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Abstract. While methods of detecting outliers is frequently implemented by statis-
ticians when analyzing univariate data, identifying outliers in multivariate data pose
challenges that univariate data do not. In this paper, after short reviewing some tools
for univariate outliers detection, the Mahalanobis distance, as a famous multivariate
statistical distances, and its ability to detect multivariate outliers are discussed. As an
application the univariate and multivariate outliers of a real data set has been detected
using R software environment for statistical computing.
Keywords: Mahalanobis distance, multivariate normal distribution, multivariate out-
liers, outlier detection.

1. Introduction

The role of statistical distances when dealing with problems such as hypothesis
testing, goodness of fit tests, classification techniques, clustering analysis, outlier
detection and density estimation methods is of great importance. Using distance
measures (or similarities) enable us to quantify the closeness between two statistical
objects. These objects can be two random variables, two probability distributions,
moment generating functions, an individual sample point and a probability distri-
butions or two individual samples. There exists many statistical distance measures
[38], among them the Mahalanobis distance has the advantage of its ability to detect
multivariate outliers.

Outliers are those data that deviate from global behavior of majority of data.
Outliers or outlying observation have different definition in texts, for example “an
outlier deviates so much from other observations as to arouse suspicions that it was
generated by a different mechanism”, see [12]. Outliers have major influence on the
statistical inference. They increase error variance and reduce the power of statistical
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tests and cause bias estimates that may be of substantive interest [22]. Therefore,
the process of outlier detection is an interesting and important aspect in the data
analysis, see [3] and [5]. Depending on application synonyms are often used for the
outlier detection process, among them, one can mention anomaly detection, devi-
ation detection, exception mining, fault detection in safety critical systems, fraud
detection for credit cards, intrusion detection in cyber security (unauthorized access
in computer networks), misuse detection, noise detection and novelty detection see
[1], [9], [23] and [32].

All proximity-based techniques for identification of outliers such as k-Nearest
Neighbor (k-NN) algorithm calculate the nearest neighbors of a record using a suit-
able distance calculation metric such as Euclidean distance, Mahalanobis distance
or some other measure of dissimilarity. For large data set using the Mahalanobis
distance is computationally more expensive than Euclidean distance as it require to
pass through all variables in data set to calculate the underlying inter-correlation
structure. An iterative Mahalanobis distance type of method for the detection of
outliers in multivariate data has been proposed by [10]. Due to the masking effect,
in which one outlier masks a second outlier, if the second outlier can be considered
as an outlier only by itself, but not in the presence of the first outlier, detecting mul-
tiple outliers is more completed than the case where data consist of a single outlier,
since masking effects might decrease the Mahalanobis distance of an outlier. This
might happen because a small cluster of outliers attracts mean and inflate variance
towards its direction [4]. In such cases using robust estimates of sample mean and
variance, can often improve the performance of the detection procedure, see [24]
and [30].

In this paper, the problems of the univariate and multivariate outlier detection
has been addressed. For univariate outlier detection, the result of applying the
classical visual method based on box-plot and Ven der Loo method [36] on a real
data set has been compared. For multivariate outlier detection, usual and robust
Mahalanobis distances has been used to find the outliers of a real data set using R
software environment for statistical computing.

2. Univariate Outlier Detection

A simple visualization tools, such as scatter plot, box-and-whisker (boxplot),
stem-and-leaf plot, QQ-plot, etc., can be used to discover the outliers. The box
plots, first introduced by [35], are a standardized way of displaying the distribution
of data based on a five number summary (“minimum”, first quartile (Q1), median,
third quartile (Q3), and “maximum”). In general, the box of a box plot shows the
median and quartiles. The box plot rule declares observations as outliers if they lie
outside the interval

Q1 − k(Q1 −Q3), Q3 + k(Q3 −Q1),

the common choices for k is 1.5 for flagging (dubbed) outliers and 3.0 for flagging
outliers, see Figure 2.1, in which the whiskers are shown for k = 1.5. This rule differs
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from standard outlier identification rules, since it is not sample-size dependent,
the probability of declaring outliers when none exist changes with the number of
observations [29]. Moreover, for data coming from a random normal sample of size
75, the probability of labeling at least one outlier is 0.5 [13]. Many other statistical
tests have been used to detect outliers, as discussed in [3].

(a) The Boxplot of jobs income and 5 jobs above
the upper whisker that flagged out as outliers

(b) The empirical density and the corresponding
box plot whiskers. On the x axis, five outliers are
shown that exceed the upper whisker threshold

Fig. 2.1: Univariate outlier detection using the boxplot for job incomes in Prestige
data set

Van der Loo [36] developed two methods to detect outliers in economic data,
when an approximate data distribution is known. In the following, his first method
is applied in order to detect the outliers of “income” variable (average income of
incumbents, dollars, in 1971) from Prestige of Canadian Occupations data set in
“car” package in R software environment [8]. The Prestige data set has 102 rows and
6 columns. This data consists of some measurment related to different occupations.
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According to the Kolmogrov-Smirnov goodness-of fit test, the log-normal dis-
tribution fits well to income data (p-value=0.47), see the left panel of Figure 2.2.
Therefore, the Var der Loo method was applied to detect possible outliers in this
data using the plotting facilities developed in the “extremevalues” package in R

software environment [37].

(a) The empirical distribution of job incomes and
the fitted log-normal distribution

(b) Outlier detected using the first Van der Loo
method, which are indicated by ∗ sign

Fig. 2.2: Model based univariate outlier detection for job incomes in Prestige data
set

As it is shown in the right panel of Figure 2.2, this method detects six outliers
which are located on two sides of data. The Outliers on the left down part of the
Figure are case numbers 53, 63, 68, and the rest are 2, 17, 24, whereas the upper
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outliers on the boxplot are case numbers 2, 17, 24, 25, 26.

The study of outliers in structured situations like regression models are based
on the residuals and has been studied by several authors, see [29] and references
therein. Five widely used test statistics for detecting outliers have been compared
using Monte Carlo method by Balasooriya and Tse [2].

Fig. 2.3: (above) Scatter plot of two simulated samples from bivariate normal distributions,
which show clear outliers out of 0.75 and 0.95 cutoffs corresponding to quantiles of the χ

2(2)
distribution, (below) the box plot of margins of the same data with no points lying outside the
whiskers

3. Multivariate Outliers Detection

Nowadays more and more observed data are multi-dimensional, which increase
the chance of occurring unusual observations. The problem is that a few outliers
is always enough to distort the results of data (by altering the mean performance,
by increasing variability, etc.). Therefore, detecting outliers is a growing concern
in many scientific areas, including but not limited to Psychology [18], Financial
market [6] and Chemometrics [26].

In the field of multivariate statistics, the Mahalanobis distance has a major
application for the detection of outliers [20]. The Mahalanobis distance is defined in
the next section. Mahalanobis distance measures the number of standard deviations
that an observation is from the mean of a distribution. Since outliers do not behave
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as normal as usuall observations at least in one dimension, this measure can be used
to detect outliers. See [14] for a comparison of Mahalanobis distances with other
proximity-based outlier detection techniques.

3.1. The Mahalanobis distance

From geometric point of view, the Euclidean distance between two points is
the shortest possible distance between them. One problem with the Euclidean dis-
tance measure is that it does not take the correlation between highly correlated
variables into account. In this situation, Euclidean distance assigns equal weight to
such variables, and since these variables measure essentially the same characteris-
tic, therefore this single characteristic gets additional weight. In effect, correlated
variables gets excess weight by Euclidean distance, see [16] and [21].

An alternative approach is to scale the contribution of individual variables to
the distance value according to the variability of each variable. This approach is
considered by the Mahalanobis distance, which has been developed as a statistical
measure by PC Mahalanobis, an Indian statistician [19]. The Mahalanobis distance
finds wide applications in the field of multivariate statistics. It differs from Euclidean
distance in this way that it takes into account the correlations between variables.
It is a scale invariant metric and provides a measure of distance between a point
x ∈ Rp generated from a given p−variate (probability) distribution fX(.) and the
mean µ = E(X) of the distribution. Assume fX(.) has finite second order moments
and denote Σ = E(X−µ) be the covariance matrix. Then the Mahalanobis distance
is defined by

(3.1) D(X, µ) =
√

(X− µ)TΣ−1(X− µ).

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces
to the Euclidean distance. For the comparison of these two distances see Figure 3.1,
in which the Euclidean and Mahalanobis distances of points located on the circles
and ellipse are 1 and 2 unit far away from the center of data. The computation has
been done on a data set, that are find under geog.uoregon.edu/GeogR/data/csv/
midwtf2.csv. The observed difference stems from this fact that the Mahalanobis
distance also accounts for the covariance (or correlation) structure of data.

Apart from usual application of the Mahalanobis distance in multivariate analy-
sis techniques such as classification and clustering, discriminant analysis and pattern
analysis, principal component analysis, there exists modern applications, among
them financial applications [33], image processing [39], Neurocomputing [11] and
Physics [31] might be mentioned.
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Fig. 3.1: Schematic comparison of the Mahalanobis (ellipse) and Euclidean (circle) distances
calculated for a data set. The two lines, circles and ellipses, correspond to the Euclidean and the
Mahalanobis distances, of one and two units apart from the center of data

3.2. Multivariate normal distribution

Recall the multivariate normal density function below, in which the parameters
µ and Σ, are the mean and the covariance matrix of the distribution, respectively.

φ(x) =

(

1

2π

)p/2

|Σ|−1/2 exp{−
1

2
(x − µ)′Σ−1(x− µ)},

note that this density function, φ(x), only depends on x through the following
squared Mahalanobis distance in the exponent:

(x− µ)′Σ−1(x− µ).

There are some important facts about this exponent:

• All values of x such that (x−µ)′Σ−1(x−µ) = c for any specified constant value
c have the same value of the density f(x) and thus have equal likelihood. The
paths of these x values yielding a constant height for the density are ellipsoids.
That is, the multivariate normal density is constant on surfaces where the
square of the distance (x− µ)′Σ−1(x− µ) is constant. These paths are called
contours, which can be constructed from the eigenvalues and eigenvectors of
the covariance matrix, meaning that the direction of the ellipse axes are in the
direction of the eigenvalues and the length of the ellipse axes are proportional
to the constant times the eigenvectors [15].

• As the value of (x−µ)′Σ−1(x−µ) increases, the value of the density function
decreases.

• The value of (x − µ)′Σ−1(x − µ) increases as the distance between x and µ

increases.
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(a) The Mahalanobis distance.

(b) The Eucleadn distance

Fig. 3.2: Emperical densities

• The Mahalanobis distance d2 = (x−µ)′Σ−1(x−µ) has a chi-square distribu-
tion with p degrees of freedom, see Figure 3.1.

Suppose that X , is a p-dimensional vector having multivariate normal distribu-
tion, X ∼ Np(µ,Σ), the Mahananobis squared distanceD2(X, µ) is then distributed
as a χ2 random variable with p degrees of freedom. The classical approach of outlier
detection uses the estimates of the Mahalanobis distance, by plugging in multivari-
ate sample mean X̄ and covariance matrix S estimates for unknown mean µ and
covariance matrix Σ, and tags as outlier any observation which has a Mahalanobis
squared distance d2(X, X̄) lying above a predefined quantile of the χ2 distribution
with p degrees of freedom [7].

This method is problematic, because all relies on normality assumption and
the parameters estimates are particularly sensitive to outliers. Therefore, it is im-
portant to consider robust alternatives to these estimators for calculating robust
Mahalanobis distances. The most widely used estimator of this type is the mini-
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mum covariance determinant (MCD) estimator defined in [25] for which also a fast
computing algorithm was constructed [27].

In the next section, a sample data has been subjected to find its multivariate
outliers by calculating the robust version of the Mahalanobis distances using the R

as a modern statistical software for heavy computations involved.

4. Analyzing a Sample Data

In the following, the vector of three variables of Prestige data set are considered
as a multivariate observation. These variables are “education” (average education of
occupational incumbents), “income” (average income of incumbents) and “prestige”
(Pineo-Porter prestige score for occupation). The aim is to detect multivariate
outliers in this data set using robust version of the Mahalanobis distance, the (MCD)
estimator, which has been implemented in “rrcov” package in R [34]. First the
mean vector and usual (classic) covariance matrix of the observation and the robust
version of them are calculated. The results are:

-> Method: Classical Estimator.

Estimate of Location:

education income prestige

10.74 6797.90 46.83

Estimate of Covariance:

education income prestige

education 7.444e+00 6.691e+03 3.991e+01

income 6.691e+03 1.803e+07 5.222e+04

prestige 3.991e+01 5.222e+04 2.960e+02

-> Method: Robust Estimator.

Robust Estimate of Location:

education income prestige

9.97 5833.96 41.64

Robust Estimate of Covariance:

education income prestige

education 7.156e+00 4.355e+03 3.192e+01

income 4.355e+03 9.695e+06 3.923e+04

prestige 3.192e+01 3.923e+04 2.559e+02

Comparing classical and robust estimators of mean vector µ and the covariance
matrix Σ, shows clear differences. These robust estimators are relatively insensitive
to small changes in the bulk of the observations (inliers) or large changes in small
number of observations (outliers).

In two left panels of Figure 4.1, the robust and classical Mahalanobis distances
are shown in parallel. In most right panel of this figure, the distance-distance plot
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defined by [28] is shown, which plots the classical Mahalanobis versus robust dis-
tances and enable us to classify the observations and identify the potential outliers.
The dashed line represents the points for which the robust and classical distances

are equal. The horizontal and vertical lines are drawn at values x = y =
√

χ2
(3,0.975).

Points beyond these lines can be considered as outliers and are identified by their
labels. In all panels, the outliers have large robust distances and are identified by
their labels, for more details see [34].

Looking at the non-robust Mahalanobis distances at right panel of Figure 4.1
flagged out the observation number 2 and 24 as outliers, whereas robust Maha-
lanobis at the same panel flagged out the observation number 2, 7, 24, 25, 26 and
29 as outliers. In other words, applying the robust method enabled us to detect
hidden outliers which has been masked by each other.

(a) Distance plot. (b) Chi-square Q-Q plot.

Fig. 4.1: Multivariate outlier detection using the robust Mahalanobis distances

5. Conclusion

In this paper, the Mahalanobis distance as a multivariate distance and its advan-
tages relative to the Euclidean distance was reviewed. It made clear when dealing
with correlated multivariate data the Mahalanobis distance is more suitable than
the Euclidean distance because it takes the correlation into account. Moreover,
It was shown how the Mahalanobis distances can be used as a tool for identify-
ing multivariate outliers. When calculating the Mahalanobis distances one needs
to estimate the theoretical mean vector and covariance matrix. Estimating these
parameters using their usual empirical counterparts especially when data contain
outliers yields misleading results, since these estimators are affected seriously by
outliers. One reasonable solution is to use robust statistical techniques. There are
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different robust estimates, but distance-based methods, such as MCD are based on
robust estimates of the mean and covariance matrix so that a robust Mahalanobis
distance can be computed for each point. In this paper, the above mentioned meth-
ods have been applied to detect multivariate outliers in a real data set, using R
software environment for statistical computing.
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