
This paper is included in the Proceedings of the
2015 USENIX Annual Technical Conference (USENIC ATC ’15).

July 8–10, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC ’15) is sponsored by USENIX.

Mahimahi: Accurate Record-and-Replay for HTTP
Ravi Netravali, Anirudh Sivaraman, Somak Das, and Ameesh Goyal, MIT CSAIL;

Keith Winstein, Stanford University; James Mickens, Harvard University;
Hari Balakrishnan, MIT CSAIL

https://www.usenix.org/conference/atc15/technical-session/presentation/netravali

USENIX Association 2015 USENIX Annual Technical Conference 417

Mahimahi: Accurate Record-and-Replay for HTTP

Ravi Netravali*, Anirudh Sivaraman*, Somak Das*, Ameesh Goyal*, Keith Winstein†, James Mickens‡, Hari Balakrishnan*

*MIT CSAIL †Stanford University ‡Harvard University
{ravinet, anirudh, somakrdas, ameesh, hari}@csail.mit.edu, keithw@cs.stanford.edu, mickens@eecs.harvard.edu

Abstract
This paper presents Mahimahi, a framework to record

traffic from HTTP-based applications, and later replay it
under emulated network conditions. Mahimahi improves
upon prior record-and-replay frameworks in three ways.
First, it is more accurate because it carefully emulates the
multi-server nature of Web applications, present in 98%
of the Alexa US Top 500 Web pages. Second, it isolates
its own network traffic, allowing multiple Mahimahi in-
stances emulating different networks to run concurrently
without mutual interference. And third, it is designed as
a set of composable shells, providing ease-of-use and ex-
tensibility.

We evaluate Mahimahi by: (1) analyzing the perfor-
mance of HTTP/1.1, SPDY, and QUIC on a corpus of 500
sites, (2) using Mahimahi to understand the reasons why
these protocols are suboptimal, (3) developing Cumu-
lus, a cloud-based browser designed to overcome these
problems, using Mahimahi both to implement Cumulus
by extending one of its shells, and to evaluate it, (4) us-
ing Mahimahi to evaluate HTTP multiplexing protocols
on multiple performance metrics (page load time and
speed index), and (5) describing how others have used
Mahimahi.

1 INTRODUCTION

HTTP is the de facto communication protocol for client-
server applications today [27]. Beyond its widespread
use as an application-layer protocol for loading Web
pages, HTTP is now used for mobile apps [22], video
streaming [14], and instant messaging [19].

It is useful to evaluate the performance of these ap-
plications under controlled experimental conditions. For
example, browser developers may wish to evaluate how
changes to their document object model (DOM) and
JavaScript parsers affect Web page load times, while
network-protocol designers might want to understand the
application-level impact of new multiplexing protocols
like QUIC [30]. Similarly, a mobile app developer may
wish to determine the user-perceived latency [28] for
user interactions over different wireless networks.

Motivated by such questions, we developed
Mahimahi1, a framework to record traffic from ap-
plications that use HTTP, and later replay recorded
traffic under emulated network conditions. Mahimahi
works with any application that uses HTTP or HTTPS.
Application clients (Web browsers, video players, and

1Mahimahi was previously introduced in a demo [23].

apps within mobile-phone emulators) can be run unmod-
ified within Mahimahi. Additionally, Mahimahi’s replay
semantics can be extended to support the server-side
logic of many applications, such as YouTube.

Mahimahi has three notable features that distinguish
it from other record-and-replay tools such as Google’s
web-page-replay [11] and Fiddler [34]:

1. Accuracy: Mahimahi is careful about emulating
the multi-server nature of Web applications. Instead
of responding to all requests from a single server,
Mahimahi creates a separate server for each distinct
server contacted while recording. We find that em-
ulating multiple servers is a key factor in accurately
measuring Web page load times (§4.1).

2. Isolation: Using Linux’s network namespaces [7],
Mahimahi isolates its traffic from the rest of the host
system, allowing multiple instances of its shells to
run in parallel with no mutual interference (§4.2).
Because other tools modify the network configura-
tion of the entire host [11, 34], they cannot provide
this feature.

3. Composability and extensibility: Mahimahi is
structured as a set of UNIX shells, allowing the user
to run unmodified client binaries within each shell.
RecordShell allows a user to record all HTTP traffic
for any process spawned within it. ReplayShell re-
plays recorded content using local servers that em-
ulate the application servers. To emulate network
conditions, Mahimahi includes DelayShell, which
emulates a fixed network propagation delay, and
LinkShell, which emulates both fixed-capacity and
variable-capacity links. These shells can be nested
within one another, allowing the user to flexibly
experiment with many different network configu-
rations. Mahimahi makes it easy to modify these
shells and add new ones; e.g., to record-and-replay
YouTube videos, emulate packet losses, implement
active queue management algorithms, etc. (§4.3).

We used Mahimahi to evaluate Web multiplexing pro-
tocols. We were able to easily extend Mahimahi to sup-
port QUIC, a new protocol in active development at
Google. We compared HTTP/1.1, SPDY [3], and QUIC
to a hypothetical optimal protocol and found that all three
are suboptimal. We then used Mahimahi to understand
the shortcomings of these multiplexing protocols. We
found that each protocol is suboptimal because of the re-
quest serialization caused by source-level object depen-
dencies present in today’s Web pages. Resolving each
dependency requires an RTT between the client and ori-

1

418 2015 USENIX Annual Technical Conference USENIX Association

Configuration HTTP/1.1 SPDY QUIC-toy Cumulus Optimal
1 Mbit/s, 120 ms 8.7, 15.0 8.6, 12.6 7.6, 10.8 6.4, 9.8 5.3, 8.8

14 Mbits/s, 120 ms 4.3, 6.0 3.9, 5.6 3.8, 5.4 2.4, 3.6 1.8, 2.9
25 Mbits/s, 120 ms 4.3, 6.0 3.9, 5.4 3.6, 4.9 2.0, 3.2 1.7, 2.7

Table 1: Median, 75%ile page load times, in seconds, for the Alexa US Top 500 sites for different link rates and the
same minimum RTT (120 ms). Comparing the median page load times, Cumulus is between 18-33% of the hypo-
thetical optimal, outperforming the best of the other schemes (shown in each row in italics) by between 19% to 80%
in these configurations. Moreover, we show later that as RTT grows, the gap from optimal for HTTP/1.1, SPDY and
QUIC grows quickly, whereas Cumulus is a lot closer to optimal.

gin Web servers; Mahimahi allowed us to pinpoint the
problem because we were able to conduct a large number
of emulation experiments under different network condi-
tions quickly.

We used these findings to develop Cumulus, a new
system to improve HTTP application performance, es-
pecially on long-delay paths. Cumulus has two compo-
nents: the “Remote Proxy,” a headless browser that the
user runs on a well-provisioned cloud server, and the
“Local Proxy,” a transparent, caching HTTP proxy that
runs on the user’s computer. These two components co-
operate to move the resolution of object dependencies
closer to origin Web servers, reducing the effective RTT.
Mahimahi’s shell structure allowed us to implement Cu-
mulus with ease by adapting RecordShell to implement
the Local Proxy.

To evaluate Cumulus, we used Mahimahi yet again,
this time on the same large number of network configu-
rations used to understand HTTP/1.1, SPDY, and QUIC.
Our key result is that page load times with Cumulus
do not degrade dramatically with increasing round-trip
times (RTTs), unlike the other multiplexing protocols.
Some representative results are shown in Table 1. We
have also evaluated Cumulus on AT&T’s live cellular
network in Boston, finding that it outperforms existing
Web accelerators such as Opera Turbo [1] and Chrome
Data Compression Proxy [15].

Mahimahi has been used in other projects, including
an analysis of mobile app traffic patterns to compare
single-path and multi-path TCP [13], and an evaluation
of intelligent network selection schemes [12]. Mahimahi
has also been used in Stanford’s graduate networking
course [41] and at Mozilla to understand and improve
networking within browsers. Mahimahi and our experi-
mental data are available under an open source license at
http://mahimahi.mit.edu. Mahimahi has been
queued for inclusion with the Debian distribution.

2 RELATED WORK

This section describes prior work on Web record-and-
replay tools and network emulation frameworks.

2.1 Record-and-replay tools
The most prominent Web page record-and-replay tools
are Google’s web-page-replay [11] and Telerik’s Fid-
dler [34]. web-page-replay uses DNS indirection to in-
tercept HTTP traffic during both record and replay, while
Fiddler adjusts the system-wide proxy settings in the
Windows networking stack. With both tools, all HTTP
requests from a browser are sent to a proxy server that
records the request and forwards it to the correspond-
ing origin server. Responses also pass through the proxy
server and are recorded and sent back to the browser.

Both tools suffer from two shortcomings. First, be-
cause they serve all HTTP responses from a single server,
neither tool preserves the multi-server nature of Web ap-
plications. Consolidating HTTP resources onto a single
server during replay allows browsers to use a single con-
nection to fetch all resources, which is impossible when
resources are on different servers. Mahimahi faithfully
emulates the multi-server nature of Web applications,
leading to more accurate measurements (§4.1).

Second, these tools do not provide isolation: the net-
work conditions that web-page-replay and Fiddler em-
ulate affect all other processes on the host machine.
These include the link rate, link delay, and DNS in-
direction settings for web-page-replay, and the system
proxy address, specified in the Windows networking
stack, for Fiddler. During replay, this lack of isolation
could lead to inaccurate measurements if cross traffic
from other processes reaches the replaying proxy server.
The lack of isolation also precludes multiple indepen-
dent instances of web-page-replay or Fiddler from run-
ning concurrently—a useful feature for expediting ex-
periments, or for experimenting with different applica-
tions concurrently. Mahimahi overcomes these problems
by using Linux’s network namespaces [7].

Other record-and-replay tools such as Time-
lapse/Dolos [8] and WaRR [6] target reproducible
application debugging by capturing program executions
(including user input and activity) and replaying them,
while providing popular debugging abstractions includ-
ing breakpoints. These systems are complementary to
Mahimahi; they can be run within ReplayShell, which

2

USENIX Association 2015 USENIX Annual Technical Conference 419

ensures that served HTTP content, including dynamic
content such as JavaScript, does not vary during replay.

2.2 Emulation Frameworks
Tools like dummynet [10] and netem [20] emulate net-
work conditions including link rate, one-way delay, and
stochastic loss. Mahimahi uses its own network emula-
tion shells, LinkShell and DelayShell. Unlike dummynet
and netem, LinkShell can emulate variable-rate cellu-
lar links, in addition to static link rates, because it runs
over packet-delivery traces. Mahimahi also allows users
to evaluate new in-network algorithms (instead of Drop
Tail FIFO) by modifying the source code of LinkShell. A
similar evaluation using web-page-replay would require
developing a new kernel module for dummynet, a more
complicated task.

Mahimahi is general enough to record and replay any
HTTP client-server application under emulated condi-
tions. It is, however, limited in that it only emulates
one physical client connected to an arbitrary number of
servers. Mahimahi supports a single shared link from the
client to all servers, as well as multi-homed clients (§5.5),
allowing the evaluation of multipath-capable transport
protocols such as MPTCP [25]. Mahimahi cannot emu-
late arbitrary network topologies such as transit-stub [9];
for emulating applications over such topologies, tools
like Mininet [21] are more suitable.

3 MAHIMAHI

Mahimahi is structured as a set of four UNIX shells,
allowing users to run unmodified client binaries within
each shell. Each shell creates a new network names-
pace for itself prior to launching the shell. Quoting from
the man page, “a network namespace is logically an-
other copy of the network stack, with its own routes,
firewall rules, and network devices” [7]. A separate net-
work namespace minimizes disruption to the host ma-
chine during recording, prevents accidental download of
resources over the Internet during replay, and ensures
that the host machine is isolated from all network con-
figuration changes that are required to evaluate an appli-
cation.

RecordShell (§3.1) records all HTTP traffic for sub-
sequent replay. ReplayShell (§3.2) replays previously
recorded HTTP content. DelayShell (§3.3) delays all
packets originating from the shell by a user-specified
amount and LinkShell (§3.4) emulates a network link by
delivering packets according to a user-specified packet-
delivery trace. All components of Mahimahi run on a sin-
gle physical machine (which we call the host machine)
and can be arbitrarily composed with each other. For ex-
ample, to replay recorded content over a cellular network
with a 10 ms minimum RTT, one would run a client ap-

(a) RecordShell (b) ReplayShell

Figure 1: RecordShell has a transparent proxy for HTTP
traffic. ReplayShell handles all HTTP traffic inside a pri-
vate network namespace. Arrows indicate the direction
of HTTP Request and Response traffic.

plication inside DelayShell inside LinkShell inside Re-
playShell.

3.1 RecordShell
RecordShell (Figure 1a) records HTTP data and stores it
on disk in a structured format for subsequent replay. On
startup, RecordShell spawns a man-in-the-middle proxy
on the host machine to store and forward all HTTP
traffic both to and from an application running within
RecordShell. To operate transparently, RecordShell adds
an iptable rule that forwards all TCP traffic from within
RecordShell to the man-in-the-middle proxy.

When an application inside RecordShell attempts to
connect to a server, it connects to the proxy instead. The
proxy then establishes a TCP connection with the ap-
plication, uses the SO ORIGINAL DST socket option to
determine the server’s address for the connection, and
connects to the server on the application’s behalf. An
HTTP parser running at the proxy captures traffic pass-
ing through it to parse HTTP requests and responses
from TCP segments. Once an HTTP request and its cor-
responding response have both been parsed, the proxy
writes them to disk, associating the request with the re-
sponse. At the end of a record session, a recorded direc-
tory consists of a set of files, one for each HTTP request-
response pair seen during that session.

SSL traffic is handled similarly by splitting the SSL
connection and establishing two separate SSL connec-
tions: one between the proxy and the application and an-
other between the proxy and the server. The proxy can
establish a secure connection with the application in two
ways. In the first approach, RecordShell’s proxy uses a
new Root CA, in the same way Fiddler does [35]. Clients
must manually trust this CA once and individual certifi-
cates are signed by this Root CA.

Another approach is for RecordShell’s proxy to use a
self-signed certificate. This approach may trigger warn-

3

420 2015 USENIX Annual Technical Conference USENIX Association

ings within applications that only accept certificates
signed by any one of a list of trusted Certificate Author-
ities (CAs). Most modern browsers allow users to dis-
able these warnings. Certain applications, such as mobile
phone emulators, do not allow these warnings to be dis-
abled; the first approach handles these applications [31].

3.2 ReplayShell
ReplayShell (Figure 1b) also runs on the test machine
and mirrors the server side of Web applications using
content recorded by RecordShell. ReplayShell accurately
emulates the multi-server nature of most Web applica-
tions today by spawning an Apache 2.2.22 Web server
for each distinct IP/port pair seen while recording. Each
server handles HTTPS traffic using Apache’s mod ssl
module and may be configured to speak HTTP/1.1 or
SPDY (using mod spdy).

To operate transparently, ReplayShell binds each
Apache server to the same IP address and port number
as its recorded counterpart. To do so, ReplayShell cre-
ates a separate dummy (virtual) interface for each distinct
server IP. These interfaces can have arbitrary IPs because
they are in a separate network namespace.

All client requests are handled by one of ReplayShell’s
servers, each of which can read all of the previously
recorded content. Each server redirects all incoming re-
quests to a CGI script using Apache’s mod rewrite
module. The CGI script on each server compares each in-
coming HTTP request to the set of all recorded request-
response pairs to locate a matching request and return
the corresponding response. Incoming requests may be
influenced by local state present in the client application
(e.g. time-sensitive query string parameters) and may not
exactly match any recorded request. We handle such re-
quests using a matching heuristic that enforces that some
parts of the request must match exactly, while tolerating
some degree of imperfection in other parts.

We expect the Host and User-Agent header fields,
along with the requested resource (without the query
string), to exactly match the corresponding values in
some stored request. If multiple stored requests match on
these properties, the algorithm selects the request whose
query string has the maximal common substring to the
incoming query string.

3.3 DelayShell
DelayShell emulates a link with a fixed minimum one-
way delay. All packets sent to and from an application
running inside DelayShell are stored in a packet queue.
A separate queue is maintained for packets traversing the
link in each direction. When a packet arrives, it is as-
signed a delivery time, which is the sum of its arrival
time and the user-specified one-way delay. Packets are
released from the queue at their delivery time. This tech-
nique enforces a fixed delay on a per-packet basis.

Figure 2: LinkShell supports live graphing of network us-
age, comparing the link capacity of the input traces (red
shading) to the amount of data a client application at-
tempts to transmit (blue line).

3.4 LinkShell

LinkShell emulates a link using packet-delivery traces.
It emulates both time-varying links such as cellular links
and links with a fixed link rate. When a packet arrives
into the link, it is directly placed into either the uplink
or downlink packet queue. LinkShell is trace-driven and
releases packets from each queue based on the corre-
sponding packet-delivery trace. Each line in the trace
is a packet-delivery opportunity: the time at which an
MTU-sized packet will be delivered in the emulation.2

Accounting is done at the byte-level, and each delivery
opportunity represents the ability to deliver 1500 bytes.
Thus, a single line in the trace file can correspond to
the delivery of several packets whose sizes sum to 1500
bytes. Delivery opportunities are wasted if bytes are un-
available at the instant of the opportunity.

LinkShell supports live graphing of network usage
and per-packet queuing delay, giving near-instantaneous
feedback on the performance of applications and net-
work protocols. Uplink and downlink capacity are cal-
culated using the input packet-delivery traces, while net-
work usage, in each direction, is based on the amount of
data that a client application attempts to transmit or re-
ceive. Per-packet queuing delay is computed as the time
each packet remains in LinkShell’s uplink or downlink
queues.

Figure 2 illustrates the downlink network usage of a
single Web page load of http://www.cnn.com, us-
ing Google Chrome over an emulated Verizon LTE cellu-
lar network with a minimum RTT of 100 ms. As shown,
Web servers try to exceed the link capacity at around 9.3
seconds into the trace.

2For example, a link that can pass one MTU-sized packet per mil-
lisecond (12 Mbits/s) can be represented by a file that contains just “1”
(LinkShell repeats the trace file when it reaches the end).

4

USENIX Association 2015 USENIX Annual Technical Conference 421

4 NOVELTY

Mahimahi introduces three new features in comparison
to existing record-and-replay tools. We describe each of
these in greater detail below.

4.1 Multi-server emulation for greater accuracy
A key component of ReplayShell is that it emulates the
multi-server nature of Web applications. As discussed
in §3, ReplayShell creates a network namespace contain-
ing an Apache server for each distinct server encountered
in a recorded directory. We show through three experi-
ments that emulating this multi-server nature is critical
to the accurate measurement of Web page load times.

A large number of websites today are multi-server. We
measure the number of physical servers used by each site
in the the Alexa US Top 500 [5]. We find that the median
number of servers is 20, the 95%ile is 51, and the 99%ile
is 58. Only 9 of the 500 Web pages (1.8%) we consider
use a single server.

Next, we illustrate the importance of preserving the
multi-server nature of Web applications by comparing
measurements collected using ReplayShell and web-
page-replay to real page load times on the Internet. To
obtain measurements on the Internet, we use Selenium
to automate Google Chrome loading 20 Web pages from
the Alexa US Top 500, 25 times each, inside a LinkShell
of 5 Mbits/s and a DelayShell with a minimum RTT of
100 ms. We chose a minimum RTT of 100 ms to equalize
delays to Web servers contacted while loading each Web
page.3 For a fair comparison, we record copies of each
Web page with RecordShell and web-page-replay imme-
diately following the completion of these Internet mea-
surements; Web content can change frequently, which
can significantly affect page load time. We then replay
each recorded Web page 25 times using ReplayShell, a
modified version of ReplayShell that serves all resources
from a single server, and web-page-replay. With Re-
playShell, we perform each page load inside LinkShell
with a 5 Mbits/s trace and DelayShell with a minimum
RTT of 100 ms, as described above. We emulate these
same network conditions with web-page-replay.

We define the error, per site, as the absolute value of
the percent difference between mean page load times
(over 25 runs) within an emulation environment and on
the Internet. As shown in Figure 3, ReplayShell with
multi-server emulation yields page load times that most
accurately resemble page load times collected on the In-
ternet. The median error is 12.4%, compared to 36.7%
and 20.5% with web-page-replay and single-server Re-
playShell, respectively.4

3The 20 sites used here are all hosted by CDNs in close proximity
with ping times of less than 5 ms.

4We are not certain why single-server ReplayShell is so much more
accurate than web-page-replay.

0

0.25

0.5

0.75

1

0 30 60 90 120 150

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Absolute Value of Relative Percent Error

ReplayShell, multi-server
ReplayShell, single-server

web-page-replay

Figure 3: Preserving a Web page’s multi-server nature
yields measurements that more closely resembles mea-
surements on the Internet.

30 ms 120 ms 300 ms

1 Mbit/s 1.6%, 27.6% 1.7%, 10.8% 2.1%, 9.7%
14 Mbits/s 19.3%, 127.3% 6.2%, 42.4% 3.3%, 20.3%
25 Mbits/s 21.4%, 111.6% 6.3%, 51.8% 2.6%, 15.0%

Table 2: Median and 95%ile difference in page load time
without multi-server emulation.

Finally, we run more exhaustive experiments to show
the effect that multi-server emulation has on Web page
load times across different network conditions. Using
an Amazon EC2 m3.large instance located in the US-
east-1a region and running Ubuntu 13.10, we measure
page load times for each recorded page in the Alexa US
Top 500 when loaded with Google Chrome. We con-
sider 9 different configurations: link rates in {1,14,25}
Mbits/s and RTTs in {30,120,300} ms. We load each
page over each configuration using both ReplayShell
and the modified version of ReplayShell used above that
eliminates the multi-server nature altogether by setting
up one Apache server to respond to all HTTP requests
and resolving all DNS queries to that server alone.

Table 2 shows the median and 95%ile difference in
page load time when multi-server nature is not preserved,
compared to when multi-server nature is preserved. Al-
though the page load times are comparable over a 1
Mbit/s link, the lack of multi-server emulation yields sig-
nificantly worse performance at higher link rates.

4.2 Isolation
By creating a new network namespace for each shell,
Mahimahi eliminates much experimental variability that
results from interfering cross traffic during an experi-
ment. Each namespace is separate from the host ma-
chine’s default namespace and every other namespace
and thus, processes run inside the namespace of a
Mahimahi tool are completely isolated from those run-
ning directly on the host or in other namespaces. As a
result, host machine traffic does not affect the measure-
ments reported by Mahimahi. Similarly, network emu-
lation done by Mahimahi’s tools does not affect traffic
outside of Mahimahi’s network namespaces. This prop-

5

422 2015 USENIX Annual Technical Conference USENIX Association

Machine 1 Machine 2

CNBC 7584 ms +- 120 ms 7612 ms +- 111 ms
wikiHow 4804 ms +- 37 ms 4800 ms +- 37 ms

Table 3: Mean and standard deviation for page load times
across two similarly configured machines.

0

0.25

0.5

0.75

1

0 1 2 3

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Relative Percent Error

DelayShell 0 ms
LinkShell 1000 Mbits/s

Figure 4: DelayShell and LinkShell have a negligible ef-
fect on page load times in ReplayShell.

erty of Mahimahi, along with the fact that its shells can
be arbitrarily nested, enables many different configura-
tions to be simultaneously tested on a host machine, in
complete isolation from one another.

Using distinct network namespaces for each shell also
enables Mahimahi to produce reproducible results while
imposing low overhead on collected measurements.
Reproducibility: To evaluate the reproducibility of
Mahimahi’s measurements, we perform repeated exper-
iments on the same host machines and across different
host machines with similar hardware specifications. We
choose two sites from the Alexa US Top 500 for this
experiment, http://www.cnbc.com/ and http:
//www.wikihow.com/, as they are are at the median
and 95%ile site sizes (1.2 MB and 5.5 MB, respectively).

We use two different Amazon EC2 m3.large instances,
each in the US-east-1a region and running Ubuntu 13.10.
On each machine, we load the CNBC and wikiHow
Web pages 100 times each inside ReplayShell, over a 14
Mbits/s link with a minimum RTT of 120 ms. Table 3
shows a summary of the distribution of page load times
from these experiments. Mean page load times for each
site are less than 0.5% apart across the two machines
suggesting that Mahimahi produces comparable results
across different host machines. Similarly, standard devi-
ations are all within 1.6% of their corresponding means,
implying that Mahimahi produces consistent results on a
single host machine.
Fidelity: Mahimahi’s shells impose low overhead on
collected measurements, even when they are nested
within one another, leading to high fidelity in the results.
We illustrate this property in Figure 4, which shows the
overhead DelayShell and LinkShell impose on page load
time measurements. We first load our recorded copies of
the Alexa US Top 500 sites inside ReplayShell, with-
out LinkShell or DelayShell. For comparison, we then

load the 500 sites inside DelayShell, with 0 ms fixed
per-packet delay, inside ReplayShell. Separately, we load
the 500 sites inside LinkShell, with 1000 Mbits/s uplink
and downlink traces, inside ReplayShell.5 Each of these
experiments was performed on the same Amazon EC2
m3.large instance configured with Ubuntu 13.10 and lo-
cated in the US-east-1a region. We find that the median
per-site errors with DelayShell and LinkShell, relative to
ReplayShell alone, are 0.33% and 0.31%, respectively.

4.3 Composability and extensibility
Unmodified application clients can be run within any of
Mahimahi’s shells. For instance, as described in §5.5, a
mobile device emulator can be run within Mahimahi to
measure mobile app performance. Similarly, to measure
new performance metrics such as the speed index, virtual
machines can be run within Mahimahi’s shells (§5.4).

The default replay algorithm is but one instance of a
server-side HTTP matching algorithm. Mahimahi’s re-
play semantics can be easily extended to support the
server-side logic of many other applications and multi-
plexing protocols; for example, in §5.1.1, we extend Re-
playShell to use QUIC Web servers rather than default
Apache Web servers. It has also been extended to handle
record-and-replay for YouTube videos (§5.5).

In addition to DelayShell and LinkShell, which emu-
late different minimum RTTs and link rates, Mahimahi
can be extended to support other network characteristics.
For example, to emulate different levels of stochastic
packet loss, we created LossShell [24], which probabilis-
tically drops packets stored in LinkShell’s upstream and
downstream queues. Similarly, Mahimahi can be mod-
ified to evaluate in-network algorithms such as queu-
ing disciplines. By default, LinkShell implements a Drop
Tail FIFO queue, but we have extended it to implement
CoDel, an active queue management scheme [32].

Mahimahi could also be used to replay recorded con-
tent to a different physical machine. Consider a scenario
where the application to be evaluated is only available on
Machine M, and a separate Linux Machine, A, is avail-
able. An EthShell could ferry packets from an Ethernet
interface between M and A to a virtual network inter-
face on A. Analogously, a UsbShell could ferry pack-
ets between an Ethernet-over-USB interface connected
to a phone and a virtual interface on A. UsbShell could
be used to run performance regression tests on actual
phones rather than emulators. Neither of these has been
developed yet, but Mahimahi’s design allows these shells
to be nested inside any of Mahimahi’s existing shells. For
instance, to test a mobile phone’s browser over an LTE
link with a 100 ms RTT, we would nest UsbShell inside
DelayShell inside LinkShell inside ReplayShell.

5We chose 1000 Mbits/s to ensure that link capacity was not a lim-
iting factor in page load time.

6

USENIX Association 2015 USENIX Annual Technical Conference 423

5 CASE STUDIES

5.1 Understanding Web Performance
We use Mahimahi to evaluate Web page load times un-
der three multiplexing protocols: HTTP/1.1, SPDY [3],
and QUIC [30], a protocol currently in development at
Google. To put these measurements in context, we com-
pare each protocol with an optimal protocol for each net-
work configuration.

To automate the page load process and measure page
load times, we use Selenium, a widely used browser-
automation tool, along with Chrome Driver version 2.8
and the Web Driver API [38]. We measure page load time
by calculating the time elapsed between the navigation-
Start and loadEventEnd events [38].

In all evaluations, traffic originates from the Web
browser alone. We emulate link rates and minimum
RTTs (§3), but do not emulate competing cross traffic.
For each network configuration, we emulate a buffer size
of 1 bandwidth-delay product and evaluate all sites in the
Alexa US Top 500.

5.1.1 Setup
HTTP/1.1: We evaluate HTTP/1.1 using ReplayShell
running unmodified Apache 2.2.22.

SPDY: To evaluate SPDY, we create SPDYShell, which
enables the mod spdy extension on all Apache servers
within ReplayShell. The SPDY configuration evaluated
here does not include server push because the push pol-
icy is specific to each website and is hard to infer auto-
matically. If push policies were known, however, the CGI
script within ReplayShell’s servers could be modified to
reflect them.

QUIC: QUIC inherits several SPDY features, such as
multiplexing streams onto a single transport-protocol
connection and stream priorities. By using UDP and its
own security instead of TCP and TLS, QUIC overcomes
two drawbacks of SPDY: head-of-line blocking between
streams due to lost packets and the three-way handshake
required to establish a secure connection.

Unlike SPDY, Apache currently has no extensions
for QUIC. We create QUICShell by replacing Apache
within ReplayShell with an adapted version of the QUIC
toy server [29] from the Chromium project (commit
5bb5b95 from May, 2015, available at https://goo.
gl/Jdr8hi). We modify the toy server, which origi-
nally searched for exact URL matches, to use the match-
ing semantics in ReplayShell’s CGI script.

5.1.2 Optimal page load time
We define the optimal page load time for a website as:

minimumRTT+(siteSize/linkRate)+browserTime.

The first term represents the minimum time between
when the first HTTP request is made at the client and the

first byte of the first HTTP response is received by the
client, ignoring processing time at the server.

The second term represents the minimum time to
transfer all bytes belonging to the Web page over a fixed
capacity link. We calculate the site size by counting the
total number of bytes delivered over the emulated link
from the Web servers to the browser between the naviga-
tionStart and loadEventEnd events.

The third term represents the time for the browser to
process all the HTTP responses and render the Web page
(using the definition of “loaded” above). We measure
this as the page load time in ReplayShell alone without
network emulation, emulating an infinite-capacity, zero-
delay link.

5.1.3 Canonical network results
We evaluate each protocol on 110 configurations: link
rates in {0.2,0.3,0.6,1,1.7,2.9,5,8.5,14,25} Mbits/s
and RTTs between 0 ms and 300 ms in steps of 30 ms.
These link rates and RTTs cover the majority of global
network conditions reported by Akamai [4]. We also
perform evaluations over cellular networks using modi-
fied versions of the Verizon and AT&T traces collected
in [40]. For each network configuration, we compare
HTTP/1.1, SPDY, and QUIC (and in the next subsec-
tion, Cumulus) with the optimal page load times defined
above.

Figure 5 shows the distributions of page load times
with each protocol for six of these configurations: 1
Mbit/s and 25 Mbits/s, with RTTs of 30 ms, 120 ms, and
300 ms. We find that the gap from optimal for HTTP/1.1,
SPDY, and QUIC grows quickly with the RTT, and grows
with the link rate (although not as quickly). For example,
on a 1 Mbit/s link with a minimum RTT of 30 ms, the
median page load time for SPDY is 1.08× worse than
optimal. When the minimum RTT increases to 120 ms,
the median SPDY page load time is 1.63× worse than op-
timal, worsening to 2.02× worse than optimal when the
minimum RTT rises to 300 ms. For this RTT, increasing
the link rate from 1 Mbit/s to 25 Mbits/s degrades median
SPDY performance to 4.93× worse than optimal.

5.1.4 Understanding suboptimality
In addition to quantifying the extent of suboptimality
of multiplexing protocols for the Web, the results pre-
sented in this case study corroborate the qualitative find-
ings of many previous measurement studies [26, 37, 39].
We used Mahimahi in conjunction with browser devel-
oper tools to identify the root cause of this suboptimality.
We found that the suboptimal performance of each multi-
plexing protocol is a result of request serialization caused
by source-level dependencies between objects on a Web
page; this problem is exacerbated by small limits on the
number of concurrent connections from the browser, but
persists even if those browser limits are removed.

7

424 2015 USENIX Annual Technical Conference USENIX Association

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

1 Mbit/s link with minimum RTT of 30 ms

SPDY: 1.08x Optimal
Cumulus: 1.05x Optimal

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

1 Mbit/s link with minimum RTT of 120 ms

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

SPDY: 1.63x Optimal
Cumulus: 1.21x Optimal

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

1 Mbit/s link with minimum RTT of 300 ms

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

SPDY: 2.02x Optimal
Cumulus: 1.35x Optimal

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

25 Mbits/s link with minimum RTT of 30 ms

SPDY: 1.15x Optimal
Cumulus: 1.07x Optimal

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

25 Mbits/s link with minimum RTT of 120 ms

SPDY: 2.39x Optimal
Cumulus: 1.22x Optimal

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

0

0.25

0.5

0.75

1

0 5 10 15 20 25

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Page Load Time (s)

25 Mbits/s link with minimum RTT of 300 ms

Optimal
Cumulus

SPDY
QUIC-toy
HTTP/1.1

SPDY: 4.93x Optimal
Cumulus: 1.37x Optimal

Figure 5: The gap between page load times with HTTP/1.1, SPDY, or QUIC and Optimal grows as link rate or mini-
mum RTT increases. Cumulus is introduced in §5.2.

User’s	
Browser

Web	Servers

PhantomJS	loads	page

Load	website

Req1,	Scheme

Req1 Res1 Req2 Res2 Req3 Res3

Req:	HTTP	Request
Res:	HTTP	Response

...

...
Bulk	response

Local	
Proxy	

Remote	
		Proxy

Figure 6: A single page load using Cumulus.

The fundamental issue is that resolving each depen-
dency requires a round-trip communication between the
client and origin Web servers. As a result, the negative
effect of request serialization is more pronounced at high
RTTs (Figure 5). This finding motivated us to develop
Cumulus, a system that uses Mahimahi to improve page
load times on long-delay paths.

5.2 Improving Web performance with Cumulus
Cumulus has two components: the “Remote Proxy,” a
headless browser that the user runs on a well-provisioned
cloud server, and the “Local Proxy,” a transparent,
caching HTTP proxy that runs on the user’s computer.
These two components cooperate to move the resolution
of object dependencies closer to origin Web servers—
reducing the effective RTT—without modifying Web
browsers or servers.

The Remote Proxy listens for new requests from the
Local Proxy. For each incoming request, the Remote
Proxy launches an unmodified RecordShell and runs a

headless browser, PhantomJS [2], to load the specified
URL using the original HTTP headers. Once the page
is loaded, the Remote Proxy packages and compresses
the recorded HTTP request/response pairs into a bulk re-
sponse, which it sends to the Local Proxy.

The Local Proxy is a modified version of RecordShell
that caches HTTP objects rather than storing them in
files. When the user’s browser requests a URL not res-
ident in the Local Proxy’s cache, the Local Proxy for-
wards the request to the Remote Proxy. Upon receiving
a bulk response from the Remote Proxy, the Local Proxy
responds to the user’s browser with the appropriate re-
sponse and caches the remaining objects to handle sub-
sequent browser requests. Figure 6 illustrates how Cu-
mulus loads a single Web page.

5.3 Evaluating Cumulus with Mahimahi
We first evaluate Cumulus over each emulated network
configuration listed in §5.1.3. Page loads with Cumulus
used Google Chrome and a Remote Proxy running on the

8

USENIX Association 2015 USENIX Annual Technical Conference 425

0

1

2

3

0 60 120 180 240 300

R
at

io
 w

ith
 O

pt
im

al

Minimum RTT (ms)

1 Mbit/s link

Cumulus
SPDY

QUIC-toy
HTTP/1.1

0

2

4

6

0 60 120 180 240 300

R
at

io
 w

ith
 O

pt
im

al

Minimum RTT (ms)

14 Mbits/s link

Cumulus
SPDY

QUIC-toy
HTTP/1.1

0

2

4

6

0 60 120 180 240 300

R
at

io
 w

ith
 O

pt
im

al

Minimum RTT (ms)

25 Mbits/s link

Cumulus
SPDY

QUIC-toy
HTTP/1.1

Figure 7: Cumulus’s performance does not degrade dramatically as RTTs increase (at fixed link rates), unlike
HTTP/1.1, SPDY, and QUIC. Each point plots the ratio of median protocol performance to median performance of the
optimal scheme (lower is better).

0

0.25

0.5

0.75

1

0 1 2 3 4 5

C
D

F

Speedup

Cumulus vs. Opera Turbo

Cumulus vs. Chrome Proxy

Cumulus vs. Chrome

Cumulus
better

Figure 8: Evaluating Cumulus on the live AT&T Cellular
Network in Boston.

other side of each emulated link. We find that Cumulus
outperforms SPDY by 1.03–3.60× over these configura-
tions (Figure 5). Figure 7 shows how the ratio between
median page load times with each protocol and the opti-
mal varies as RTTs increase at fixed link rates. We find
that Cumulus is less affected by increases in RTT com-
pared to today’s multiplexing protocols. For example, at
a link rate of 14 Mbits/s and an RTT of 60 ms, Cumulus
is 1.13× worse than optimal while SPDY is 1.44× worse
than optimal. When RTT increases to 180 ms, Cumulus
is 1.39× worse, whereas SPDY is 2.61× worse than op-
timal.

5.3.1 Some live experiments
We also compare the performance of Google Chrome
run inside Cumulus with Chrome, and with Chrome Data
Compression Proxy [15, 16] and Opera Turbo [1], which
are cloud browsers that use proxy servers for compres-
sion. We load each page in the Alexa US Top 500 five
times with each system, rotating among the systems un-
der test to mitigate the effects of network variability. We
define Cumulus’s “speedup” relative to a system as the
ratio of the page load time using that system to the page
load time using Cumulus.

We ran experiments over the live AT&T
LTE/GSM/WCDMA cellular network in Boston using a

0

3

6

9

12

15

0 50 100 150 200 250 300 350 400

S
pe

ed
up

RTT (ms)

Google
TMZ

Cumulus is 4x
faster than
Chrome Proxy

Cumulus
better

Figure 9: Benefits with Cumulus increase as RTT or Web
page complexity increase.

PC laptop tethered to a Samsung Galaxy Note running
Android OS version 4.2.2. Cumulus used a Remote
Proxy running on an Amazon EC2 instance in Virginia.
Cumulus had median speedups of 1.36×, 1.23×, and
1.28× over Chrome, Chrome Data Compression Proxy,
and Opera Turbo, respectively. Figure 8 shows the CDF
of speedups.

5.3.2 Understanding Cumulus’ gains

Cumulus moves dependency resolution to the Remote
Proxy where RTTs to Web servers are lower than from
the client. The benefit of this technique depends on:

1. The RTT between the user and origin Web servers.
2. The complexity of the Web page.
To understand the importance of each factor, we use

Mahimahi’s shell abstraction to load two Web pages in
emulation: TMZ’s homepage with 508 objects and the
Google homepage with only 15 objects. We use De-
layShell to emulate fixed minimum RTTs from 0 ms to
400 ms. For each RTT, we load each page five times with
Chrome Data Compression Proxy—which compresses
objects in-flight, but does not perform dependency res-
olution on the user’s behalf—and Cumulus, which per-
forms dependency resolution and compresses objects in-
flight.

9

426 2015 USENIX Annual Technical Conference USENIX Association

Page loads with Cumulus used a Remote Proxy run-
ning on the other side of the emulated long-delay link.
Speedups for Cumulus relative to Chrome Data Com-
pression Proxy are shown in Figure 9.

We observe two trends:
1. For a given Web page, speedups with Cumulus in-

crease as RTT increases.
2. For a fixed RTT, speedups with Cumulus are larger

for more complex Web pages.
Our results show a 4× speedup relative to Chrome

Data Compression Proxy at an RTT of 100 ms, a typi-
cal RTT for cellular and transcontinental links. This cor-
roborates the well-known intuition that Web page load
times are dominated by network latencies rather than link
rates, and suggests that the combination of remote depen-
dency resolution and object compression helps Cumulus
achieve performance not far from optimal.

5.4 Speed index
All of our measurements thus far have been of page load
time. We now show that it is straightforward to use a
different performance metric. We use Google’s proposed
speed index [17] as an example.

5.4.1 Definition
Page load time may not accurately measure when a page
is usable by the client. For long Web pages, content
“above-the-fold” of the screen is important to retrieve
quickly, but other content may not be. Taking this point
into consideration for measurement is especially relevant
for pages that support infinite scrolling. For example,
Facebook “preloads” wall postings below the user’s cur-
rent location on its page in anticipation of a user scroll.
In such cases, the “onload” event used to measure page
load time would fire long after the page is ready for user
interaction. Speed index is an attempt to address this is-
sue.

Speed index tracks the visual progress of a Web page
in the visible display area. A lower speed index signifies
that the content is rendered more quickly. For example,
a page that immediately paints 90% of its visual content
will receive a lower speed index than a page that progres-
sively paints 90% of its content, even if both pages fire
their onload event at the same time.

Speed index is calculated by measuring the complete-
ness of a page’s display area over time. Completeness is
defined as the pixel-by-pixel difference of a page snap-
shot with the final loaded Web page. Once the entire page
has loaded, the completeness percentage of the page ren-
dering over time is plotted. Speed index is defined as the
area “above-the-curve” (Figure 10a).

5.4.2 Measuring speed index
We calculate speed index using WebPagetest [17], which
records videos of page loads at 10 frames per second

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000

F
ra

ct
io

n
lo

ad
ed

Time (ms)

Fraction of page loaded with time

Speed Index:10475.0

(a) Speed index is the area above the curve of the completeness
of a page load as a function of time.

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
lo

ad
ed

Fraction of page loaded with time

Opt. Page Load Time

Speed Index = Opt. Page Load Time

(b) We define an upper bound on optimal speed index by as-
suming that a page instantaneously jumps from 0% to 100%
completeness at the optimal page load time.

Figure 10: Speed index calculation.

and plots the percentage completeness over time by com-
paring each frame with the final captured frame. To
measure speed index, we create SpeedIndexShell where
we run a private instance of WebPagetest inside Re-
playShell. To automate testing, we use WebPagetest’s
wpt batch.py API [18]. Because WebPagetest runs
only on Windows, we run WebPagetest within a Virtual-
Box Windows virtual machine, inside ReplayShell.

5.4.3 Optimal speed index
Calculating an optimal speed index is difficult. Instead,
we define an upper bound6 on the optimal speed index.
We assume that a site renders in one shot at the opti-
mal page load time; Figure 10b illustrates its implica-
tions on the “optimal” speed index. As shown, the per-
centage completeness of a given Web page is 0% until
the optimal page load time where the percentage com-
pleteness jumps to 100%. As a result, the “area above the
curve,” or optimal speed index, equals the optimal page
load time. There could be better rendering strategies that
more gradually render the page between 0 and the opti-
mal page load time, but such improved characterizations
of the optimal speed index will only further increase the
already large slowdowns (Figure 11) from the optimal
speed index.

5.4.4 Static link results
We measure the speed index for each site in the Alexa US
Top 500 over networks with link rates between 1 Mbit/s
and 25 Mbits/s and a fixed minimum RTT of 120 ms
(Figure 11). We notice similar patterns to those discussed
with page load times: the gap between speed index with
HTTP/1.1 and optimal speed index grows as link rates

6Recall that a lower speed index is better.

10

USENIX Association 2015 USENIX Annual Technical Conference 427

0

0.25

0.5

0.75

1

0 5000 10000 15000 20000 25000

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Speed Index

1 Mbit/s link with minimum RTT of 120 ms

Optimal
HTTP/1.1

HTTP/1.1 is 1.52x
worse than optimal

0

0.25

0.5

0.75

1

0 5000 10000 15000 20000 25000

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Speed Index

14 Mbits/s link with minimum RTT of 120 ms

HTTP/1.1 is 3.35x
worse than optimal

Optimal
HTTP/1.1

0

0.25

0.5

0.75

1

0 5000 10000 15000 20000 25000

C
um

ul
at

iv
e

P
ro

po
rt

io
n

Speed Index

25 Mbits/s link with minimum RTT of 120 ms

Optimal
HTTP/1.1

HTTP/1.1 is 3.63x
worse than optimal

Figure 11: Gap between speed index with HTTP/1.1 and Optimal grows as link rate increases (fixed minimum RTT).

increase; over a 1 Mbit/s link with a 120 ms minimum
RTT, speed index with HTTP/1.1 is 1.52× worse than
optimal at the median, while over a 25 Mbits/s link with
a 120 ms minimum RTT, the median speed index with
HTTP/1.1 is 3.63× worse than optimal.

5.5 External case studies
This section describes external use cases of Mahimahi in
research, educational, and industrial settings.
Mobile app record-and-replay: RecordShell has
been used to characterize mobile app traffic by record-
ing all HTTP traffic to and from mobile apps running in-
side an Android emulator [13]. Using this recorded traf-
fic, they evaluated the performance of mobile apps over
Wi-Fi and LTE networks by running an Android emu-
lator inside ReplayShell to measure the duration of data
transfers for mobile apps over these wireless networks.
The results showed that LTE outperforms Wi-Fi 40% of
the time on flow completion time.
Mobile multi-homing: To emulate mobile multi-
homing with Wi-Fi and LTE, the authors in [12] extended
LinkShell to create MpShell [33]. They then compared
single-path TCP and MPTCP by replaying mobile app
traffic over 20 different emulated network conditions.
Record-and-replay for video streaming: Mahimahi
has been extended to handle record and replay for
YouTube videos [36]. Compared to Web pages, video
replay requires more involved matching logic on the
server side. HTTP requests encode the location (start and
end time) and quality of video chunks requested by the
client’s video player. Both the location and quality at-
tributes can change significantly from run to run, and be-
tween record and replay.
Educational uses: Mahimahi is being used by stu-
dents in Stanford’s graduate networking course [41] to
understand the performance of their networked applica-
tions under controlled conditions. As part of a protocol
design contest conducted in the same course, students
used LinkShell’s live graphing of network usage and per-
packet queuing delay to obtain real-time feedback on the
performance of their congestion-control protocols.

Browser networking: Engineers at Mozilla are using
Mahimahi to improve the speed of Firefox’s network-
ing. Here, Mahimahi is helpful in understanding how im-
provements to link utilization and pipelining of HTTP
requests affect Web performance over various networks.

6 CONCLUSION
Mahimahi is an accurate and flexible record-and-replay
framework for HTTP applications. Mahimahi’s shell-
based design makes it composable and extensible, allow-
ing the evaluation of arbitrary applications and network
protocols. It accurately emulates the multi-server nature
of Web applications during replay, and by isolating its
own traffic, allows several instances to run in parallel
without affecting collected measurements.

We presented several case studies to evaluate
Mahimahi and demonstrate its benefits. These include a
study of HTTP/1.1, SPDY, and QUIC under various em-
ulated network conditions. We used Mahimahi both to
conduct the experiments and to understand the reasons
for the suboptimality of these protocols. We then used
our key finding—that these protocols are suboptimal due
to source-level dependencies in Web pages—to design
Cumulus. Mahimahi was useful in our implementation
of Cumulus, as well as in our experiments to measure its
performance. As round-trip times and link rates increase,
the performance of Cumulus degrades much slower than
previous HTTP multiplexing protocols.

We have released Mahimahi under an open source li-
cense at http://mahimahi.mit.edu.

7 ACKNOWLEDGEMENTS

We thank Amy Ousterhout, Pratiksha Thaker, the ATC
reviewers, and our shepherd, Liuba Shrira, for their help-
ful comments and suggestions. This material is based
upon work supported in part by the National Science
Foundation under Grant No. CNS-1407470. We thank
the members of the MIT Center for Wireless Networks
and Mobile Computing (Wireless@MIT) for their sup-
port.

11

428 2015 USENIX Annual Technical Conference USENIX Association

REFERENCES

[1] Opera Turbo.
http://www.opera.com/turbo.

[2] PhantomJS. http://phantomjs.org/.
[3] SPDY: An experimental protocol for a faster web.

http://www.chromium.org/spdy/
spdy-whitepaper.

[4] Akamai. State of the Internet. http://www.
akamai.com/stateoftheinternet/,
2013.

[5] Alexa. Top sites in the United States.
http://www.alexa.com/topsites/
countries/US.

[6] S. Andrica and G. Candea. WaRR: A tool for
high-fidelity web application record and replay. In
DSN, 2011.

[7] E. W. Biederman. ip-netns.
http://man7.org/linux/man-pages/
man8/ip-netns.8.html.

[8] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst.
Interactive record/replay for web application
debugging. In UIST, 2013.

[9] K. Calvert, M. Doar, and E. Zegura. Modeling
Internet topology. IEEE Communications
Magazine, 35(6):160–163, 1997.

[10] M. Carbone and L. Rizzo. Dummynet revisited.
SIGCOMM CCR, 40(2):12–20, 2010.

[11] Chromium. web-page-replay.
https://github.com/chromium/
web-page-replay.

[12] S. Deng. Intelligent Network Selection and Energy
Reduction for Mobile Devices.
http://people.csail.mit.edu/
shuodeng/papers/thesis.pdf.

[13] S. Deng, R. Netravali, A. Sivaraman, and
H. Balakrishnan. WiFi, LTE, or both? Measuring
multi-homed wireless Internet performance. In
IMC, 2014.

[14] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube
traffic characterization: A view from the edge. In
IMC, 2007.

[15] J. Glowacki. Data compression proxy. https:
//chrome.google.com/webstore/
detail/data-compression-proxy/
ajfiodhbiellfpcjjedhmmmpeeaebmep.

[16] Google. Data compression proxy.
https://developer.chrome.com/
multidevice/data-compression.

[17] Google. Speed Index. https:
//sites.google.com/a/webpagetest.
org/docs/using-webpagetest/
metrics/speed-index.

[18] Google. WebPagetest batch processing APIs.
https:

//sites.google.com/a/webpagetest.
org/docs/advanced-features/
webpagetest-batch-processing-apis.

[19] R. Jennings, E. Nahum, D. Olshefski, D. Saha,
Z.-Y. Shae, and C. Waters. A study of Internet
instant messaging and chat protocols. Network,
IEEE, 20(4):16–21, 2006.

[20] A. Jurgelionis, J. Laulajainen, M. Hirvonen, and
A. Wang. An empirical study of netem network
emulation functionalities. In ICCCN, 2011.

[21] B. Lantz, B. Heller, and N. McKeown. A network
in a laptop: Rapid prototyping for software-defined
networks. In HotNets, 2010.

[22] K. Ma, R. Bartos, S. Bhatia, and R. Nair. Mobile
video delivery with HTTP. Communications
Magazine, IEEE, 49(4):166–175, 2011.

[23] R. Netravali, A. Sivaraman, K. Winstein, S. Das,
A. Goyal, and H. Balakrishnan. Mahimahi: A
lightweight toolkit for reproducible web
measurement (demo). In SIGCOMM, 2014.

[24] R. Netravali, K. J. Winstein, and A. Sivaraman.
LossShell. https://github.com/
ravinet/mahimahi/tree/lossshell.

[25] C. Paasch, S. Barre, et al. Multipath TCP in the
Linux kernel.
http://multipath-tcp.org/.

[26] J. Padhye and H. F. Nielsen. A comparison of
SPDY and HTTP performance. Technical report,
Microsoft, 2012.

[27] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the
narrow waist of the future Internet. In Hotnets,
2010.

[28] L. Ravindranath, J. Padhye, S. Agarwal,
R. Mahajan, I. Obermiller, and S. Shayandeh.
AppInsight: Mobile app performance monitoring
in the wild. In OSDI, 2012.

[29] J. Roskind. Experimenting with QUIC.
http://blog.chromium.org/2013/06/
experimenting-with-quic.html.

[30] J. Roskind. QUIC: Multiplexed stream transport
over UDP. https://docs.google.com/
document/d/1RNHkx_
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/
edit .

[31] N. Rudrappa. Defeat SSL Certificate Validation
for Google Android Applications. Technical
report, McAfee, 2013.

[32] A. Sivaraman, R. Netravali, and K. J. Winstein.
CodelShell.
https://github.com/ravinet/
mahimahi/releases/tag/old/codel.

[33] A. Sivaraman, R. Netravali, and K. J. Winstein.
MPShell. https:
//github.com/ravinet/mahimahi/

12

USENIX Association 2015 USENIX Annual Technical Conference 429

tree/old/mpshell_scripted.
[34] Telerik. Fiddler.

http://www.telerik.com/fiddler.
[35] Telerik. Fiddler documentation.

http://docs.telerik.com/fiddler/
Configure-Fiddler/Tasks/
TrustFiddlerRootCert.

[36] V. Vasiliev, R. Netravali, K. J. Winstein, and
A. Sivaraman. YoutubeShell. https:
//github.com/vasilvv/mahimahi.

[37] X. S. Wang, A. Balasubramanian,
A. Krishnamurthy, and D. Wetherall. How speedy
is SPDY? In NSDI, 2014.

[38] Z. Wang and A. Jain. Navigation timing.

https://dvcs.w3.org/hg/webperf/
raw-file/tip/specs/
NavigationTiming/Overview.html.

[39] G. White, J.-F. Mule, and D. Rice. Analysis of
SPDY and TCP initcwnd.
http://tools.ietf.org/html/
draft-white-httpbis-spdy-analysis-00.

[40] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and
low delay over cellular networks. In NSDI, 2013.

[41] K. J. Winstein. (Your) great ideas for networked
applications. https:
//web.stanford.edu/class/cs344g/.

13

