of holes with equal flavor can also form.
The corresponding wave functions will be discussed else-
where. Whether pairs of the same or of different flavors
are more strongly bound depends on the values of the
low-energy parameters. Here we have concentrated on αβ
pairs because they have important properties observed in
the cuprates.

Since we have now established that two holes in an
antiferromagnet can form a bound state by exchanging
magnons, it is natural to ask if and how this may be
related to high-temperature superconductivity. Quantita-
tively these questions will be addressed elsewhere. Here
we argue just qualitatively. If pairs of holes form bound
states, at a sufficiently low temperature Tc these pairs will
condense, thus leading to Bose-Einstein condensation or
to magnon-mediated superconductivity. Here we do not
attempt to estimate Tc, because this involves a delicate
interplay between long- and short-range interactions. In-
stead we concentrate on the universal aspects of the dy-
namics resulting from the long-range magnon-mediated
forces only. First, one-magnon exchange only binds holes
with antiparallel spins, and indeed the Cooper pairs in a

Fig. 3. Probability distribution for the ground state of two
holes with flavors α and β.

high-temperature superconductor are spin singlets. Sec-
ond, the characteristic angular dependence cos(2ϕ) of
the one-magnon exchange potential leads to the peculiar
ce0(ϕ, 1

2M
′γ) orbital structures of the hole pair wave func-

tion which yields the d-wave characteristics observed in
the cuprates.

Besides basic principles of quantum field theory, such
as locality and unitarity, the effective theory of magnons
and holes relies only on a few experimentally well veri-
fied dynamical assumptions — most important the spon-
taneous breaking of the SU(2)s spin symmetry down to
U(1)s and the location of hole pockets at ( π

2a ,± π
2a ). It

is remarkable that the existence of bound states between
holes in an antiferromagnet can be inferred from so little
input. The effective theory provides the detailed analytic
form of the wave function for a pair of holes with different
flavors αβ. While the corresponding probability distribu-
tion resembles d-wave characteristics, due to the nontrivial
flavor structure the rotation symmetry O is, nevertheless,
realized in a more complicated way.

It is natural to ask if the effective theory can be applied
to the high-temperature superconductors themselves.
Since this theory relies on the spontaneous breakdown
of the SU(2)s symmetry, and since high-temperature su-
perconductivity arises only after antiferromagnetism has
been destroyed, this may seem doubtful. However, while
the perturbative treatment of the effective theory breaks
down in the superconducting phase, the effective theory
itself does not, as long as spin fluctuations remain among
the relevant low-energy degrees of freedom. While it re-
mains to be seen if nonperturbative investigations of the
effective theory can shed light on the phenomenon of high-
temperature superconductivity itself, it seems clear al-
ready that the systematic low-energy effective field theory
approach to the dynamics of charge carriers in antiferro-
magnets is promising.
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