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1. Introduction

The method of differential equations [1–3] (see also Ref. [4, 5]), is one of the most effective

techniques for computing dimensionally regulated multi-loop integrals. Within the continuous

dimensional regularization scheme, Feynman integrals fulfill identities that fall in the catheogry of

the general class of integration-by-parts relations [6, 7]. Such relations can be exploited in order to

identify a set of independent integrals, dubbed master integrals (MI’s), that can be used as a basis

of functions for the virtual contributions to scattering amplitudes.

The MI’s are functions of the kinematic invariants constructed from the external momenta and

of the masses of the (internal and external) particles. Remarkably, the aforementioned relations

imply that the MI’s obey linear systems of first-order differential equations (DE’s) in the kinematic

invariants, which can be used for the determination of their actual expression. The solution of the

system, namely the MI’s, is finally determined by imposing the boundary conditions at special

values of the kinematic variables, properly chosen either in correspondence of configurations that

reduce the MI’s to simpler integrals or in correspondence of pseudo-thresholds. In this latter case,

the boundary conditions are obtained by imposing the regularity of the MI’s around unphysical

singularities, ruling out divergent behavior of the general solution of the systems.

For any given scattering process the set of MI’s is not unique, and, in practice, their choice is

rather arbitrary. Usually MI’s are identified after applying the Laporta reduction algorithm [8]. Af-

terward, convenient manipulations of the basis of MI’s may be performed. Proper choices of MI’s

can simplify the form of the systems of differential equations, hence, of their solution, although

general criteria for determining such optimal sets are not available. In Ref. [9], Henn proposes to

solve the systems of DE’s for MI’s with algebraic methods, by observing that with a good choice of

MI’s the system of DE’s can be cast in a form - which we define canonical - where the dependence

on the dimensional parameter ε = (4− d)/2 is factorized from the kinematic. The integration of

a system in canonical form trivializes and the analytic properties of its general solution are mani-

festly inherited from the matrix associated to the system, which is the kernel of the representation

of the solutions in terms of repeated integrations.

In Ref. [10], we suggest a convenient form for the initial system of MI’s, and we propose

an algorithm to find the transformation matrix yielding to a canonical system. In particular, we

choose a set of MI’s obeying a systems of DE’s which has a linear ε-dependence, and we find

a transformation which absorbs the O(ε0) term and leads to a new system of DE’s where the ε-

dependence is factorized. This transformation, as well as the integration of the canonical system,

are obtained by using Magnus and Dyson’s series expansions [11–13].

We apply our algorithm to compute the MI’s of the two-loop vertex diagrams contributing to

the massive fermion form-factors in QED [14,15] and the MI’s of the non-planar two-loop diagrams

contributing to the 2 → 2 scattering of massless particles [17,18]. The set of MI’s for the two-loop

QED vertices hereby presented constitutes a transcendentally-homogeneous subset for tackling the

analytic calculation of the still unknown non-planar two-loop box diagrams contributing to massive

Bhabha scattering in QED. It may enter as well in more general classes of scattering processes

involving massive particles.

We used the computer code REDUZE2 [19] for the generation of the systems of differential

equations.
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2. Magnus series expansion

Consider a generic linear matrix differential equation [13]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (2.1)

If A(x) commutes with its integral
∫ x

x0
dτA(τ), e.g. in the scalar case, the solution can be written as

Y (x) = e
∫ x

x0
dτA(τ)

Y0 . (2.2)

In the general non-commutative case, one can use the Magnus theorem [11] to write the solution

as,

Y (x) = eΩ(x,x0) Y (x0)≡ eΩ(x) Y0 , (2.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞

∑
n=1

Ωn(x) . (2.4)

The first three terms of the expansion (2.4) read as follows:

Ω1(x) =
∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1),A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2),A(τ3)]]+ [A(τ3), [A(τ2),A(τ1)]] . (2.5)

We remark that if A and its integral commute, the series (2.4) is truncated at the first order, Ω = Ω1,

and we recover the solution (2.2). As a notational aside, in the following we will use the symbol

Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

2.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [13], and their connection can be obtained starting

from the Dyson expansion of the solution of the system (2.1),

Y (x) = Y0 +
∞

∑
n=1

Yn(x) , Yn(x)≡
∫ x

x0

dτ1 . . .
∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (2.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (2.3) and (2.6) we have

∞

∑
j=1

Ω j(x) = log

(

Y0 +
∞

∑
n=1

Yn(x)

)

. (2.7)

In the following, we will use both Magnus and Dyson series. The former allows us to easily

demonstrate how a system of DE’s, whose matrix is linear in ε , can be cast in the canonical form.

The latter can be more conveniently used for the explicit representation of the solution.
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3. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂x f (ε ,x) = A(ε ,x) f (ε ,x) , (3.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and masses.

We suppose that A depends linearly on ε ,

A(ε ,x) = A0(x)+ εA1(x) , (3.2)

and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,

f (ε ,x) = B0(x) g(ε ,x) , B0(x)≡ eΩ[A0](x,x0) . (3.3)

Because of Magnus Theorem, B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (3.4)

which implies that the new basis g of MI’s fulfills a system of differential equations in the canonical

factorized form,

∂xg(ε ,x) = εÂ1(x)g(ε ,x) . (3.5)

The matrix Â1 is related to A1 through,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (3.6)

and does not depend on ε . The solution of Eq. (3.5) can be found by using Magnus theorem with

εÂ1 as kernel

g(ε ,x) = B1(ε ,x)g0(ε) , B1(ε ,x) = eΩ[εÂ1](x,x0) , (3.7)

where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution of the

original system Eq. (3.1) finally reads,

f (ε ,x) = B0(x)B1(ε ,x)g0(ε) . (3.8)

It is worth to notice that Ω[εÂ1] in Eq. (3.7) depends on ε , while Ω[A0] in Eq. (3.3) does not.

The matrix B0, implementing the transformation from the linear to the canonical form, is simply

given as the product of two matrix exponentials. Indeed one can split A0 into a diagonal term, D0,

and a matrix with vanishing diagonal entries N0,

A0(x) = D0(x)+N0(x) . (3.9)

The transformation B is then obtained by the composition of two transformations

B(x) = eΩ[D0](x,x0)eΩ[N̂0](x,x0) = e
∫ x

x0
dτ D0(τ)eΩ[N̂0](x,x0) , (3.10)
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p1

p2

p1 − k1

−p2 − k2

Figure 1: Selection of Feynman diagrams entering the correction of the QED vertex at two loops. The

internal momenta in the first diagram are oriented according to the fermion flow, while the external momenta

are incoming.

where N̂0 is given by

N̂0(x) = e
−
∫ x

x0
dτ D0(τ) N0(x) e

∫ x
x0

dτ D0(τ) (3.11)

In the last step of Eq. (3.10) we have used the commutativity of the diagonal matrix D0 with its

own integral. We also remark that the decomposition in Eq.(3.9) accelerates the convergence of the

Magnus series.

In the examples hereby discussed it was possible, by trials and errors, to find set of MI’s obeying a

system of DE’s linear in ε . Moreover in these cases one finds that Ω[N̂0] contains just the first term

of the series, except for the non-planar box, where also the second order is non vanishing.

4. Two-Loop QED Vertices

A set of MI’s entering the electron form factor at two loop in QED [15] were computed in

Ref. [14], for arbitrary kinematic and finite electron mass. The contributing diagrams are depicted

in Fig. 1 and depend on s = (p1+ p2)
2 and p2

1 = p2
2 = m2. In this example we choose an alternative

set of MI’s,

f1 = ε2
T1 , f2 = ε2

T2 , f3 = ε2
T3 , f4 = ε2

T4 , f5 = ε2
T5 ,

f6 = ε2
T6 , f7 = ε2

T7 , f8 = ε3
T8 , f9 = ε3

T9 , f10 = ε2
T10 ,

f11 = ε3
T11 , f12 = ε3

T12 , f13 = ε2
T13 , f14 = ε3

T14 , f15 = ε4
T15 ,

f16 = ε4
T16 , f17 = ε4

T17 , (4.1)

where the integrals Ti are collected in Fig. 2. The system of differential equations for f , in the

auxiliary variable x, defined through s =−m2(1−x)2

x
is linear in ε . Therefore after applying Magnus

5
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T1

p12

T2(s)

p12

T3(s)

p1

T4

p12

T5(s)

p12

T6(s)

p2

T7

p1

p2

T8(s)

p1

p2

T9(s)

p1

p2

T10(s)

p1

p2

T11(s)

p1

p2

T12(s)

p1

p2

T13(s)

p1

p2

T14(s)

p1

p2

T15(s)

[(k1 + k2)
2]

p1

p2

T16(s)

p1

p2

T17(s)

Figure 2: MI’s for the two-loop corrections of the QED vertex. All the external momenta depicted are

incoming. In the integral T16 the loop momenta k1, k2 are fixed according to the first diagram of Fig. 1 and

a term (k1 + k2)
2 has to be included in the numerator of the integrand.

rotation, the canonical basis g is found,

g1 = f1 , g2 = λ1 f2 , g3 = (−s)λ2 f3 ,

g4 = m2 f4 , g5 = λ1

(

f5 +
f6

2

)

−
s

2
f6 , g6 = (−s) f6 ,

g7 = m2 f7 , g8 = λ1 f8 , g9 = λ1 f9 ,

g10 = λ3 (2 f5 + f6)+m2λ2 f10 , g11 = λ1 f11 , g12 = λ1 f12 ,

g13 =

(

3m2 −
3s

2

)

f7 − sλ2 f13 , g14 = (−s)λ2 f14 , g15 = λ1 f15 ,

g16 = λ1 f16 , g17 = (−s)λ2 f17 , (4.2)

where λ1 =
√
−s

√
4m2 − s , λ2 = (4m2−s) , λ3 =

λ1+λ2

4
. The new basis of MI’s obeys a canonical

system of DE,

∂xg(ε ,x) = εÂ1(x)g(ε ,x) , Â1(x) =
M1

x
+

M2

1+ x
+

M3

1− x
, (4.3)

where Mi ,(i = 1,2,3) are sparse matrix with rational numbers.

The solution of the system can be expressed as Dyson series, as well as Magnus series, in

terms of one-dimensional Harmonic Polylogarithms (HPL’s) [20]. The requirements that the MI’s

6
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k1

k1 − k2 − p2

p1

p2

p3

p4

Figure 3: Non-planar two-loop diagram with massless internal propagators, and massless external particles.

The internal momenta shown in the diagram are oriented according to the arrows. All the external momenta

are incoming.

are real-valued in the Euclidean region and regular in x = 1 (s = 0), or simply the matching against

the known integrals at x = 1, fix all but three boundary constants, corresponding to the constant

MI’s g1, g4 and g7 (that do not depend on x). The integrals g1 and g4 can be easily computed

by direct integration, while g7 can be determined from the results of Ref. [16]. The matrices

Mi ,(i = 1,2,3) and the expressions of the transcendentally uniform MI’s gi ,(i = 1, . . . ,17) can be

found in Ref. [10].

5. Two-Loop non-planar Box

The evaluation of the two-loop non-planar box diagram in Fig. 3, contributing to the 2 → 2

scattering among massless particles, has already been considered in the literature [17,18]. Recently,

for its planar partner, a set of MI’s with homogenous transcendentality was presented in Ref. [9]. In

this section, we compute the additional MI’s required for determining the non-planar contribution,

having expressions with manifest homogenous transcendentality as well. The integrals, in this case,

are functions of the invariants s = (p1 + p2)
2, t = (p1 + p3)

2, and u = (p2 + p3)
2, with p2

i = 0, and

s+ t +u = 0. We begin with the following initial choice of MI’s,

f1 = ε2 sTa(s) , f2 =−ε2 uTa(u) , f3 = ε2 t Ta(t) ,

f4 = ε3 sTb(s) , f5 = ε3 st Tc(s, t) f6 =−ε3 suTc(s,u) ,

f7 =−ε4 uTd(s, t) , f8 = ε4 sTd(u, t) , f9 = ε4 t Td(s,u) ,

f10 = ε4 s2
Te(s) , (5.1)

f11 =−ε4 st uT f (s, t)+
1

1+4ε

[

3ε2

4s

(

s2
Ta(s)+u2

Ta(u)+ t2
Ta(t)

)

−
3ε4

s

(

u2
Td(s, t)+ s2

Td(u, t)+ t2
Td(s,u)

)

]

f12 = ε4 st Tg(s, t)−
1

2(1+4ε)

[

3ε2

4u

(

s2
Ta(s)+u2

Ta(u)+ t2
Ta(t)

)

−
3ε4

u

(

u2
Td(s, t)+ s2

Td(u, t)+ t2
Td(s,u)

)

]

(5.2)

where the integrals T ’s correspond to the diagrams in Fig. 4. We notice, that fi with (i = 1, . . . ,9)

are common to the two-loop planar box diagram [9]. The set f of MI’s obeys a system of differential

7
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p12

Ta(s)

p1

p2

Tb(s)

p1

p2

p3

p4

Tc(s, t)

p1

p2

p3

p4

Td(s, t)

p1

p2

Te(s)

p1

p2

p3

p4

T f (s, t)

p1

p2

p3

p4

[(k2 + p1)
2]

Tg(s, t)

Figure 4: MI’s for the two-loop diagram in Fig. 3. All the external momenta depicted are incoming. In the

last integral the loop momenta have to be fixed according to Fig. 3 and a term (k2+ p1)
2 enters the numerator

of its integrand.

equations the variable x, defined as, x =− t
s
, which is linear in ε .

According to the procedure in Section 3, we can build the matrix B0(x) ruling the change of basis

f (ε ,x) = B0(x)g(ε ,x), so that the new MI’s,

gi = fi , 1 ≤ i ≤ 10 ,

g11 =
s

8tu

[

t (9 f1 −6 f2 −3 f3 −8 f6 −12 f8 +36 f9)

+ u(−15 f1 −3 f2 −12 f3 −16 f5 +60 f7 +12 f8 +8 f11 −8 f12)
]

,

g12 =
s

8u
(9 f1 −6 f2 −3 f3 −8 f6 −12 f8 +36 f9)+ f12 , (5.3)

obey the canonical system,

∂xg(ε ,x) = εÂ1(x)g(ε ,x) , Â(x) =
M1

x
+

M2

1− x
, (5.4)

where Mi ,(i = 1,2) are sparse matrix with rational numbers.

The solution of the system can be expressed as Dyson series, as well as Magnus series, in terms

of one-dimensional HPL’s [20]. As long as the planar sub topologies are concerned, one can fix

the boundary conditions using the regularity properties of the integrals in some special kinematical

points. On the other hand, the analyticity structure of the crossed box is more complicated, since

it involves at the same time cuts in all three Mandelstam variables s, t, u. Nevertheless, in this

particular case, the boundaries can be fixed by direct comparison with the results presented in

[17, 18]. The matrices Mi ,(i = 1,2) and the expressions of the transcendentally uniform MI’s

gi ,(i = 1, . . . ,12) can be found in Ref. [10].

6. Conclusions

In this contribution, we elaborated on the method of differential equations for Feynman inte-

grals within the D-dimensional regularization scheme. We exploited the the freedom of choosing a

suitable basis of MI’s to analyze the paradigmatic case of systems of differential equations whose

8
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matrix is linear in the dimensional parameter, ε = (4−D)/2. We show that these systems can

admit a canonical form, where the dependence on ε is factorized from the kinematic variables, as

recently suggested by Henn.

We used Magnus series to obtain the matrix implementing the transformation from the linear

to the canonical form. The solution of the canonical system is obtained by using either Dyson

series or Magnus series. Both series requires multiple integrations which allows one to naturally

express the MI’s in terms of (generalized) polylogarithms.

We recalled the results presented in Ref. [10], where the method was applied to the two-loop

electron form factors in QED and the the two-loop contributions to the massless 2 → 2 scattering.

We would like to conclude this contribution with a series of comments and open questions.

Further investigation is required for clarifying whether the possibility of choosing a set of

master integrals obeying a system that is linear in ε is a general feature or just accidental, and,

eventually, how to find it in a systematic way. In this respect, we think that it might be worth to

consider systems of differential equations for master integrals that are not necessarily all defined

at the same value of space-time dimensions, because regularity in the ε → 0 limit and uniform

transcendentality may be a property of shifted-dimension master integrals, and the shifting amount

could depend on the topology of the diagrams.

Moreover, even in the case a set of MI’s obeying a system of differential equations linear in ε is

found, the convergence of the Magnus series, needed for finding a finite matrix that implements the

transformation to the canonical form, is not guaranted a priori.

Therefore, we can turn the arrow of the implications around, and conjecture that the existence

of a canonical set of MI’s that can be expressed in terms of (generalised) polylogarithms of uniform

transcendentality and obeying a canonical system of differential equations implies the existence of

a (finite) Magnus exponential matrix that rules the transformation of the canonical basis to a basis

obeying a system that is linear in ε .

Nevertheless, it is also known that (generalised) polylogarithms do not exhaust the set of functions

appearing in the evaluation of Feynman integrals, where also elliptic functions do arise. What

does happen in these cases? Does a ε-linear system exist? Can one find a converging Magnus

exponential matrix? Can the convergence of the Magnus exponential capture the ellipticity or the

polylogarithmicity of the MI’s?

Answering to these questions requires definitely further studies and more applications to cases

of increasing complexity, which we plan for the near future.
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