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If P(x1, . . . , xn) is a polynomial with integer coefficients, the

Mahler measure M(P) of P is defined to be the geometric mean

of jPj over the n-torus Tn. For n = 1, M(P) is an algebraic

integer, but for n > 1, there is reason to believe that M(P)

is usually transcendental. For example, Smyth showed that

log M(1 + x + y) = L0(��3,�1), where ��3 is the odd Dirichlet

character of conductor 3. Here we will describe some exam-

ples for which it appears that log M(P(x, y)) = rL0(E, 0), where E

is an elliptic curve and r is a rational number, often either an

integer or the reciprocal of an integer. Most of the formulas we

discover have been verified numerically to high accuracy but

not rigorously proved.

1. INTRODUCTIONThe aim of this paper is to describe an attemptto understand and generalize a recent formula ofDeninger [1997] by means of systematic numericalexperiment. This conjectural formula,m�x+ 1x + y + 1y + 1� ?= L0(E; 0);gives the value of the logarithmic Mahler measurem(P ) of the Laurent polynomial P = x + 1=x +y+1=y+1 as a rational multiple of L0(E; 0), whereE is the elliptic curve of conductor 15 that is theprojective closure of the curve x+1=x+y+1=y+1 =0, and L(E; s) is the L-function of that curve. Infact, numerically the multiple is exactly 1 to atleast 50 decimal places. As we explain in moredetail later in this introduction, Deninger was ledto his formula by the Bloch{Beilinson conjectureson special values of L-series.Our goal is to try to determine conditions un-der which such a formula should hold for a poly-nomial P (x; y) with integer coe�cients. An op-timistic guess, given Deninger's result, would be
c A K Peters, Ltd.

1058-6458/1998 $0.50 per page

Experimental Mathematics 7:1, page 37



38 Experimental Mathematics, Vol. 7 (1998), No. 1that a formula of this type should hold if the curveP (x; y) = 0 is an elliptic curve. However, for thepolynomial P (x; y) = y2 � x3 � k, we havem(y2 � x3 � k) = m(y + x+ k) = log jkjif jkj � 2, andm(y2 � x3 � 1) = m(y + x+ 1) = L0(��3;�1);by results of Smyth [1981b]. Clearly, these expres-sions have nothing to do with the L-series of thecurve E : y2 = x3 + k:But surely, for a formula of this type, shouldn't itbe necessary for the curve P (x; y) = 0 be an ellipticcurve, or at least a singular model of such a curve?Again the answer is no. There are polynomials forwhich the curve Z = fP (x; y) = 0g is of genus 2and yet m(P ) is (numerically) a rational multipleof L0(E; 0) for a certain elliptic curve E. (But inthis case, E does have something to do with Z; itis a factor of the Jacobian variety of Z).The main news of the paper is that there aremany in�nite families of polynomials Pk(x; y) forwhich m(Pk) does seem to be given by a rationalmultiple of an appropriate L0(Ek; 0), at least tohigh numerical accuracy. Furthermore, FernandoRodr��guez Villegas [1996] has used the theory ofmodular forms to show that, for some of these fam-ilies, the formulas discovered would follow from theconjectures of Bloch and Beilinson. For certain val-ues of the parameter k, the curves Ek have complexmultiplication and in these cases, the formulas canbe proved rigorously.At least in the case where Z has genus 1, wenow have a good idea about some of the conditionsthat P must satisfy in order that such a formula betrue. One of the conditions, (A), requires that the\faces" PF of P (de�ned in terms of the Newtonpolygon of P ) should be cyclotomic, that is, satisfym(PF ) = 0. (It may be that the condition can berelaxed to require only that M(PF ) = exp(m(PF ))should be an integer for each face, but only if the

\interior" coe�cients of P satisfy further arith-metic conditions). The apparent necessity of thiscondition was deduced from the examination ofmany examples and initially we had no theoret-ical understanding of why it should be requiredexcept that it seemed to be an \arithmetic" condi-tion. Since the �rst version of this paper was cir-culated in preprint form, Rodr��guez Villegas andHubert Bornhorn have independently shown that(A) is a natural condition from the point of view ofK-theory, as we discuss below. We have opted toleave the statement of the conjectures in the formin which they were originally circulated but haveadded a short section at the end of the paper toindicate some of the progress that has been madeon the conjectures since then.The second condition, (B), is an analytic con-dition on the algebraic function y(x) de�ned byP (x; y) = 0. For polynomials that do not vanishon the torus, it is expressible as a geometric con-dition (G) that has to do with how the zero set ofP (x; y), thought of as a surface in C 2, \links" thetorus T2 = fjxj = 1g � fjyj = 1g.We must emphasize that, even when P (x; y) = 0is a model of an elliptic curve E, m(P ) is a propertyof the polynomial P (x; y) and not of the curve E.This will be evident in the many examples in Sec-tion 2, but we borrow an example from that sectionto make this clear now. Consider the polynomialP = y2�6xy+y�x3, so P (x; y) = 0 is a (minimal)model for the elliptic curve E : y2 � 6xy + y = x3.We will �nd thatm(P ) = 3L0(E; 0):If we write y = Y + 3x, we obtain Q = Y 2 + Y �x3 � 9x2 + 3x, so Q = 0 is another minimal modelfor E; but now,m(Q) = log�9 +p932 �:If we now write x = X � 3 to obtain R = Y 2 +Y �X3+30X�63, we obtain the reduced minimal



Boyd: Mahler’s Measure and Special Values of L-functions 39model for E, and recognize it as the curve 27A4of conductor 27 in [Cremona 1992]. Nowm(R) = log 63:In terms of our general setup, the di�erence be-tween P , Q and R is that in P , the \interior" term6xy is dominant, while in Q the face �x3 � 9x2 +3x is dominant, and in R, the face �63 is domi-nant. The point here is that the changes of variablethat preserve m(P ), basically those of the formP (�xayb;�xcyd), are quite di�erent from the bi-rational mappings that preserve the isomorphismclass of the curve E. This is really what makesDeninger's result so striking.The organization of this paper is as follows. Webegin with some basic facts about Mahler's mea-sure of polynomials in several variables. We thendiscuss some examples due to Smyth, Ray, and theauthor, of polynomials in two variables for whichthe measure can be expressed in terms of the valueof Dirichlet L-series evaluated at 2. All these poly-nomials are linear in one of the variables or a prod-uct of such polynomials. Next we give some exam-ples discovered by Mossingho� and the author ofpolynomials in two variables that have the smallestknown measure for such polynomials. These poly-nomials are quadratic in one of the variables. Wethen discuss Deninger's formula mentioned above,which expresses the measure of one of the latterpolynomials in terms of the L-series of an ellipticcurve evaluated at 2. This formula has not yetbeen proved but was derived on the basis of a con-jecture of Bloch and Beilinson and has been veri�ednumerically to many decimal places. We �nish thesection by describing some early experiments thatproduced a number of similar formulas and sug-gested the systematic experiments to be discussedin the remainder of the paper.In Section 2, we begin with a general discus-sion of the conditions (A), (B) and (G) mentionedabove. We then specialize to a discussion of fami-lies of polynomials of the formPk(x; y) = A(x)y2 + (B(x) + kx)y + C(x);

for which the zero set Zk = fPk(x; y) = 0g is(generically) of genus 1. We experimentally deter-mine conditions that seem to insure that the mea-sure of Pk can be expressed in terms of L-series ofelliptic curves evaluated at 2. We discuss the re-cent work of Rodr��guez Villegas [1996] that showsthat the measure of such a family can in manycases be expressed as a nonholomorphic modularform. This has enabled him to prove some of theformulas discovered numerically in case the ellipticcurve in question has complex multiplication.In Section 3, we discuss some similar families ofpolynomials of the formPk(x; y) = A(x)y2 + (B(x) + kE(x))y + C(x)for which Zk is (generically) of genus 2. If in ad-dition the polynomial Pk(x; y) is reciprocal thenthe Jacobian J(Zk) splits into the product of twoelliptic curves Ek � Fk. We give two classes of ex-amples depending on the choice of E(x). In the�rst, the measure seems to be a rational multipleof L0(Ek; 0) for all values of k for which the dis-criminant is nonzero. The value of L0(Fk; 0) doesnot appear to be related to the measure. For thesecond class, the measure is only given by such aformula for half of the values of k. In all cases,the results have been veri�ed numerically to highaccuracy but not proved.In Section 4, we discuss some of the formulasinvolving Dirichlet characters that occur as degen-erate cases of the examples discussed in Sections2 and 3. They provide a small amount of furtherevidence for Chinburg's conjecture.Section 5 concluded the �rst version of this pa-per. In Section 6, we mention briey some resultsthat have been found since the �rst version of thispaper was circulated as a preprint.Tables summarizing some of our computationalresults are interspersed with the discussion at therelevant places. More complete tables can be ob-tained by anonymous ftp; see the section ElectronicAvailability on page 79.
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1A. Mahler’s MeasureIf P (x1; : : : ; xn) is a polynomial with complex co-e�cients, then the logarithmic Mahler measure ofP is de�ned bym(P ) =Z 10 � � �Z 10 log ��P (e(t1); : : : ; e(tn))�� dt1 � � � dtn;
(1–1)where e(t) = exp(2�it). The Mahler measure ofP is then de�ned as M(P ) = exp(m(P )). ThusM(P ) is the geometric mean of jP j over the n-torus. This was introduced by Mahler [1962] in or-der to give a simple proof of the \Gel'fond{Mahlerinequality". In this paper it will be more conve-nient to deal directly withm(P ) rather thanM(P ).For n = 1, if P (x) = a0Qdj=1(x � �j), Jensen'sformula shows thatm(P (x)) = log ja0j+ dXj=1 log+ j�j j; (1–2)where log+ v = �max(log v; 0) if v > 0,0 if v = 0.For polynomials with integer coe�cients, clearlym(P ) � 0 with m(P ) = 0 only if P is monic andhas all its zeros inside the unit circle, and henceis a product of a monomial xa and a cyclotomicpolynomial, by Kronecker's theorem.Our interest in the Mahler measure of severalvariable polynomials arose in connection with aquestion of Lehmer concerning the Mahler measureof single variable polynomials [Boyd 1981b]. Wewill briey describe this since it explains why wehad numerically computed many examples of poly-nomials with m(P (x; y)) small and why our ini-tial experiments concentrated on reciprocal poly-nomials. The main focus of this paper, however, ison explicit formulas for measures and most of thepolynomials we consider do not have particularlysmall measure.Lehmer [1933] noted that m(P (x)) measures thegrowth rate of the sequence �n = Qdj=1(�nj � 1),

and asked whether m(P ) can be arbitrarily smallbut positive for P (x) 2 Z[x]. The smallest valuehe was able to �nd wasm(x10+ x9�x7� x6�x5� x4�x3+ x+1)= log(1:17628081 : : :) = :16235761 : : : : (1–3)This still stands as the smallest known positivevalue of m(P (x)), in spite of extensive computa-tions [Boyd 1980; 1989; Mossingho� 1995; � 1998].In connection with Lehmer's question, de�nition(1{1) is the natural generalization of m(P ) fromone-variable polynomials to n-variable polynomi-als. This follows from the following limit formula[Boyd 1981b], and its generalizations to n variablesproved in [Boyd 1981a; Lawton 1983].
Theorem. As N !1, m(P (x; xN ))! m(P (x; y)).These limit theorems enable one to extend manyresults proved for one variable to many variables.For example, Smyth [1971] proved that if P (x) is anonreciprocal polynomial with integer coe�cientsthenm(P )�m(x3�x�1)= log �0= log(1:32471795 : : :)= :28119957 : : : : (1–4)A one-variable polynomial is said to be recipro-cal if its coe�cients form a palindromic sequence,that is, if xdP (1=x) = P (x) for some integer d.Otherwise the polynomial is nonreciprocal. (Noticethat Lehmer's polynomial in (1{3) is reciprocal). Apolynomial P in n variables is reciprocal ifP (x1; : : : ; xn)P (1=x1; : : : ; 1=xn)is a monomial xb11 � � � xbnn , and nonreciprocal other-wise. Using the limit theorems, Smyth's theoremextends immediately to m(P (x1; : : : ; xn)) � log �0for nonreciprocal P .In [Boyd 1981a], we used this method to char-acterize the P (x1; : : : ; xn) for which m(P ) = 0 asproducts of cyclotomic polynomials in monomials,that is, �(xb11 � � � xbnn ), where the � are cyclotomic.Smyth [1981a] then gave a more direct proof of thisresult.



Boyd: Mahler’s Measure and Special Values of L-functions 41In addition to their role as limit points of them(P (x)), measures of polynomials in several vari-ables have an intrinsic interest in ergodic theory,according to a theorem of Lind, Schmidt and Ward[Lind et al. 1990; Schmidt 1995], which proves thatm(P (x1; : : : ; xn)) is the entropy of a certain Zn-action on TZn . The measure m(P (x1; : : : ; xn)) alsooccurs in the de�nition of the canonical height ofhypersurfaces in toric varieties [Maillot 1997].
1B. Explicit Formulas Involving Dirichlet L-SeriesThe following formula of Smyth, proved in an Ap-pendix of [Boyd 1981b], was the inspiration formost subsequent investigations into special valuesof m(P (x)) for polynomials in many variables:m(1 + x+ y) = 3p34� L(��3; 2): (1–5)Here ��f (n) = ��fn � is the real odd Dirichlet char-acter of conductor f , soL(��3; 2) = 1� 122 + 142 � 152 + � � � :Ray [1987] observed that (1{4) is given a nicerappearance if one uses the functional equation forL(��3; s): m(1 + x+ y) = L0(��3;�1): (1–6)The proof of (1{5) is worth noting here. Since1+x+ y is a linear function of y, Jensen's formulaapplied to one of the integrals in (1{1) shows thatm(1 + x+ y) = m(1� x+ y)= 12� Z 2�0 log+ jeit � 1j dt= 1� Z 2�=30 log jeit � 1j dt:Thusm(1+x+y) is given by a special value of theClausen integral [Lewin 1981]Cl2(�) = �Z �0 log jeit � 1j dt = 1Xn=1 sin(n�)n2 ;and the result follows.

A similar computation applies to many polyno-mials P (x; y) = A(x)y+B(x), if A(x) and B(x) arecyclotomic and if the solutions of jA(x)j = jB(x)jon jxj = 1 are roots of unity. For example,m(1+x+y�xy) = 2� L(��4; 2) = L0(��4;�1);
(1–7)where L0(��4; 2) = 1� 132 + 152 � � � � = Gis Catalan's constant,m(1 + x+ x2 + y) = 23L0(��4;�1); (1–8)m(1 + x+ y + x2y) = 32L0(��3;�1): (1–9)The expressions L0(��f ;�1) occur so often inthese computations that we will writedf = L0(��f ;�1) = f 3=24� L(��f ; 2):Chinburg [Ray 1987, p. 697] conjectured that,given any odd Dirichlet character ��f(n), thereshould be a polynomial with integer coe�cientsPf (x; y) for which df=m(Pf ) is a rational number.His conjecture was apparently based on consider-ations from K-theory, but the paper cited by Rayhas not been published. Ray was able to constructpolynomials Pf (x; y) for which m(Pf ) = rfdf forcertain rationals rf for f = 3, 4, 7, 8, 20, and 24.For f = 7 his proof required him to prove some newmultivariable identities for dilogarithms. (Formu-las for the Pf are given explicitly in Section 4 forf = 7, 8, 20, and 24.)The following formulas of Smyth [1981b] for themeasure of certain polynomials of the form P (x+y)are of interest since they involve a combination ofterms of di�erent \weights":m((x+ y)2 + 2) = 12 log 2 + d4 (1–10)m((x+ y)2 + 3) = 23 log 3 + 43d3: (1–11)



42 Experimental Mathematics, Vol. 7 (1998), No. 1They are really generalizations of his result (1{6),being equivalent to formulas for m(x+y+p2) andm(x+ y +p3).Recently Maillot and Cassaigne [Maillot 1997]have derived a formula for m(a0 + a1x + a2y) forarbitrary complex aj . If ja0j; ja1j and ja2j are thelengths of the sides of a planar triangle oppositethe angles �0, �1, �2, thenm(a0+a1x+a2y) = �0� log ja0j+ �1� log ja1j+ �2� log ja2j+ 1�D� ja1jja0jei�2�;where D is the Bloch{Wigner dilogarithm, D(z) =Im(li2(z)+log jzj log(1�z)): In the alternative case,m(a0 + a1x+ a2y) = logmax(ja0j; ja1j; ja2j):In this paper, motivated by a formula of Deninger[1997], whose discovery we describe below, we areinterested in an analogous question for L-functionsof elliptic curves. Here, the counterpart to df =f 3=2L(��f ; 2)=(4�) = L0(��f ;�1) isbE = NL(E; 2)=(2�)2 = L0(E; 0);where N is the conductor of the elliptic curve E,and where the second equation is only valid if E isa modular curve (see below). We are interested inobtaining polynomials PE(x; y) 2 Z[x; y] for whichbE=m(PE) is a rational number. We will give somemotivation below for expecting such formulas toexist, at least for some E. We are not ready toconjecture that such a polynomial should exist forevery elliptic curve E over the rationals but we domake a conjecture about one sort of polynomial forwhich we expect such a formula to exist. It will beconvenient to adopt the following terminology: fora polynomial P (x; y), r a rational number, and can algebraic integer, we will say that a formula ofthe form m(P ) = r log jcj, m(P ) = rL0(�f ;�1) orm(P ) = rL0(E; 0) is of type C, D or E, respectively.(The letters come from logarithmiC, Dirichlet andElliptic. The use of L for logarithmic might suggestinstead L-series.) Formulas like (1{10) and (1{11)will be said to be of type CD. We will see some

formulas of type CE in Section 2 but we have notyet encountered formulas of type DE or CDE forirreducible P . (See Section 6 for an update on thisremark). Of course, it is not di�cult to constructformulas of mixed type for reducible P .Our main interest here is in formulas of type Eand we have not systematically studied Chinburg'sconjecture about formulas of type D. However, incertain degenerate cases the families of polynomialswe have studied produce formulas of type D. Fromthese, we have examples (Equations (4{2){(4{8) onpage 76) apparently giving d15, d39 and d55, andsimpler examples than Ray's for d7 and d24, so thisprovides a small amount of additional evidence forChinburg's conjecture. It must be emphasized thatthese formulas have only been veri�ed numericallyand are not yet proved.
1C. Mahler’s Measure and Elliptic CurvesThe examples (1{6){(1{11) are nonreciprocal poly-nomials and so, by the extension of Smyth's theo-rem mentioned above, have m(P ) � log �0. In ournumerical studies of Lehmer's conjecture, Moss-ingho� [1995; � 1998] and the author [Boyd 1977;1980; 1989] have discovered a number of reciprocalpolynomials with fairly small measure, and in par-ticular those shown in the box on the next page,which are the only known limit points of Mahler'smeasure smaller than log �0 = :28119957 : : : . Theexamples (1{12), (1{13), and (1{15) are mentionedin [Boyd 1980; 1981b], and (1{14) was recentlyfound by Mossingho� [1995]. All were found bysearching for patterns in extensive tables of mea-sures of one-variable polynomials.The polynomials have been written in the givenform in order to point out that they are quad-ratic in y. By multiplication by monomials and bychanges of variable of the form P (�xayb;�xcyd),which do not a�ect m(P ), one may obtain a vari-ety of more symmetric presentations; for example,x+1=x+ y+1=y+1 or (x+1=x)(y+1=y) + 1 forthe polynomial in (1{13).The computation of the values of m(P (x; y)) isa matter of numerical integration. Since one can



Boyd: Mahler’s Measure and Special Values of L-functions 43m1 = m((x+ 1)y2 + (x2 + x+ 1)y + x(x+ 1)) = 0:22748122 : : : (1–12)m2 = m(y2 + (x2 + x+ 1)y + x2) = 0:25133043 : : : (1–13)m3 = m((x+ 1)y2 + (x4 � x2 + 1)y + x3(x+ 1)) = 0:26933864 : : : (1–14)m4 = m((x2 + x+ 1)y2 + (x4 + x3 + x2 + x+ 1)y + x2(x2 + x+ 1)) = 0:27436329 : : : (1–15)Some reciprocal polynomials with small measure.use Jensen's formula (1{2) to take care of one ofthe integrals, the computation reduces to a single-variable numerical integration. In fact, if P (x; y)does not vanish on the torus T2, the resulting in-tegrand is a smooth periodic function for whicheven the trapezoidal rule produces accurate resultsas is well known to numerical analysts and easilyproved by expressing the error in terms of Fouriercoe�cients [Hamming 1962, p. 284]. When P (x; y)vanishes on the torus, the integrand will have sin-gularities but these are not di�cult to handle, asexplained below.For example, if P = x + 1=x + y + 1=y + 1, letx = exp(it) and treat P (x; y) as a polynomial in yto see thatjP (x; y)j = jy2 + y(2 cos t+ 1) + 1j= j(y � y1(t))(y � y2(t))j;where y1(t) = �b�(b2�1)1=2, writing b(t) = cos t+1=2. Thus m(P ) = 1� Z �0 log+ jy1(t)j dt:Since the product of the roots is 1, we will havejy1(t)j > 1 > jy2(t)j exactly when the roots arereal and unequal, that is, when cos t > 1=2, sojtj < �=3. Thusm2 = m�x+ 1x + y + 1y + 1�= 1� Z �=30 log(b+pb2 � 1) dt; (1–16)which can now be integrated numerically. (Mostintegrals mentioned in this paper were computed

using either the intnum procedure of PARI [Batut,Bernardi, Cohen et Olivier 1995], when P does notvanish on the torus, or the numerical integrationroutine of Maple version V, release 3, otherwise.The latter handles logarithmic singularities quitewell, but occasionally has di�culty with squareroot singularities occuring at an endpoint t1 of aninterval, such as at t = �=3 in (1{16). In this casethe change of variable v = jcos(t)� cos(t1)j1=2 wassu�cient to make the integral easily tractable.)Obviously one would like to have a formula morelike (1{5) for the integrals in (1{12){(1{15). Den-inger [1997] recently showed that there is a connec-tion between m(P ) and higher K-theory providedP (x1; : : : ; xn) does not vanish on Tn. Moreover,under this condition m(P ) is a Deligne period ofa certain mixed motive. We will say a few morewords about the meaning of Deninger's result atthe end of this section.Deninger's result does not apply directly to anyof the examples above since in each case P (x; y)vanishes on T2, but even in this case Deninger hasbeen able to show, under some extra assumptions,that m(P (x; y))�m(P (x; 0)) can be given a coho-mological interpretation. Using this he was able toevaluate m2 of (1{13) as an Eisenstein{Kroneckerseries of a certain elliptic curve, and then assum-ing a conjecture of Beilinson, to conjecture thatone should havem�x+ 1x + y + 1y + 1� = r 15(2�)2L(E; 2)= rL0(E; 0); (1–17)where E is the elliptic curve of conductor 15 given



44 Experimental Mathematics, Vol. 7 (1998), No. 1by x + 1=x + y + 1=y + 1 = 0, and r is a rationalnumber unspeci�ed by Beilinson's conjecture. Us-ing a 20 decimal place value of m2, which had beencomputed earlier using Maple, and using PARI tocompute L(E; 2), we found thatr = 1:00000000000000000000;and later thatr = 1:00000000000000000000000000000000000000000000000000;so presumablym�x+ 1x + y + 1y + 1� ?= L0(E; 0): (1–18)Here, and in the rest of this paper, the notationA ?= B, read as \A is conjectured to be equal toB", will mean that A and B are equal to at least25 decimal places (or PARI precision, which is bydefault 28 decimal places).An elliptic curve over Q is a smooth cubic curvethat has a rational point [Cassels 1991; Silverman1986]. For the purpose of this exposition, we canthink of an elliptic curve as given by an equationE : y2 = h(x); (1–19)where h(x) is a monic cubic polynomial with inte-ger coe�cients and with distinct roots. If Np is thenumber of solutions of (1{19) modulo the prime pthen let ap = p+ 1� (Np + 1). Associated with Eis its conductor, an integer N that is the productto various powers of those primes p for which Emod p has multiple points. Using the local dataap, one constructs the L-function [Silverman 1986;Cohen 1993, p. 382]:L(E; s) =Yp-N(1�app�s+p1�2s)�1YpjN(1�app�s)�1=Xn=1 anns ;where the coe�cients an are obtained by formallyexpanding the in�nite product. It can be shownthat the series converges absolutely if Re(s) > 32 .

The widely believed Shimura{Taniyama{Weilconjecture says that all elliptic curves over Q aremodular. That is, if L(E; s) = P1n=1 ann�s, andif q = exp(2�iz) then f(z) = P1n=1 anqn is a cuspform for the modular group �0(n). This has re-cently been proved for semistable elliptic curves,that is, those for which N is square-free [Wiles1995; Taylor andWiles 1995], and for elliptic curvesover Q with semistable reduction at 3 and 5 [Di-amond 1996]. If E is modular and if one de�nes�(s) = N s=2(2�)�s�(s)L(E; s), then � extends toan entire function of s that satis�es the functionalequation �(2� s) = "�(s); (1–20)where " = �1 depends on E. Since �(s) has asimple pole at s = 0, it follows that L(E; 0) = 0and (1{20) gives�(2) = N(2�)2L(E; 2) = "�(0) = "L0(E; 0):For example, the curve E that occurs in (1{18)is modular: the cusp form in question isf(z) = 1Xn=1 anqn= q 1Yn=1(1�qn)(1�q3n)(1�q5n)(1�q15n);
(1–21)where q = exp(2�iz) [Ligozat 1975]. Thus the pre-sumed identity (1{18) is a completely explicit for-mula:Z 2�0 Z 2�0 log(1+2 cos(s)+2 cos(t)) ds dt ?= 15 1Xn=1 ann2 ;
(1–22)with the an given by (1{21). It is a challenge to�nd a proof of (1{22) that Euler would have un-derstood.Since the series L(E; s) converges absolutely atthe point s = 2, which occurs in the formulas weconsider, it might be thought that modularity doesnot play an important role here, and that we are



Boyd: Mahler’s Measure and Special Values of L-functions 45really just using L0(E; 0) as an abbreviation for"NL(E; 2)=(2�)2 . However, the seriesP1n=1 ann�2converges so slowly that it would require on theorder of 1056 terms to achieve the accuracy we de-mand here. On the other hand, if E is assumed tobe modular then L(E; 2) can be computed to highaccuracy using the method of [Buhler et al. 1985].This is implemented in PARI with a variation thatallows one to determine the (usually unknown) signof the functional equation [Cohen 1993, p. 406].
1D. Some Early ExperimentsGiven (1{17), it was natural to compute L0(E; 0)for other curves with small conductor as listed inthe tables of [Cremona 1992] and to see if any ofthese appeared among the small values of m(P )previously computed. Note that L(E; s) dependsonly on the isogeny class of E so can be speci-�ed by indicating the conductor N and the labelof the isogeny class as in [Cremona 1992]. Forexample, for conductor 37 there are two isogenyclasses, which Cremona labels A and B. For thesewe will write L0(E; 0) = b37A and L0(E; 0) = b37B,respectively. If there is only one isogeny class (asfor N = 15) or if N is beyond the limit of Cre-mona's tables, we may write bN . (A Weierstrassequation for the curve will always be speci�ed inthese cases).There are two conductors smaller than 15; theyare 14 and 11. We �nd from PARI thatb14 = 0:2274812230123511078949823146;which looks suspiciously like the value of m1 in(1{12). Computing m1 to 28 decimal places usingMaple, we �nd thatm1 = 0:2274812230123511078949823145;so we feel con�dent in predicting thatm((x+1)y2+(x2+x+1)y+(x2+x)) ?= b14: (1–23)Continuing with N = 11, we �nd thatb11 = 0:1521471417259180494862272969;

so exp(b11) = 1:16433154 : : : < 1:17628081 : : : ;where the latter is Lehmer's number (1{3), thesmallest known value of Mahler's measure.The existence of a polynomial withm(P (x; y)) =b11 would thus provide an in�nite set of counterex-amples to the conjecture that Lehmer's number isthe smallest Mahler measure. There is no partic-ular reason to believe that there will be any poly-nomial with m(P (x; y)) = b11. We have, however,constructed some examples withm(P (x; y)) ?= rb11with rational r. Indeed in all our examples, r is aninteger:m(y2 + (x2 + 2x� 1)y + x3) ?= 5b11; (1–24)m((x+ 1)y2 + (x2 + 4x+ 2)y + (x+ 1)2) ?= 7b11;
(1–25)m((x�1)2y2+(x3+7x2+7x+1)y+x(x�1)2) ?=13b11:
(1–26)The order of discovery of these examples was op-posite to the order in which they are listed. Theyare discussed on pages 66, 59, and 70, repectively.Continuing on in the same vein, we computed alist of 41 values of L0(E; 0) using PARI and com-pared this with a list of 18 small measures we hadpreviously computed. In this way, we recognized:m((x+1)y2+(x2�x+1)y+(x2+x)) ?= b30; (1–27)m((x+1)y2+(x2+1)y+(x2+x)) ?= 12b36; (1–28)m((x2+x+1)y2+xy+(x2+x+1)) ?= 112b105; (1–29)m((x2+x+1)y2+(x2+x)y+(x3+x2+x)) ?= 13b34:
(1–30)It was clear at this point that a more systematicstudy was needed. Observe that (1{23), (1{27)and (1{28) are all members of the following oneparameter family of polynomials:Pk(x; y) = (x+ 1)y2 + (x2 + kx+ 1)y + (x2 + x):
(1–31)



46 Experimental Mathematics, Vol. 7 (1998), No. 1This suggested a study ofm(Pk) for this family andfor similar families related to the other polynomialslisted above, e.g.Pk(x; y) = y2 + (x2 + kx+ 1)y + x2: (1–32)Part of the motivation was that, for su�cientlylarge k, such polynomials do not vanish on thetorus T2, so the theory from [Deninger 1997] worksmore smoothly. Since, for either (1{31) or (1{32),or any of the other families we study, we havem(Pk) � log jkj as jkj ! 1, it is clear that we arenot directly seeking answers to Lehmer's question.Our goal is to see if m(P ) satis�es a formula oftype E for all members of such a family. First,one must determine which is the appropriate can-didate for E in each case. In Deninger's derivationof (1{17) E is the projective closure of the curveZ = fP (x; y) = 0g. This is the natural candi-date for E in case Z is an elliptic curve, as it is(generically) for the families in (1{31) and (1{32).However, for the example (1{30) Z has genus 2,and for (1{29) Z is of genus 1 but it is not obvi-ous that it is elliptic since it may have no rationalpoint. Given the cohomological nature of Denin-ger's theory, it is clear that E must be related toJ(Z), the Jacobian of Z [Cassels 1991, p. 95; Poo-nen 1996]. In the case of families of curves of genus1, E = J(Z). For the curve (1{30), J(Z) ' E�F ,where E and F are elliptic curves of conductors 34and 17, respectively. For reasons as yet unknown,m(P ) picks out the curve E while ignoring F .It should be pointed out that, before [Deninger1997], there was no particular reason to expect geo-metric aspects of the curve Z to play a role in a for-mula for m(P ). After all, in the formula (1{6), thecurve Z = f1+x+y = 0g is just the projective line.The quantity L0(��3;�1) appears in (1{6) becauseof the way Z intersects the torus T2. This can beseen in Deninger's discussion of Smyth's examples(1{10) and (1{11) [Deninger 1997]. Conversely, forany positive integers m and n,m(ym � xn � 2) = m(x+ y + 2) = log 2;

but the curves ym = xn+2 can have any genus onewishes. At the beginning of Section 2 we discusssome of the properties that seem to be necessary ifm(P (x; y)) is to be expressible as a formula of typeE or type CE. These were discovered by systematicexperiments in directions suggested by the work ofDeninger [1997] and Rodr��guez Villegas [1996].Deninger's work depends on the theory of higherregulators. The notion of a higher regulator isa generalization of the classical Dirichlet regula-tor thought of as a homomorphism r of the unitgroup of an algebraic number �eld into the prod-uct of a suitable number of copies of the reals; forbackground see, for example, [Beilinson 1980; 1984;Bloch and Grayson 1986; Deninger and Scholl 1991;Deninger and Wingberg 1988; Mestre and Schap-pacher 1991; Nekov�a�r 1994; Rolshausen 1996].The determinant R = det(r) (the classical regu-lator) appears in the classical Dirichlet class num-ber formula. Bloch de�ned a regulator r for ellipticcurves E as a map from the K-group K2(E) intoa suitable cohomology group and conjectured thatits determinant was given by a rational multiple ofL0(E; 0), a fact that he proved for curves havingcomplex multiplication. Beilinson [1980] then gavea di�erent treatment of this case.For elliptic curves, Bloch and Beilinson showedhow to express values of this regulator in terms ofEisenstein{Kronecker series, that is, series of theform Im(�)X�2�� 6=0 �(�)�2�� ;where the sum is over the lattice � = Z+�Z � C ofperiods of E, where a fundamental parallelogram� has area �A and where�(�) = exp((���� ���)=A);for some � 2 C (that is, a character of the compactgroup C =� ' E).Calculations by Bloch and Grayson [1986] haveshown the necessity for certain \integrality condi-tions" in formulating the Bloch{Beilinson conjec-



Boyd: Mahler’s Measure and Special Values of L-functions 47tures. These conditions arise since the Q vectorspace of Eisenstein{Kronecker series attached totorsion points of an elliptic curve may have dimen-sion greater than 1, as the experiments in [Blochand Grayson 1986] suggest. These conditions wereincorporated into [Beilinson 1984] where Beilinsonformulated a generalization of his regulator as amap from \motivic cohomology" to Deligne coho-mology and again formulated a conjecture aboutthe relationship of det(r) to special values of L-functions. All of the above is very clearly explainedin [Nekov�a�r 1994]. The recent thesis of Rolshausen[1996] contains a useful summary of this theory andsome interesting numerical experiments.The Beilinson conjectures were reformulated interms of mixed motives by Scholl [1994]. The De-ligne periods [1979] of the mixed motiveM are realnumbers obtained by integrating certain di�eren-tial forms over topological cycles. One then canform a matrix of Deligne periods in much the sameway as one forms the matrix of Abel{Jacobi peri-ods in the classical theory of complex projectivecurves [Gri�ths and Harris 1978, p. 228]. Undersuitable conditions on M, the determinant c+(M)of the matrix of Deligne periods is predicted to berelated to an L-value. One of Deninger's results[1997] is that m(P ) is a Deligne period if P doesnot vanish on the torus. In this case the mixedmotive in question sits in the cohomology of thecomplement of the zero set of P and the cycle inquestion is the torus Tn with its usual orientation.So, in some sense m(P ) measures the \linking" ofthe zero set of P with the �xed n-torus Tn.Notice that m(P ) is only one element of a ma-trix whose determinant is conjectured to be a ra-tional multiple of a special value of the L-functionof the motive. Thus one would only expect for-mulas of the type m(P ) = rL0(E; 0) if this matrixis one-dimensional. However, the genus 2 exam-ples of Section 3 occur in a case where the matrixis at least 2 � 2. It is interesting that Beilinson[1984, p. 2057] raises the question of whether theindividual entries in this matrix and not only thedeterminant could be determined by values of L-

functions. The examples of Section 3 perhaps havesome relationship to this question.Even assuming that one could reduce the ques-tion of whether m(P ) = rL0(E; 0) to the conjec-tures of Bloch and Beilinson, these conjectures ex-press no opinion about the value of the rationalnumber, except that r 6= 0. Even a proof of theseconjectures would not reduce the question to oneof computation unless the proof were to give an ex-plicit estimate on the size of the denominator of r.However, Bloch and Kato [1990] have formulated amore complete theory about Tamagawa numbers ofmotives that presumably would predict the exactvalue of r. Our experience with many thousandsof examples suggests that when the conductor ofthe curve E is su�ciently large 1=r is an integer.It would be extremely interesting to see if the com-putational results we have obtained could be pre-dicted from the Bloch{Kato conjectures.
2. FAMILIES OF CURVES OF GENUS 1In this section and the next, we consider familiesof polynomials of the formP (x; y) = Pk(x; y) = A(x)y2 +Bk(x)y +C(x);

(2–1)where Bk(x) depends linearly on the parameter k.We will write m(Pk) = mk. We denote the curvefPk(x; y) = 0g by Zk. By writing Y = 2A(x)y +Bk(x), we see that Zk is birationally equivalent tothe hyperelliptic equationY 2 = Dk(x) = Bk(x)2 � 4A(x)C(x): (2–2)In this section we take Bk(x) = B(x) + kx, soP (x; y) = Pk(x; y) = A(x)y2+(B(x)+kx)y+C(x);
(2–3)where the degrees of A(x), B(x) and C(x) are eachat most 2. In particular, deg(Dk) � 4, and henceZk is generically of genus 1.The way in which the parameter k enters thepolynomial Pk(x; y) is signi�gant if one hopes toobtain a formula of the form m(Pk) = rkL0(Ek; 0)



48 Experimental Mathematics, Vol. 7 (1998), No. 1for some rational rk. For example, if one considersthe family of polynomials y2 � x3 � k, thenm(y2 � x3 � k) = m(y + x+ k) = log jkj;if jkj � 2; (2–4)[Smyth 1981b]. Thus m(y2 � x3 � k) has no rela-tionship with the L-function of the elliptic curveEk : y2 = x3 + k. Notice that, in this case, if wetake jxj = 1 and consider y2 = x3 + k as a quad-ratic in y, then both roots of the quadratic lie injyj > 1. Hence applying Jensen's formula to eval-uate the integral over y one obtainsm(y2 � x3 � k) = Zjxj=1 log jkj dx2�ix = log jkj:A similar calculation applies to any P (x; y) havingthe property that for jxj = 1, all roots of P (x; y) =0 lie in jyj > 1 (or equally well, if all roots lie injyj < 1). The measures of such polynomials thushave no relationship to the L-function of the curvefP (x; y) = 0g.We can generalize this observation by introduc-ing the Newton polytope (or exponent polytope)of P (x; y) as in [Smyth 1981a], where here we donot assume P to be of the form (2{1). The Newtonpolygon N(P ) of P is the convex hull in R 2 of theset of lattice points (i; j) for which the monomialxiyj appears as a term in P (x; y). A face F ofN(P ) is the intersection of N(P ) with a supportline to N(P ) and a face PF of P is the sum of themonomials making up P over all lattice points inF . For example, for the P = Pk of (1{31), N(P )is a hexagon. There are six one-dimensional faces,namely x2+x, x+y, y2+y, y2+xy2, xy2+x2y andx2+x2y, and six zero-dimensional faces, namely x,x2, x2y, xy2, y2 and y. Notice that each of thesefaces has m(PF ) = 0. On the other hand, for theexample considered in (2{4), the Newton polygonis a triangle, and the faces y2� k, �x3� k and �kall have measure log jkj.As shown in [Smyth 1981a], given a face PFof P , there is a change of variable of the formx = um1vn1 , y = um2vn2 with m1n2 6= m2n1,

so that PF (x; y) is of the form uavbQF (u), (thatis, a polynomial in one variable), and so that ifP (x; y) = Q(u; v) is considered as a polynomialin v then the highest degree term has coe�cientQF (u). Now suppose that we consider polynomi-als P (x; y) for which k is the coe�cient of a sin-gle term in P . If this term appears in a face Fof P , then by the above change of variable, thisterm appears in QF (u). For su�ciently large jkj,Rouch�e's theorem shows that, for juj = 1, all ze-ros of Q(u; v) considered as a polynomial in v lieinside the unit circle, and thus m(Q) = m(QF ) byJensen's formula, so m(Q) is the logarithm of analgebraic integer. Under such a change of variable,m(P ) = m(Q) so the formula for m(P ) is of typeC. Thus, the only way to obtain a formula of typeE for large k for such a family Pk is to have k bethe coe�cient of a term in the interior of N(P ).This partially explains why k occurs where it doesin (2{3).There is a condition also expressible in terms ofthe Newton polytope that appears to be necessaryfor a formula of pure type E to hold for any P ,namely
(A) all faces of P must satisfy m(PF ) = 0.In other words, we conjecture that, for any P ,if m(P ) = rL0(E; 0) for some rational r and el-liptic curve E, then P must satisfy condition (A).Our limited experiments suggest that a necessarybut not su�cient condition for a formula of typeCE to hold is that the measure of each face of Pmust be the logarithm of a rational integer. So itappears that the condition (A) is an \arithmetic"condition, perhaps related to the integrality con-ditions discovered by Bloch and Grayson [1986] inthe formulation of Bloch's conjecture. 1A second ingredient of our conjecture is an ana-lytic condition (B). We �rst present a special case1Since this paragraph was �rst written, the nature of the con-dition (A) has been clari�ed, as explained in Section 6. It isbest regarded as an algebraic condition and is not related to theBloch{Grayson conditions. Presumably our assumption that theparameter k is an integer is connected with these latter conditions.



Boyd: Mahler’s Measure and Special Values of L-functions 49where the condition reduces to a more easily un-derstood \geometric" condition (G). Let us ignorethe parameter k and simply consider a polynomialP (x; y) = A(x)y2 + B(x)y + C(x), quadratic in yand let D(x) = B(x)2� 4A(x)C(x). Let y1(x) andy2(x) be the two roots of P (x; y) = 0 that is, thetwo branches of the algebraic function y(x) de�nedby P (x; y) = 0. If P does not vanish on the torusT2 = fjxj = 1g � fjyj = 1g, then we say that Psatis�es the condition (G) if
(G)(i) exactly one of the roots y1(x) lies strictly out-side the circle jyj = 1 for all jxj = 1, and
(G)(ii) exactly two of the roots of D(x) lie strictlyinside jxj = 1.Notice that (G) obviously holds if P is a recipro-cal polynomial that does not vanish on the torus.We regard (G) as a description of the way the setfP (x; y) = 0g, regarded as a surface in C 2, linksthe torus T2.
Proposition. Let P (x; y) = A(x)y2 + B(x)y + C(x),and suppose that the degree of D(x) = B(x)2 �4A(x)C(x) is 3 or 4. Suppose that P does not van-ish on the torus. If P does not satisfy condition(G) then m(P ) satis�es a formula of type C .
Proof. Since P does not vanish on the torus nei-ther of the roots y1(x) or y2(x) vanish on jyj = 1,and since they are continuous functions of x, wesee that if �(x) denotes the number of j for whichjyj(x)j < 1, then �(x) = � is independent of x. Ifcondition G(i) does not hold then � = 0 or 2. If� = 2 thenZjyj=1 log jP (x; y)j dy2�iy = log jA(x)y1(x)y2(x)j= log jC(x)j;by Jensen's formula, so m(P (x; y)) = m(C(x)) isa formula of type C, that is, m(P ) is the loga-rithm of an algebraic number. Similarly, if � = 0,m(P (x; y)) = m(A(x)), a formula of type C.

If � = 1, assume that jy1(x)j > 1 > jy2(x)j, andnow Jensen's formula givesm(P (x; y)) = m(A(x)) + Zjxj=1 log jy1(x)j dx2�ix :
(2–5)Each yj(x) has poles at some of the zeros of A(x)and zeros at some of the zeros of C(x). So we canwrite A(x) = A1(x)A2(x) and C(x) = C1(x)C2(x)so that Yj(x) = Aj(x)yj(x)=Cj(x) has no zeros orpoles. Then we may write (2{5) in the formm(P (x; y)) = m(A2(x)C1(x))+Zjxj=1 log jY1(x)j dx2�ix: (2–6)Now, assuming � = 1, consider �, the numberof roots of D(x) in jxj < 1. These are the branchpoints of the yj(x). We add a branch point at1 ifdeg(D) = 3. First observe that there are no rootsof D(x) on jxj = 1 since at a branch point we havey1(x) = y2(x), contradicting jy1(x)j > 1 > jy2(x)j.We claim �rst that � must be even. Otherwise,if we introduce branch cuts between two pairs ofroots then one of these cuts must cross the circlejxj = 1. But, by the implicit function theorem,Y1(x) and Y2(x) are holomorphic in a neighbour-hood of jxj = 1 sincePy(x; y) = 2A(x)y +B(x) = Y =pD(x);which is nonzero on jxj = 1. Thus a branch cutcannot cross jxj = 1 since a circuit of jxj = 1 cross-ing this branch cut would interchange y1 and y2,again contradicting jy1(x)j > 1 > jy2(x)j for alljxj = 1.Thus � 2 f0; 2; 4g. If (G)(ii) does not hold then� = 0 or 4. If � = 0, then there are no branchpoints in jxj � 1, so Y1(x) is holomorphic in jxj � 1and hence log jY1(x)j is harmonic there. But then(2{6) shows that m(P ) = log jY1(0)j, a formulaof type C. The case � = 4 reduces to the case� = 0 by considering the reciprocal polynomialP �(x; y) = xaybP (1=x; 1=y).



50 Experimental Mathematics, Vol. 7 (1998), No. 1Thus, if P (x; y) doesn't vanish on the torus andcondition (G) does not hold then m(P ) is given bya formula of type C. �For polynomials of the type considered in the Prop-osition, it thus follows that condition (G) is neces-sary for formulas of type D or E or formulas ofmixed type.Now we turn to the formulation of our condition(B) for general polynomials. This condition can begleaned from the proof of the Proposition above.We will formulate this condition under the extraassumption that m(A) = m(C) = 0. Note thatthis is implied by condition (A) since A(x)y2 andC(x) are faces of P (x; y). Since m(A) = m(C) = 0implies that A(x) and C(x) have all their zeros onjxj = 1, equation (2{5) shows that if (G) holds thenm(P ) is expressible as the integral over the circlejxj = 1 of a function y1(x) that is meromorphic ina neighbourhood of jxj � 1 with the exception ofa branch cut  between the two branch points injxj < 1. All poles of y1(x) lie on jxj = 1. Thatis, y1(x) is a branch of y(x), the algebraic functionde�ned by P (x; y) = 0. This suggests applyingGreen's formulaZ@
�u@v@n � v @u@n� ds = Z Z
 �u�v � v�u) dA;where ds and dA denote elements of arclength andarea, to the region 
 with boundary jxj = 1 and ,where u = log jy1(x)j and v = log jxj. Since both uand v are harmonic in 
 and v = 0 on jxj = 1, wesee that this expresses the integral in (2{5) as anintegral of the form! = 12� �log jyj d log jxj � log jxj d log jyj�along both sides of the branch cut  in oppositedirections (briey, \around the branch cut ").We believe that this integral should be a ra-tional multiple of L0(E; 0), or perhaps L0(�;�1),provided some arithmetic conditions hold. Thisseems to be a reasonable guess based on an anal-ogy with similar integrals that appear in [Beilinson

1980; 1984] and in the derivation of (1{17) foundin [Deninger 1997]. Thus we can generalize (G) bysimply requiring that
(B) Let P (x; y) be a polynomial and let y(x) be thealgebraic function de�ned by P (x; y) = 0 Then(B) holds if m(P (x; y)) is expressible as a ra-tional multiple of the integral of a branch of !around a branch cut between a pair of branchpoints of y(x).For example, if P (x; y) = A(x)y2 + B(x)y + C(x)is a reciprocal polynomial of the sort consideredin the Proposition but allowed to vanish on thetorus, then the zeros of D(x) are symmetric withrespect to the unit circle and there may be 2 or4 branch points on jxj = 1. We assume m(A) =m(C) = 0. By considering the sign of the realnumber x�2D(x) on jxj = 1, we see that if thereare two branch points a and �a on jxj = 1 then, as inthe derivation of (1{16), m(P ) is expressed as theintegral of log jy1(x)j over the circle jxj = 1 betweenthe branch points a and �a. If we take a branchcut along the circle between a and �a and regardR �aa log jy1j as the integral along the outside of thecut, then along the inside of the cut, the integral isR a�a � log jy1j|exactly the same, since crossing thecut changes the sign of x�2D(x) and hence changesy1 to the other root y2 of P (x; y) = 0, which hasjy2j = 1=jy1j. Thus m(P ) is half the integral of !around the branch cut. So (B) holds here. If thereare 4 branch points on jxj = 1 then (B) wouldnot hold but we have no examples of this type topresent.In some cases, it may be possible to expressm(P ) as a sum of integrals over di�erent branchcuts. Then it seems possible that one could obtaina formula involving a sum of terms of the formL0(E; 0) and L0(�;�1). The only example we havethat resembles this situation is (3{12), which ap-pears in Section 3B; but in that example, the inte-gral can be expressed as an integral around a singlebranch cut.It seems that conditions (A) and (B) are nec-essary for a formula of type E (or D) to hold for



Boyd: Mahler’s Measure and Special Values of L-functions 51m(P ). Of course, if P (x; y) = 0 is not of genus1, then we must assume that E is a factor of theJacobian of the curve. However these conditionsare not su�cient to insure that m(P ) = rL0(E; 0),even in the case where P (x; y) = 0 is of genus 1, aswe see by the example (4{4). This is a polynomialP3(x; y) for which P3(x; y) = 0 is a curve of genus1 but m(P3) = 16d15, a formula of type D. In theexamples (4{2), (4{5), (4{7) and (4{8), we have asimilar situation. However, we feel there is ampleevidence for the following more modest conjecture.
Conjecture. Let P (x; y) = A(x)y2 + B(x)y + C(x),and suppose that the degree of D(x) = B(x)2 �4A(x)C(x) is 3 or 4. We conjecture that ifP (x; y) = A(x)y2 +B(x)y + C(x)is a polynomial with integer coe�cients that satis-�es conditions (A) and (B) and for which the equa-tion P (x; y) = 0 de�nes an elliptic curve E, thenm(P ) should be a rational multiple of L0(E; 0). IfP (x; y) = 0 is a rational curve then m(P ) shouldsatisfy a formula of type D .Now we consider how this applies to families ofpolynomials of the form (2{3). As in the discuss-sion in [Rodr��guez Villegas 1996], let K denotethe set of k for which Pk(x; y) vanishes on thetorus. Thus K is the range of (A(x)y2 + B(x)y +C(x))=(�xy) for (x; y) 2 T2 and thus is a compactsubset of C . If Pk(x; y) is a reciprocal polynomialthen it is easy to see that K is a subset of the reals.In the complement G = C nK, neither root yj(x)lies on the circle jyj = 1 for any jxj = 1 and bycontinuity in k, �k = � is constant on each con-nected component of G. In those components forwhich � = 1, as above, we see that Dk(x) does notvanish on jxj = 1 and that �k = � is independentof k and satis�es � 2 f0; 2; 4g.We claim that � = 1 and � = 2 on the un-bounded component G1 of G. For, if jkj is suf-�ciently large, and jxj = 1, then the term kxy inPk(x; y) is dominant and hence by Rouch�e's theo-rem, exactly one of the two roots yj(x) will lie in

jyj < 1, so � = 1. Similarly, the term k2x2 is dom-inant in Dk(x) for su�ciently large jkj and hence� = 2. By continuity, this holds for all k 2 G1.That is, Pk satis�es condition (G) for all k 2 G1.There may, of course, be other components of G inwhich Pk satis�es (G), but we have not run into anysuch example. We will see an example on page 62(the family B), where G has a bounded componentin which (G)(i) but not (G)(ii) holds.We thus conjecture that for polynomials Pk ofthe form (2{3) satisfying condition (A), a formulaof type E holds for all integer k 2 G1 and that aformula of type E or D (if the discriminant van-ishes) holds for all integer k 2 @G1. In particular,for reciprocal polynomials since �G1 = C , we areconjecturing that a formula of type E or D holdsfor all integer k. This formulation of the conjecturein terms of the set K has been strongly inuencedby conversations with Rodr��guez Villegas about hismethod.An additional conjecture, based simply on em-pirical evidence, is that 1=rk = L0(Ek; 0)=mk is aninteger for all su�ciently large jkj.In the early part of this study, our computa-tions concentrated on families of reciprocal poly-nomials. This was natural, given the motivatingexamples (1{27){(1{32). In addition, a few exper-iments with nonreciprocal polynomials P (x; y) forwhich P (x; y) = 0 is elliptic had failed to produceformulas of the type E (or CE or CDE). Rodr��guezVillegas explained the likely reason for this to me interms of the setK that he introduced in [Rodr��guezVillegas 1996].In the cases that his method is able to handle,he shows that m(Pk) is given by a modular formfor k 2 G1 and then extends this by continuityto �G1. Since for reciprocal polynomials, K � Rso �G = �G1 = C , and hence we might expect suchformulas to hold for all k, provided some arithmeticcondition on k holds, e.g. that k be an integer orperhaps that k2 be an integer.On the other hand, for nonreciprocal polynomi-als, K has nonempty interior and there is no reasonto expect formulas of type E to hold for k 2 int(K),



52 Experimental Mathematics, Vol. 7 (1998), No. 1even if k is an integer. And, as discussed above, itis only in the unbounded component G1 that wecan have any reason to expect a formula of typeE. By continuity, this should extend to @G1, theouter boundary of K.In the genus 2 examples presented in Section 3,it seems that conditions (A) and (B) are both nec-essary. Of course, one also needs the condition thatthe Jacobian of the curve split into the product oftwo elliptic curves. We expect that the fact thatm(P ) picks out just one of these curves can beexplained by a change of variable in the integralbetween branch points that (B) requires but we donot yet have a convincing demonstration of this.It seems that if (A) is not satis�ed but that themeasure of each face of P is the logarithm of a ra-tional integer, then m(P ) may satisfy a formulaof type CE but only if the coe�cients of P inthe interior of the Newton polygon are divisibleby a certain integer related to the measures of thefaces. We discuss some examples of this startingon page 61, but we do not have enough examplesto make an educated guess about the correct for-mulation of the divisibilty condition.We now turn to the discussion of some of theexamples that led to the formulation of these con-jectures.
2A. Families of Reciprocal Polynomials, Genus 1We begin the discussion with some families of re-ciprocal polynomials suggested by the examples wefound in our initial exploratory experiments.We begin with the family (1{32), Pk(x; y) = y2+(x2+ kx+1)y+ x2. We have mk = m(Pk) = m�k,since Pk(�x; y) = P�k(x; y), so it is only necessaryto study k � 0. The curve Pk = 0 has discriminantk2(k� 4)(k+4) so Zk is elliptic for k 6= 0;�4; 4. AWeierstrass form isEk : y2 = x3 + (k2 � 8)x2 + 16x: (2–7)Computing mk and L0(Ek; 0) for k � 100 to 28decimal places we �nd that, for k 6= 0; 4, we havemk ?= rkL0(Ek; 0) for a rational rk that is either

an integer or the reciprocal of an integer. The re-sults of this computation for 1 � k � 40 appear inTable 1. (The coe�cients in the last �ve columnsrefer to the reduced minimal model, which satis-�es a1; a3 2 f0; 1g and a2 2 f�1; 0; 1g, and henceuniquely identi�es Ek up to isomorphism over Q[Cremona 1992, p. 46]. The name \Family 1.3" isexplained on page 56.)From the table we see that m1 ?= b15, m5 ?= 6b15and m16 ?= 11b15, which suggests some nonobviousidentities such asM�x+ 1x + y+ 1y +5� ?=M�x+ 1x + y+ 1y +1�6:Note that there are 8 nonisomorphic curves overQ with conductor 15 [Cremona 1992], all in a singleisogeny class, so the curves E1, E5, E16 are isoge-nous, but they are not isomorphic as can be seenfrom the last column of Table 1.The largest conductor encountered in this rangeis N = 911121 = 3 � 31 � 97 � 101 for k = 97. Wecomputem97 = 4:574498314321773339468384070andb911121 = �14492:01065977137793943584071;sob911121=m97 = �3167:999999999999999999999995?= �3168 = �25 � 32 � 11:For k = 0, P0(x; y) = (y+x2)(y+1), so m0 = 0.For k = 4, the curve P4 = 0 has genus 0, and thenonvanishing factor of the discriminant k2(k�4)�(k + 4) is 42 � 8 so we suspect that m4 might begiven by a Dirichlet L-function with conductor apower of 2. Indeed, numericallym4 = 2d4 = 4G� ; (2–8)



Boyd: Mahler’s Measure and Special Values of L-functions 53k s N a1 a2 a3 a4 a61 1 15 1 1 1 0 02 1 24 0 �1 0 1 03 1=2 21 1 0 0 1 04 (m = 2d4; g = 0)5 1=6 15 1 1 1 �5 26 2 120 0 1 0 �15 187 2 231 1 1 1 �34 628 1=4 24 0 �1 0 �64 2209 2 195 1 0 0 �110 43510 �8 840 0 �1 0 �175 95211 �8 1155 1 1 1 �265 155012 1=2 48 0 1 0 �384 277213 �4 663 1 1 1 �539 459214 8 840 0 �1 0 �735 792015 �24 3135 1 0 0 �980 1172716 1=11 15 1 1 1 �80 24217 �24 4641 1 1 1 �1644 2497218 �16 1848 0 1 0 �2079 3580219 �40 6555 1 1 1 �2595 4980020 2 240 0 �1 0 �3200 7075221 �12 1785 1 0 0 �3905 9360022 24 3432 0 �1 0 �4719 12636023 6 1311 1 1 1 �5654 16128224 8 840 0 1 0 �6720 20980825 �16 3045 1 1 1 �7930 26850226 128 17160 0 �1 0 �9295 34804027 12 2139 1 0 0 �10829 43284028 �2 336 0 �1 0 �12544 54496029 �24 4785 1 1 1 �14455 66290030 240 26520 0 1 0 �16575 81585031 �16 3255 1 1 1 �18920 99380032 1=3 42 1 1 1 �1344 1840533 �204 35409 1 0 0 �24344 145993534 256 38760 0 �1 0 �27455 176016035 224 42315 1 1 1 �30855 207325236 2 240 0 1 0 �34560 246142837 �208 50061 1 1 1 �38589 290164238 288 54264 0 �1 0 �42959 344148039 336 58695 1 0 0 �47690 400459540 �8 1320 0 �1 0 �52800 4687452
TABLE 1. Data for curves Ek with equation (2{7)(Family 1.3). The second column gives s = 1=rk =L0(Ek; 0)=m(Pk) with Pk as in (1{32), the thirdgives the conductor N , and the remaining columnsshow the coe�cients of the reduced minimal model,y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6, of Ek.

where G is Catalan's constant. In this case, wecan prove the identity. First notice that m(Pk) =m(Qk), whereQk(x; y) = Pk(xy; y2)=(xy)= (x2 + 1)(y2 + 1) + kxy: (2–9)Making the change of variable x ! �ix, y ! �iyin (1{7), we havem(1� ix� iy + xy) = d4;and(1 + ix+ iy + xy)(1� ix� iy + xy)= 1 + x2 + y2 + 4xy + x2y2 = Q4(x; y):Thusm(P4) =m(Q4) = 2m(1+ix+iy+xy) = 2d4.Using a result of Lind, Schmidt and Ward [Lindet al. 1990], we have thus shown that the entropy ofthe discrete Laplacian on TZ2 is 2d4 = 4G=�. Thequantity G=� plays a role in many problems in-volving the integer lattice Z2. For example 2G=� isthe entropy of the \dimer packing problem" [Fisher1961; Kasteleyn 1961], and the metric entropy ofAsmus Schmidt's Gaussian integer continued frac-tions [Schmidt 1993; Nakada 1990]. The quantityalso appears as the best constant in a sharp ver-sion of the Gel'fond{Mahler inequality (via (1{7))[Boyd 1992]. The quantity m(P4) appears in astudy of Sarnak [1982] of quasi-periodic potentialsfor the Schr�odinger equation, and for a similar rea-son in [Thouless 1990].For this family, Pk does not vanish on the torusfor k =2 [�4; 4]. After seeing a table of the re-sults mentioned above, Fernando Rodr��guez Ville-gas [1996] was inspired to show that, for all com-plex k, not necessarily an integer, m(Pk) is equalto an Eisenstein{Kronecker series for the appro-priate curve. Assuming that the Bloch{Graysonconditions hold for Pk this reduces the numericallydeduced formulas for m(Pk) to an application ofthe Bloch{Beilinson conjectures. The basis for hismethod is his observation that the family Ek canbe identi�ed with the modular elliptic surface as-sociated to the group �0(4). He shows in fact that



54 Experimental Mathematics, Vol. 7 (1998), No. 1if � is a point in the upper half plane that param-eterizes the curve Ek as an elliptic curve over C ,thenm(Pk) = Re���i� + 2 1Xn=1Xdjn ��4d �d2 qnn �;where q = exp(2�i�). It can then be shown thatthe Fourier series of this modular form is an Eisen-stein{Kronecker series. If the integrality condi-tions can be shown to hold, then m(Pk) is con-jecturally a rational multiple of L0(Ek; 0) providedk2 2 Z. The set K in this case is the real interval[�4; 4] so �G1 = C . For some values of k, suchas k = 2p2, the curve Ek has complex multiplica-tion, and in such cases Rodr��guez Villegas is able togive proofs of the numerically determined formu-las, for example m(P2p2) = b32 and m(P4i) = 2b32,using the fact that all elliptic curves of conductor32 have complex multiplication. The fact that theEisenstein{Kronecker series is an explicit multipleof L0(Ek; 0) in these cases is due to Deuring; see[Deninger and Wingberg 1988].Neither of the polynomials just mentioned haveinteger coe�cients but can be used to constructexamples of polynomials with integer coe�cientshaving measures provably equal to b32 and 2b32.Observe that, with Qk as in (2{9),m(PkP�k)=m(QkQ�k)=m(Sk2(x2; y2))=m(Sk2);whereSn(x; y) = (x+ 1)2(y + 1)2 + nxy: (2–10)So m(Pk) = 12m(S�k2): (2–11)Also, if Rk(x; y) = x� 1=x+ y � 1=y + k;then�iRk(ix; iy) = x+1=x+ y+1=y� ik = P�ik(x; y);so m(Rk) = 12m(Sk2):

The curve Sn = 0 has discriminant n7(n + 16)and hence has genus 1 unless n = 0 or �16. AWeierstrass equation isFn : y2 = x3 + n(n+ 8)x2 + 16n2x:The relationship between this Fn and the Ek of(2{7) is that F�k2 is a quadratic twist of Ek by�k. For jnj � 100, one has m(Sn) ?= rnL0(Fn; 0).In particular, by (2{11), m(Rk) = m(Pik) is nu-merically a rational multiple of the appropriateL0(E; 0). Using the results of Rodr��guez Villegasfor m(Pk), we thus havem(x� 1=x+ y� 1=y+4) = m(P4i) = 2b32: (2–12)and m(S�8) = 2m(P2p2) = 2b32;both formulas being rigorously true by Rodr��guezVillegas' result. Deninger has (privately) reportedproving (2{12) as well, using the method of [Den-inger 1997]. Notice that R4 does not vanish on thetorus but S�8 does vanish there.Similar computational results hold for the fam-ily (1{31) for jkj � 100. Here the discriminant is(k� 2)3(k� 3)2(k+ 6) and a Weierstrass equationis y2 = x3 + (k2 � 12)x2 � 16(k � 3)x: (2–13)We have already mentioned m�1 ?= b30, m0 ?= 12b36and m1 ?= b14. Some other numerically veri�edvalues are m�2 ?= 12b20, m�5 ?= 16b14, m4 ?= 13b20and m6 ?= 12b36. Table 2 contains some data onthis family for jkj � 40 in the same format as forTable 1.Rodr��guez Villegas' method applies to this fam-ily as well. Here the appropriate modular group is�0(6). In particular, since elliptic curves of conduc-tor 36 have complex multiplication, the formulasfor m0 and m6 have thus been rigorously proved.For the degenerate cases 2; 3 and �6, Z is a ra-tional curve. Since P2 = (x+ y)(y + 1)(x+ 1), wehave m2 = 0 and since P3 = (1+x+y)(x+y+xy),we have m3 = 2d3 by (1{6). In case k = �6, weveri�ed numerically that m�6 ?= 5d3, and this can



Boyd: Mahler’s Measure and Special Values of L-functions 55k s N a1 a2 a3 a4 a6 k s N a1 a2 a3 a4 a60 2 36 0 0 0 0 11 1 14 1 0 1 �1 0 �1 1 30 1 0 1 1 22 (m = 0; g = 0) �2 1=2 20 0 1 0 4 43 (m = 2d3; g = 0) �3 2 90 1 �1 0 6 04 1=3 20 0 1 0 �1 0 �4 2 84 0 1 0 7 05 1 66 1 0 1 �6 4 �5 1=6 14 1 0 1 4 �66 1=2 36 0 0 0 �15 22 �6 (m = 5d3; g = 0)7 �1 130 1 0 1 �33 68 �7 1=3 30 1 0 1 �19 268 6 420 0 1 0 �61 164 �8 �2 220 0 1 0 �45 1009 6 630 1 �1 0 �105 441 �9 2 198 1 �1 0 �87 33310 1=10 14 1 0 1 �11 12 �10 2 156 0 1 0 �148 64411 1 102 1 0 1 �256 1550 �11 �6 910 1 0 1 �234 135212 2 180 0 0 0 �372 2761 �12 �12 1260 0 0 0 �348 249713 �12 2090 1 0 1 �524 4566 �13 2 210 1 0 1 �498 422814 �6 660 0 1 0 �716 7140 �14 1=3 34 1 0 0 �43 10515 �12 1638 1 �1 0 �957 11637 �15 �2 306 1 �1 0 �927 1109716 30 4004 0 1 0 �1253 16660 �16 12 1140 0 1 0 �1221 1602017 42 4830 1 0 1 �1613 24788 �17 12 2090 1 0 1 �1579 2400618 1 90 1 �1 1 �128 587 �18 12 1260 0 0 0 �2007 3460619 1 170 1 0 1 �2554 49452 �19 48 6006 1 0 1 �2516 4835020 24 2652 0 1 0 �3153 67104 �20 48 7084 0 1 0 �3113 6582421 �2 342 1 �1 0 �3852 92988 �21 12 2070 1 �1 0 �3810 9147622 �18 2660 0 1 0 �4660 120900 �22 1=5 30 1 0 1 �289 186223 �42 6090 1 0 1 �5589 160336 �23 �12 2210 1 0 1 �5543 15835824 108 13860 0 0 0 �6648 208633 �24 4 468 0 0 0 �6600 20637725 �84 15686 1 0 1 �7851 267074 �25 6 798 1 0 1 �7801 26452426 1 138 1 0 1 �576 5266 �26 �24 4060 0 1 0 �9156 33418027 6 990 1 �1 0 �10734 430740 �27 �108 18270 1 �1 0 �10680 42750028 �24 4420 0 1 0 �12441 529984 �28 �168 20460 0 1 0 �12385 52640029 18 2730 1 0 1 �14344 660002 �29 6 1426 1 0 1 �14286 65600030 2 252 0 0 0 �16455 812446 �30 2 198 1 �1 1 �1025 1288131 66 15022 1 0 1 �18791 989850 �31 �36 5610 1 0 1 �18729 98495232 �288 33060 0 1 0 �21365 1194900 �32 �180 30940 0 1 0 �21301 118952433 �216 36270 1 �1 0 �24195 1454625 �33 4 630 1 �1 0 �24129 144868534 �2 310 1 0 0 �1706 26980 �34 �24 3108 0 1 0 �27228 172026035 �16 2706 1 0 1 �30686 2066384 �35 �174 40774 1 0 1 �30616 205931436 324 47124 0 0 0 �34380 2453617 �36 288 44460 0 0 0 �34308 244591337 246 51170 1 0 1 �38398 2892828 �37 72 12090 1 0 1 �38324 288446638 36 4620 0 1 0 �42756 3388644 �38 2 410 1 0 1 �2668 5280639 �18 3330 1 �1 0 �47475 3993381 �39 �324 56826 1 �1 0 �47397 398355340 342 64676 0 1 0 �52573 4622244 �40 �480 61404 0 1 0 �52493 4611684
TABLE 2. Data for the family 2.3, de�ned by (1{31) and (2{13).



56 Experimental Mathematics, Vol. 7 (1998), No. 1now be proved due to the result of Rodr��guez Vil-legas for this family.As a test for the necessity of condition (A), wenext consider two families of reciprocal polynomi-als of the form (2{3) for which the measures ofsome faces are nonzero. For the �rst example, takeA(x) = x2 + x � 1, C(x) = A�(x) = �x2 + x + 1and Bk(x) = kx, so the measure of the face A(x)and its opposite C(x) are each log('), where ' =(1 + p5)=2 is the golden ratio. The discriminanthere is (k2�4)2(k2�20)2 so the curve Pk(x; y) = 0has genus 1 provided (k2 � 4)(k2 � 20) 6= 0. ItsJacobian has the equationE : y2 = x(x� (k2 � 4))(x � (k2 � 20)):It is easy to prove thatmk = log(') for k = 0; 1 and2. So the formulas form0 andm1 are of type C andnot of type E. For k = 2, we might have expecteda formula of type D, not of type C. For 3 � k � 20,using 50 decimal place values of mk, we were notable to represent mk as rational linear combina-tions of L0(E; 0), log(') and other plausible terms.We could look at this example in another way byinterchanging x and y so that now A(x) = x2 � 1,Bk(x) = x2+kx+1 and C(x) = 1�x2. Notice thatnow m(A) = m(B) = 0 so the condition (A) thateach face have measure 0 cannot be simpli�ed tothe assumption that the coe�cient of y2 in (2{3)have m(A(x)) = 0.Similarly, if we take A(x) = x2 + x � 1 andC(x) = �x2 + x+ 1 as in the previous paragraph,but Bk(x) = x2 + kx+ 1, the discriminant is k2�(k2� 16)(k2� 25)2 so Pk = 0 has genus 1 providedk(k2�16)(k2�25) 6= 0. Here the Jacobian has theequationE : y2 = x3 + (k2 � 40)x2 � 16(k2 � 25)x:Again, for the nondegenerate cases, it seems thatmk is not related to L0(E; 0), at least for k � 20.For the degenerate case k = 0, one can prove easilythat m0 = log('), and for the degenerate cases

k = 4 and 5, to 50 decimal place accuracy, one hasthe following equations m4 ?= 2 log(') andm5 ?= 23 log(') + 16L0(��15;�1): (2–14)The latter equation can be reduced to a diloga-rithm identity since P5(x; y) factors into linear fac-tors over Q (p5) but has not yet been proved. Nei-ther has the apparently more elementary formulafor m4.Extensive computations have been done for thefamilies of reciprocal polynomials of the form (2{3)satisfying condition (A). So A(x) is a cyclotomicpolynomial of degree at most 2. By making use ofthe symmetry (x; y) ! (y; x) and changes of sign,we can take A(x) to be one of 1, x+ 1, x2 + x+ 1,or (x+ 1)2 and C(x) = x2A(1=x), while B(x) canbe chosen to be 0, x2 + 1 or (if the degree of A(x)is 2), 2(x2 + 1). We denote the various families bya.b, where a is 1, 2, 3, 3s, respectively, for the fourchoices listed for A above, and b is 1, 3, 3s, respec-tively, for the three choices listed for B. Some ofthese families can be eliminated from considerationby symmetry, and the family 1.1 is not of genus 1,so there are in fact 7 families of this type that havebeen considered: 1.3, 2.3, 3.1, 3.3, 3s.1, 3s.3 and3s.3s. For example, the families (1{31), (1{32) and(2{10) considered above have the names 2.3, 1.3and 3s.3s, respectively. (The family 1.3 is equiva-lent to one in which A(x) = x2 + 1, by (2{9).) Forfamilies with b = 1 and in a few other cases, onecan see by a change of variable that mk = m�k, soonly k � 0 need be considered. See also the sectionon electronic availability on page 79.In all cases, we considered at least all integerjkj � 40 for which the conductor N � 40; 000; 000.(This is the practical limit on N for the compu-tation of L(E; 2) by PARI on a machine with 48Mbytes of RAM). In a few cases, we extended thecomputation to jkj � 100. For su�ciently largejkj, P does not vanish on the torus and then mkwas computed from (2{6) by PARI's numerical in-tegration routine, Romberg quadrature. If P van-ishes on the torus, then mk was computed using



Boyd: Mahler’s Measure and Special Values of L-functions 57Maple V, which uses the Curtis{Clenshaw methodof integration with some preliminary singularityhandling. In most cases, Maple's singularity han-dling was not su�cient to treat the square-root sin-gularities that occur at the endpoints of intervalswhere jy(x)j = 1 so a preliminary change of vari-able was made as explained above in connectionwith (1{16). If A(x) vanishes on the circle jxj = 1,then of course y(x) has poles at the zeros of A(x) soin this case one integrates log jA(x)y(x)j. Zeros onjxj = 1 cause no di�culty in integrating log jA(x)jsince a zero at x = x0 produces a term of the formlog jeit � eit0 j for which the integral is a Clausenintegral, easily handled by integration by parts.To use the elliptic curve routines of PARI, it was�rst necessary to compute a Weierstrass form forEk for each family. Starting with (2{2), we simplyneed to know that the Jacobian E = J(Z) of thecurveZ : y2 = f(x) = ax4 + bx3 + cx2 + dx+ eis given byy2= g(x) = x3+cx2+(bd�4ae)x�(4ace�b2e�ad2):If a is a square of an integer then this can be provedin an elementary way using the techniques in [Cas-sels 1991, Chapter 8] and one obtains a birationalmap from Z to E with coe�cients in Q . If a is nota square then one can obtain a birational map withcoe�cients in Q (pa) by twisting by a, �nding theWeierstrass form for the twisted equation and thentwisting again by a.A more elegant way of doing this was pointed outto me by John Cremona. According to the theoryof invariants, the classical invariants of f(x) areI = 12ae� 3bd+ c2;J = 72ace + 9bcd� 27ad2 � 27eb2 � 2c3:Then E = J(Z) has an equationE : y2 = G(x) = x3 � 27Ix� 27J:

A rational map of degree 4 from Z to E is given bya syzygy between the covariants of f(x). Joe Sil-verman has kindly supplied the reference [Salmon1876, pp. 187{192]. A more modern reference is[Hilbert 1993, Lecture XXII, p. 71]. It is easilyshown that the two equations given forE are equiv-alent. A slight advantage to the �rst is that g and fhave the same discriminant, whereas discrim(G) =312 discrim(f).In the Weierstrass equations presented here, ifE has a rational 2-torsion point then we make thisevident by choosing coordinates so that one suchpoint is (0; 0). For example, if f(x) is a reciprocalpolynomial, as will be the case if P (x; y) is recip-rocal, so f(x) = ax4+ bx3+ cx2 + bx+ a, then theabove formulas giveg(x) = x3 + cx2 + (b2 � 4a2)x+ (2ab2 � 4a2c)= (x+ 2a)(x2 + (c� 2a)x+ (b2 � 2ac));so E has the rational 2-torsion point (�2a; 0). Byshifting this to (0; 0) we obtain the equationE : y2 = x3 + (c� 6a)x2 + (8a2 + b2 � 4ac)x:PARI's routine for computing L(E; 2) requiresthe input of the sign " of the functional equa-tion. Although a method is suggested in [Batut,Bernardi, Cohen et Olivier 1995] for the determina-tion of this sign, in our case it was simpler to com-pute two values for bE = "NL(E; 2)=(2�)2 , say b+and b�, assuming the sign is +1 or �1 respectively.The correct sign can be recognized by observingwhich of b+=mk or b�=mk \is" rational. A typicalentry in one of the output �les (here 3.1.pos) isshown at the top of the next page.Table 3 contains the results for the family 3.1 for1 � k � 34 (the conductor for k = 35 is 50811915).The discriminant here isk4(k � 2)(k + 2)(k � 6)(k + 6)and a Weierstrass form isy2 = x3 + (k2 + 12)x2 + 16k2x: (2–15)



58 Experimental Mathematics, Vol. 7 (1998), No. 15 1155 [1, 0, 1, -4, -19]1.41175955538216390690586429136.96555140788977384409893236 -33.882229329171933765740742990.03819122132940356484948694122 -0.0416666666666666666666666666726.18402777368358841500906465 -23.99999999999999999999999999An entry from the �le 3.1.pos, describing curve 1155H1 of [Cremona 1992]. The �rst line gives k, N and thecoe�cients [a1; a2; a3; a4; a6] of the reduced minimal model of the curve Ek. Next comes the numerical valueof mk, then b+ and b�. The last two lines give mk=b+, mk=b�, b+=mk and b�=mk. In this example we cancon�dently conjecture that " = �1 and b�=mk ?= �24. The rank is r = 1, which is consistent with the parityconjecture " = (�1)r.In all cases, one of b+=mk or b�=mk is an \ob-vious" rational, usually an integer, for those k forwhich the discriminant does not vanish. For thedegenerate cases where the discriminant vanishes,one �nds numerically that for a suitable odd Dirich-let character of conductor f that mk=df is ratio-nal. The choice of f was found heuristically fromthe nonvanishing factor of the discriminant. Forexample, for the family 3.1, the discriminant van-ishes for positive k if k = 2 or 6. For k = 2, thenonvanishing part of the discriminant is �211 so weexpect that f will be an odd power of 2 and indeed
we �nd that d8=m2 ?= 3. For k = 6, the nonvan-ishing part of the discriminant is 64 � 42 � 24 so our�rst guess is that f = 24 and indeed m6 ?= d24=6.We will mention more of these degenerate cases inSection 4.In addition to the above, there is some datafor the two families 3g.1 and 3g.3 with A(x) =x2+x�1. Details on how to obtain them the rele-vant �les will be found in the section on electronicavailability on page 79. This will allow those in-terested to test their own conjectured formulas formk for these examples.k s N a1 a2 a3 a4 a6 k s N a1 a2 a3 a4 a61 12 105 1 0 1 �3 1 18 �24 2880 0 0 0 �2028 348322 (3m2 = d8; g = 0) 19 5184 440895 1 0 1 �2538 486313 4=3 45 1 �1 0 0 �5 20 �2208 240240 0 1 0 �3136 661644 6 240 0 1 0 0 �12 21 1344 137655 1 �1 0 �3834 919035 �24 1155 1 0 1 �4 �19 22 �672 73920 0 1 0 �4641 1196796 (6m6 = d24; g = 0) 23 11520 1190595 1 0 1 �5569 1589517 24 1365 1 0 1 �29 11 24 �864 102960 0 0 0 �6627 2070748 24 1680 0 1 0 �56 84 25 �1920 203205 1 0 1 �7829 2653319 48 3465 1 �1 0 �99 328 26 816 87360 0 1 0 �9185 33510310 12 960 0 1 0 �161 639 27 864 100485 1 �1 0 �10710 42857511 528 36465 1 0 1 �248 1361 28 32640 4084080 0 1 0 �12416 52760412 �48 5040 0 0 0 �363 2522 29 22944 2171085 1 0 1 �14318 65737113 �3648 285285 1 0 1 �514 4271 30 �144 20160 0 0 0 �16428 80955214 �72 6720 0 1 0 �705 6783 31 55104 5488395 1 0 1 �18763 98668115 768 69615 1 �1 0 �945 11200 32 8064 1007760 0 1 0 �21336 119144416 �192 18480 0 1 0 �1240 16148 33 �10944 1396395 1 �1 0 �24165 145084017 13536 1225785 1 0 1 �1599 24181 34 �960 114240 0 1 0 �27265 1722623

TABLE 3. Data for the family 3.1, de�ned by (2{15).
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2B. Families of Nonreciprocal Polynomials, Genus 1Now we turn to the discussion of two classes offamilies of nonreciprocal polynomials. Recall thediscussion at the beginning of Section 2, which pre-dicts that we should expect a formula of type E orD only if Pk satis�es conditions (A) and (G). Thuswe do not expect such a formula if k 2 int(K) butdo expect such a formula if k 2 �G1.
Families coming from modular elliptic surfaces.The �rstclass of nonreciprocal examples was suggested tome by Rodr��guez Villegas as a natural general-ization of the families 2.3 and 1.3 of (1{31) and(1{32). He pointed out that these two families oc-cur in [Beauville 1982] as two of six special familiesof elliptic curves distinguished by possessing foursingular �bres. Each family is associated with amodular group. It seems that Rodr��guez Villegas'methods can treat all of these examples.Our families 2.3 and 1.3 correspond respectivelyto the groups �00(6) and �0(8) \ �00(4). The familyassociated with �00(5) is given by [Beauville 1982]X(X � Z)(Y � Z) + tY Z(X � Y ) = 0: (2–16)Writing X � Y = x, Y = y, Z = �1 and t = �kgives usPk(x; y) = (x+ y+1)(x+1)(y+1) + kxy; (2–17)orPk(x; y) = (x+1)y2+(x2+(k+3)x+2)y+(x+1)2;

(2–18)which is clearly of type (2{3). The discriminant isk5(k2 + 11k � 1), and a Weierstrass form isY 2 = X3+(k2�6k+1)X2+(�8k3+8k2)X+16k4:
(2–19)Each of the curves Pk = 0 has a 5-torsion point.Plotting 10,000 points of the set K correspond-ing to taking x and y to be 100th roots of unity, itappears that K is a simply connected egg-shapedset with the narrow end of the egg at k = 14 andthe top of the egg at k = �12. (It is not di�-cult to prove that the intersection of K with the

real axis is [�12; 14 ]). Thus our conjecture wouldpredict a formula of type E for all integers exceptthose in [�11; 0]. Experiments for jkj � 50 verifythis expectation, as we see in Table 4.The example (1{25) with m(P ) ?= 7b11 is thecase k = 1 of (2{16). Here the curve P1 = 0 isisomorphic to y2 + y = x3 � x, which is the mod-ular curve X1(11). The conductor 11 also occursfor k = �1, where the curve is also isomorphic toX1(11) and for k = �11 where the curve is X0(11)(with minimal model y2+ y = x3�x2� 10x� 20).However, in neither of these cases doesm(Pk) seemto be a rational multiple of b11, consistent with theconjecture that this does not occur if k 2 int(K).These curves have a question mark in the columnfor s in Table 4, indicating that no rational relationwas found.The family �00(4) \ �(2) has projective equationX(X2 + 2XZ + Z2) + tZ(X2 � Y 2) = 0:These curves all have a torsion group of order 8.A better choice of coordinates for our purposes isobtained by taking X = x+ y, Y = x� y, Z = 1,and t = k=4 soPk(x; y) = (x+ y)3 + 2(x2 � y2) + (x+ y) + kxy:
(2–20)The discriminant is k4(k2� 16)2 and a Weierstrassform is y2 = x(x+ 16)(x+ k2): (2–21)Notice that (2{20) is not of the form (2{3) sinceit is cubic in y rather than quadratic. Neverthe-less, the discussion at the beginning of this sectionshows that if k is outside K then, for jxj = 1,Pk(x; y) = 0 has exactly one zero with jyj < 1, sowe can still use Jensen's formula to compute m(P )and verify that condition (B) will hold for k 2 G1.Plotting K as above, it seems that K is a roughlyelliptical region with centre at the origin with ma-jor axis from �10 to 10 and minor axis from about�8i to 8i. Thus we would expect that a formula oftype E for integer jkj � 10 and indeed this is whatis found experimentally for 10 � k � 200.



60 Experimental Mathematics, Vol. 7 (1998), No. 1k s N a1 a2 a3 a4 a6 k s N a1 a2 a3 a4 a61 1=7 11 0 �1 1 0 0 �1 ? 11 0 �1 1 0 02 1 50 1 1 1 �3 1 �2 ? 38 1 1 1 0 13 �1 123 0 1 1 �10 10 �3 ? 75 0 1 1 2 44 2 118 1 1 1 �25 39 �4 ? 58 1 1 1 5 95 3 395 0 �1 1 �50 156 �5 ? 155 0 �1 1 10 66 11 606 1 0 0 �90 324 �6 ? 186 1 0 0 15 97 �1 175 0 �1 1 �148 748 �7 ? 203 0 �1 1 20 �88 �3 302 1 1 1 �230 1251 �8 ? 50 1 1 1 22 �99 4 537 0 1 1 �340 2308 �9 ? 57 0 1 1 20 �3210 25 2090 1 1 1 �485 3915 �10 ? 110 1 1 1 10 �4511 �15 2651 0 �1 1 �670 6910 �11 ? 11 0 �1 1 �10 �2012 25 1650 1 0 0 �903 10377 �12 1 66 1 0 0 �45 8113 �16 4043 0 �1 1 �1190 16212 �13 2 325 0 �1 1 �98 37814 �52 4886 1 1 1 �1540 22629 �14 8 574 1 1 1 �175 78915 �36 5835 0 1 1 �1960 32764 �15 �6 885 0 1 1 �280 168416 �8 862 1 1 1 �2460 45949 �16 2 158 1 1 1 �420 310917 35 8075 0 �1 1 �3048 65808 �17 �8 1717 0 �1 1 �600 583218 36 3126 1 0 0 �3735 87561 �18 2 150 1 0 0 �828 907219 56 10811 0 �1 1 �4530 118890 �19 �14 2869 0 �1 1 �1110 1458020 �58 6190 1 1 1 �5445 152395 �20 �18 1790 1 1 1 �1455 2072521 �80 14091 0 1 1 �6490 199108 �21 30 4389 0 1 1 �1870 3047822 �140 15950 1 1 1 �7678 255771 �22 40 5302 1 1 1 �2365 4325123 60 17963 0 �1 1 �9020 332772 �23 �30 6325 0 �1 1 �2948 6256824 �54 5034 1 0 0 �10530 415044 �24 26 1866 1 0 0 �3630 8384425 �20 4495 0 �1 1 �12220 524056 �25 8 1745 0 �1 1 �4420 11455626 8 806 1 1 1 �14105 638919 �26 �94 10114 1 1 1 �5330 14751927 �15 3075 0 1 1 �16198 788134 �27 �6 1293 0 1 1 �6370 19354028 123 15274 1 1 1 �18515 962001 �28 �60 6650 1 1 1 �7553 24947129 �120 33611 0 �1 1 �21070 1184260 �29 �64 15109 0 �1 1 �8890 32557030 411 36870 1 0 0 �23880 1418400 �30 216 17070 1 0 0 �10395 40702531 �160 40331 0 �1 1 �26960 1712880 �31 80 19189 0 �1 1 �12080 51504032 5 550 1 1 1 �30328 2020281 �32 10 1342 1 1 1 �13960 62900133 215 47883 0 1 1 �34000 2401780 �33 �120 23925 0 1 1 �16048 77712434 405 51986 1 1 1 �37995 2834809 �34 �230 26554 1 1 1 �18360 94984935 �213 56315 0 �1 1 �42330 3366306 �35 �118 29365 0 �1 1 �20910 117075636 �100 10146 1 0 0 �47025 3921129 �36 60 5394 1 0 0 �23715 140364937 �240 65675 0 �1 1 �52098 4594428 �37 �4 1147 0 �1 1 �26790 169666238 459 70718 1 1 1 �57570 5292751 �38 360 38950 1 1 1 �30153 200271139 �398 76011 0 1 1 �63460 6132088 �39 192 42549 0 1 1 �33820 238262840 �173 20390 1 1 1 �69790 7067355 �40 100 11590 1 1 1 �37810 281401541 �320 87371 0 �1 1 �76580 8182440 �41 180 50389 0 �1 1 �42140 334362042 925 93450 1 0 0 �83853 9339057 �42 �486 54642 1 0 0 �46830 389667643 280 99803 0 �1 1 �91630 10706542 �43 40 11825 0 �1 1 �51898 456794844 405 53218 1 1 1 �99935 12118149 �44 260 31922 1 1 1 �57365 5264379
TABLE 4. Data for the family �00(5), de�ned by (2{18) and (2{19). A ? means no rational relation was found.



Boyd: Mahler’s Measure and Special Values of L-functions 61The �nal two examples are �(3) with projectiveequationAk(X;Y;Z) = X3+Y 3+Z3+kXY Z = 0; (2–22)for which we takePk(x; y) = Ak(x; y; 1) = x3 + y3 + 1+ kxy; (2–23)with discriminant (k3+27)3 and Weierstrass equa-tiony2 = x3� 27k2x2+216k(k3+27)x� 432(k3+27)2;and �0(9) \ �00(3) with equationBk(X;Y;Z) = X2Y + Y 2Z + Z2X + kXY Z = 0;
(2–24)for which we takeQk(x; y) = Bk(x; y; 1) = y2+(x2+kx)y+x; (2–25)with discriminant k3+27 and Weierstrass equationy2 = x3 + k2x2 � 8kx+ 16:In fact (2{22) and (2{24) are 3-isogenous, thekernel of the isogeny from (2{22) to (2{24) beingthe torsion group of (2{22). To see this, we needonly verify thatAk(Y 2Z;Z2X;X2Y ) = Bk(X3; Y 3; Z3):This also shows that m(Pk) = m(Ak) = m(Bk) =m(Qk), so we only need to study one of the twofamilies. We naturally choose Qk since it is of theform (2{3). The set K corresponding to (2{23) or(2{25) is the inside of a three-cusped hypocyloidwhose intersection with the real axis is [�3; 1]. It issymmetric under rotation by 2�=3. We thus expecta formula of type E to hold for all integer k exceptfor k 2 [�3; 0] and a formula of type D for k = �3since P�3 = 0 has genus 0. This has been veri�ednumerically for jkj � 40. We don't give a tableof these results since we will consider in the nextsection a family, B.1, of polynomials equivalent toQ�k.For k = �3 we haveP�3 = (x+ y + 1)(x + !y + !2)(x+ !2y + !);

where ! is a primitive cube root of 1, so we seethat m(P�3) = 3m(x+ y + 1) = 3d3;by Smyth's result (1{6). We also notice that, al-though P0 = 0 is elliptic, we havem(P0) = m(x3 + y3 + 1) = m(x+ y + 1) = d3;by the same result. So in this case, we do not havea formula of type E but one of type D. Since 0 2int(K), this is in accord with the above conjecture.
Families in generalized Weierstrass form. We can ob-tain an even simpler class of examples by takingP (x; y) = y2 + kxy + a3y � x3 � a2x2 � a4x� a6;

(2–26)so that P (x; y) = 0 is already in generalized Weier-strass form. With such examples, it is easy to de-vise experiments to test the necessity of condition(A). Depending on whether a6 = 0 or not, the New-ton polygon is a quadrilateral or a triangle. Theface y2�x3 always hasm(y2�x3) = 0 but the facesy2+ a3y� a6 = P (0; y) and x3+ a2x2+ a4x+ a6 =P (x; 0) have measure 0 only if each is the a productof a power and a cyclotomic polynomial. If a6 = 0,then the fourth face will be of the form �yi � xjif P (x; 0) and P (0; y) are cyclotomic, so the condi-tion that this face should have measure 0 is not anadditional restriction. A su�cient condition for kto be in K is thatjkj > 2 + ja2j+ ja3j+ ja4j+ ja6j; (2–27)so we expect that a formula of type E should holdfor P (x; y) as in (2{26) if k is an integer satisfying(2{27) and if m(P (x; 0)) = m(P (0; y)) = 0. Ofcourse, for �xed a2; a3; a4 and a6, we can make amore re�ned conjecture by computing the set K.We test this by considering several special cases:family A: P (x; y) = y2+kxy+by�x3+1;family B: P (x; y) = y2+kxy+by�x3;family C: P (x; y) = y2+kxy�x3�bx; (2–28)



62 Experimental Mathematics, Vol. 7 (1998), No. 1Here there are two parameters, but we regard b as�xed and ask for which k does a formula of type Ehold. We denote the subfamily of a family F for a�xed value of b by F.b. Notice that for families Aand B it su�ces to take b � 0 since changing thesigns of y and k has the same e�ect as changingthe sign of b.In family A, the face y2 + by + 1 has measure 0only if b = 0; 1 or 2 so P satis�es condition (A)exactly in these cases. If jkj > b + 3 then k 2 G1so we expect a formula of type E for these valuesof k provided if 0 � b � 2. This is what wasfound numerically if b + 3 < jkj � 18. On theother hand, for b = 3, we have m(y2 + 3y + 1) =log((3 +p5)=2) and we �nd for 6 � jkj � 19 thatno such formula holds, nor a formula involving arational linear combination of mk, L0(Ek; 0) andlog((3 +p5)=2). The reason for the small range ofk considered here is that the conductor grows fairlyrapidly making it di�cult to compute L0(Ek; 0) forlarge k. We can see why this occurs by noticingthat the discriminant isdb(k) = k6 + (b3 � 36b)k3 + (�27b4 + 216b2 � 432):The only small b for which db(k) is reducible isb = 2 for which d2(k) = k3(k� 4)(k2+4k+16): Soonly when b = 2 do we expect a moderate growthof the conductor with jkj.Notice that if we �x k and let b vary, then forlarge b, say jbj > jkj+3, the dominant term appearsin the face P (0; y) = y2 + by + 1. Thus, by thediscussion at the beginning of this section, m(P ) =m(y2+by+1), a formula of type C for jbj > jkj+3.The family A is interesting in that genericallythe rational torsion group is trivial. This is in con-strast with the examples from [Beauville 1982] dis-cussed on page 59, where the torsion groups arenontrivial. Also the examples studied in Section2A all have nontrivial rational 2-torsion. As we ex-plained at the end of Section 2A, this follows fromthe fact that P (x; y) is a reciprocal polynomial.The reason for the interest in the torsion groupof E(Q ) is that the proofs of Deninger [1997] for

(1{17) and Rodr��guez Villegas [1996] for the family1.3 make use of the 4-torsion points of curves in thisfamily to construct Eisenstein{Kronecker series.Now consider the family B. For �xed b, let Kb =K denote the set of k for which P (x; y) does notvanish on the torus and Gb;1 be the unboundedcomponent of its complement. Then Kb\R is con-tained in the interval [�b; b + 2] so the integers inGb;1 consist of k � b+2 and k � �b. The comple-ment of Kb is connected if b = 1 or 2 but consistsof two components if b � 3. The intersection ofthe bounded component with the real axis is aninterval (�b + �; b � 2), where � < 1. The sets Kball have 3-fold rotational symmetry.For the family B, the discriminant is b3(k3�27b)so b = 0 does not give an elliptic curve. For b > 0,two faces y2+by and by�x3 have measure log jbj soour condition (A) is satis�ed only if jbj = 1. Thusif k 2 Gb;1 we expect a formula of type E to holdif b = 1 but not if b > 1.If b = 1 and k � 4 or k � �1 with jkj � 40,then we do seem to obtain a formula of type E, ascan be seen in Table 5. For k = 3, the discrimi-nant vanishes and we obtain a formula of type D.In fact, as we mentioned above, the family B.1 isrelated to the family �0(9) \ �00(3). Indeed, if wechange the signs of k and x in (2{27) and thensubstitute xy for y and then interchange x and ywe obtain the polynomial (2{25). This shows thecurves are isomorphic. Furthermore, these opera-tions also preserve the measure of the polynomialin question, so the study of B.1 is completely equiv-alent to the study of the family �0(9)\�00(3). FromTable 5 we see thatm(y2 � 6xy + y � x3) ?= 3L0(E; 0);where E has conductor 27. This is the example weconsidered in the introduction. Rodr��guez Villegas'method applies to this family and E has complexmultiplication so we can replace ?= by = in thisformula.For 2 � b � 8, it turns out that we obtain for-mulas of mixed type CE for some k 2 �Gb;1, but



Boyd: Mahler’s Measure and Special Values of L-functions 63k s N a1 a2 a3 a4 a6 k s N a1 a2 a3 a4 a6�1 1=2 14 1 0 1 �1 0�2 1 35 0 1 1 �1 03 (m = 3d3; g = 0) �3 1 54 1 �1 0 �3 34 2=3 37 0 1 1 �3 1 �4 �1 91 0 1 1 �7 55 1=7 14 1 0 1 �11 12 �5 1=2 38 1 0 1 �16 226 �2 189 0 0 1 �24 45 �6 1=3 27 0 0 1 �30 637 2 158 1 0 1 �47 118 �7 3 370 1 0 1 �54 1468 4 485 0 1 1 �81 255 �8 1 77 0 1 1 �89 2959 �6 702 1 �1 0 �132 618 �9 �3 378 1 �1 0 �141 68110 �10 973 0 1 1 �203 1048 �10 �8 1027 0 1 1 �213 112811 2 326 1 0 1 �300 1970 �11 �12 1358 1 0 1 �311 208012 2 189 0 0 1 �426 3384 �12 �15 1755 0 0 1 �438 352813 �18 2170 1 0 1 �589 5446 �13 2 278 1 0 1 �602 562814 �18 2717 0 1 1 �793 8336 �14 21 2771 0 1 1 �807 856015 �12 1674 1 �1 0 �1047 13305 �15 3 378 1 �1 0 �1062 1359016 �32 4069 0 1 1 �1357 18795 �16 24 4123 0 1 1 �1373 1913117 �30 4886 1 0 1 �1732 27588 �17 �18 2470 1 0 1 �1749 2799618 �42 5805 0 0 1 �2178 39123 �18 57 5859 0 0 1 �2196 3960919 �6 854 1 0 1 �2706 53940 �19 33 6886 1 0 1 �2725 5451020 �48 7973 0 1 1 �3323 72633 �20 64 8027 0 1 1 �3343 7329321 �6 1026 1 �1 0 �4041 99891 �21 �15 2322 1 �1 0 �4062 10066822 96 10621 0 1 1 �4869 129160 �22 �12 2135 0 1 1 �4891 13004023 30 6070 1 0 1 �5819 170346 �23 99 12194 1 0 1 �5842 17135824 108 13797 0 0 1 �6900 220608 �24 �1 171 0 0 1 �6924 22176025 96 15598 1 0 1 �8126 281242 �25 36 7826 1 0 1 �8151 28254226 �90 17549 0 1 1 �9507 353640 �26 128 17603 0 1 1 �9533 35509627 36 4914 1 �1 0 �11058 450348 �27 �108 19710 1 �1 0 �11085 45199528 28 4385 0 1 1 �12791 552565 �28 �131 21979 0 1 1 �12819 55438529 �114 24362 1 0 1 �14721 686210 �29 �9 1526 1 0 1 �14750 68824030 �2 333 0 0 1 �16860 842625 �30 189 27027 0 0 1 �16890 84487531 �84 14882 1 0 1 �19225 1024360 �31 144 29818 1 0 1 �19256 102684032 176 32741 0 1 1 �21829 1234115 �32 �240 32795 0 1 1 �21861 123683533 216 35910 1 �1 0 �24690 1499430 �33 �12 1998 1 �1 0 �24723 150243334 288 39277 0 1 1 �27823 1777056 �34 �168 39331 0 1 1 �27857 178032035 �12 2678 1 0 1 �31246 2123232 �35 �252 42902 1 0 1 �31281 212680236 �240 46629 0 0 1 �34974 2517480 �36 �297 46683 0 0 1 �35010 252136837 360 50626 1 0 1 �39027 2964228 �37 �54 12670 1 0 1 �39064 296844638 �258 54845 0 1 1 �43421 3468120 �38 �384 54899 0 1 1 �43459 347268039 18 3294 1 �1 0 �48177 4082193 �39 315 59346 1 �1 0 �48216 408714640 �432 63973 0 1 1 �53313 4720303 �40 �310 64027 0 1 1 �53353 4725623
TABLE 5. Data for the family B.1, de�ned by (2{28) with b = 1.



64 Experimental Mathematics, Vol. 7 (1998), No. 1k s N a1 a2 a3 a4 a6 k s N a1 a2 a3 a4 a6�2 �3 124 0 1 0 �2 14 3=8 20 0 1 0 �1 0 �4 6 236 0 1 0 �9 86 6 324 0 0 0 �21 37 �6 9 540 0 0 0 �33 738 �12 916 0 1 0 �77 236 �8 �12 1132 0 1 0 �93 31610 �18 1892 0 1 0 �198 1009 �10 �27 2108 0 1 0 �218 116912 �36 3348 0 0 0 �420 3313 �12 36 3564 0 0 0 �444 360114 54 5380 0 1 0 �786 8225 �14 �48 5596 0 1 0 �814 867316 �72 8084 0 1 0 �1349 18628 �16 18 1660 0 1 0 �1381 1930018 36 3852 0 0 0 �2169 38881 �18 �36 3924 0 0 0 �2205 3985320 144 15892 0 1 0 �3313 72304 �20 �120 16108 0 1 0 �3353 7362422 150 21188 0 1 0 �4858 128721 �22 177 21404 0 1 0 �4902 13048124 216 27540 0 0 0 �6888 220033 �24 270 27756 0 0 0 �6936 22233726 �354 35044 0 1 0 �9494 352913 �26 �243 35260 0 1 0 �9546 35582528 240 43796 0 1 0 �12777 551656 �28 384 44012 0 1 0 �12833 55529630 �432 53892 0 0 0 �16845 841501 �30 405 54108 0 0 0 �16905 84600132 576 65428 0 1 0 �21813 1232756 �32 �336 65644 0 1 0 �21877 123819634 �18 3140 0 1 0 �27806 1775425 �34 �747 78716 0 1 0 �27874 178195336 288 31068 0 0 0 �34956 2515537 �36 216 31140 0 0 0 �35028 252331338 �768 109636 0 1 0 �43402 3465841 �38 657 109852 0 1 0 �43478 347496140 744 127892 0 1 0 �53293 4717644 �40 1050 128108 0 1 0 �53373 4728284
TABLE 6. Data for the family B.2, de�ned by (2{28) with b = 2. Unlike the preceding tables, here the s columnrepresents s = L0(Ek; 0)=(m(Pk)� 13 log 2).only if k is arithmetically related to b in the sensethat k is divisible by all prime factors of b. In thiscase, the formulas are of the formm(y2+kxy+by�x3) ?= 13 log b+rL0(E; 0): (2–29)for suitable rational r. Table 6 gives the values ofs = 1=r for b = 2 and 4 � k � 40 and �40 � k ��2.For b > 2, it is easy to see that the face P (0; y) =y2+by is dominant for k in the bounded componentof the complement of Kb so the formula in this caseis just m(Pk) = log b. But notice that, even forsuch k, the roots y1(x) and y2(x) of P (x; y) = 0satisfy jy1(x)j > 1 > jy2(x)j since y1(x)y2(x) =�x3, so � = 1; that is, (G)(i) holds. But D(x) =(kx + b)2 + 4x3 does not vanish in jxj � 1 sincejkx + bj2 � 4 on jxj = 1. Thus, � = 0, not 2 asrequired by (G)(ii).

Notice that (2{29) is valid in particular for k =�b so, changing variables slighly, we havem(y2 + kxy + ky + x3) ?= 13 log jkj+ rkL0(Ek; 0);
(2–30)apparently valid for all integer k 6= 0. The poly-nomial here vanishes on the torus for all k, at thepoint (�1; 1).Denoting the Family B polynomial in (2{28) byP (x; y; k; b) one obtains, under the change of vari-ables x = b2=3X, y = bY , the equalitiesP (b2=3X; bY ; k; b) = b2(Y 2+b�1=3kXY +Y �X3)= b2P (X;Y ; b�1=3k; 1):This shows that the corresponding elliptic curvesare isomorphic over C and suggests that there maybe a connection betweenm(P (x; y; k; b)) and m(P (X;Y ; b�1=3k; 1)):



Boyd: Mahler’s Measure and Special Values of L-functions 65The exact relationship is not obvious unless jbj = 1since the change of variable in question changesthe torus jxj = 1, jyj = 1 to jXj = jbj�2=3, jY j =jbj�1. However, using the method used in derivingcondition (B), one can reduce the integrals over thetorus to integrals around branch cuts and changevariables to obtainm(y2 + b1=3kxy + by � x3)= 13 log b+m(y2 + kxy + y � x3); (2–31)for b � 1 and su�ciently large jkj.The simplest example of this relationship for in-tegral b ism(y2+2kxy+8y�x3)= 13 log 8+m(y2+kxy+y�x3);which was discovered experimentally and led to(2{31). This is valid for k � 5 and k � �4,but is de�nitely not true for all k, since if 2k isin the bounded component of the complement ofK8, which includes all integers with �2 � k � 3,wehave m(y2 + 2kxy + 8y � x3) = log 8;since the face y2 + 8y dominates. On the otherhand, for k = �1 we havem(y2 � xy + y � x3) ?= 2b14(see Table 5), and for k = 3 we havem(y2 + 3xy + y � x3) = 3d3:For the family C, the discriminant is equal tob2(k4�64b). Clearlymk is even in k since Pk(x; y)=P�k(x;�y). The torsion group is generically of or-der 2. As with the family B, there are two facesy2�bx and x3+bx with measure log jbj so the con-dition (A) holds only for jbj = 1. Write Kb = Kas above. All Kb have a 4-fold rotational sym-metry. For b > 0, the outer boundary of Kb re-sembles the intersection of a pair of ellipses withmajor axes along the coordinate axes. For b < 0,the set Kb is obtained by rotating Kjbj through�=4. To see why, let ! = exp(2�i=8) and consider

P (�ix; !y). The intersection of Kb with the realaxis is [�(b + 2); b + 2] in case b > 0.For b = 1, we thus expect a formula of type E forinteger jkj � 3 and this is experimentally veri�edfor 3 � k � 40. For b = �1, the intersection ofK�1with the real axis is approximately [�1:5; 1:5] so weexpect a formula of type E for integer jkj � 2 andagain this is experimentally veri�ed for 2 � k � 40.By analogy with the family B, we might expect aformula of mixed type for jbj > 1, at least if ksatis�es the same arithmetic condition. This turnsout to be correct, at least experimentally, with thecorrect formula apparently beingm(y2 + kxy � x3 � bx) ?= 14 log jbj+ rL0(E; 0);for suitable rational r, provided k 2 Gb;1 and thatthe square-free part of b divides k. This has beenveri�ed for �2 � b � 6, b 6= 0 and jbj+2 � k � 40.We now return briey to the families arising fromelliptic modular surfaces, in particular to the fam-ily �00(5) given by (2{17) or (2{18). We can get anisomorphic curve by replacing x+1 by x, obtainingthe polynomial xy2+(x2+(k+1)x�k)y+x2, whichcan be given a more pleasant form without chang-ing the measure by multiplying by x and changingxy to y, obtainingQk(x; y) = y2 + (x2 + (k + 1)x� k)y + x3:This is rather similar to the polynomial that ap-pears in (2{30) for which we found a formula oftype CE. The curve Qk = 0 is isomorphic to Pk =0, with Pk as in (2{17) or (2{18), and hence corre-sponds to the group �00(5). In contrast to Pk, Qkvanishes on the torus since Qk(1;�1) = 0 for allk, but recall that this is also true for the example(2{30).The measures of two of the faces are equal tolog jkj so we might expect a formula of type CEhere. But notice that the coe�cient of the term(k + 1)xy is relatively prime to k so the divisibil-ity condition discovered in examples B and C onlyholds for k = �1. So this is a good test of the



66 Experimental Mathematics, Vol. 7 (1998), No. 1conjecture that this divisiblity condition is neces-sary. Indeed, we �nd, at least for small values ofjkj > 1 that apparently m(Qk) is not a rationalcombination of log jkj and L0(Ek; 0).For k = 1, we �nd that m(Q1) ?= 5b11, producingthe example (1{24). Notice that here P1 = 0 andQ1 = 0 are the \same curve", butm(P1) ?= (7=5)m(Q1):To see why the exampleQ1 = y2 + (x2 + 2x� 1)y + x3works, we can embed it in the familyy2 + (x2 + kx� 1)y + x3: (2–32)For the family (2{32), the setK\R = [�2; 2] so 2 ison the outer boundary of K and we expect to �nda formula of type E for k = 2. And, as expected,we obtain formulas of type E for this family for2 � jkj � 20.On the other hand, for k = �1, it seems thatm(Q�1) is not a rational multiple of b11. The ex-planation is that the (missing) central term is notdominant. More precisely, embedding Q�1 = y2 +(x2 + 1)y + x3 in the familyy2 + (x2 + kx+ 1)y + x3; (2–33)we �nd that 0 is an interior point of the set K andso our heuristics suggest that we should not expecta formula of type E for k = 0. Again, for the family(2{33), we �nd formulas of type E for k � 2 andk � �4, exactly as expected since K \R = [�4; 2].It is instructive to look at our geometric condi-tion (G) in more detail for the family (2{33). No-tice that, if y1(x) and y2(x) are the two roots ofP (x; y) = 0 then jy1(x)y2(x)j = jx3j = 1 for jxj = 1so either both roots lie on the unit circle for jxj = 1or else exactly one is outside the unit circle and oneinside. Thus condition (G)(i) just barely fails fork 2 [�4; 2]. Condition (G)(ii) in fact holds for thetwo values k = 0 and k = 1. The case k = 0 is theone occuring in the previous paragraph for whichE isomorphic to the curve X0(11) of conductor 11.

For k = 0, there are two complex branch points injxj < 1, one branch point at x = 1 and another realbranch point in x > 1. If jxj = 1, x 6= 1, the twobranches y1(x) and y2(x) cross the unit circle ex-actly when x = �i. We can number them so thatjy1(x)j > 1 for x 6= 1 on the right half of jxj = 1and jy2(x)j > 1 for x on the left half of jxj = 1. Wesee then that we can writem(P0) = 1� Z �=20 log jy1j+ 1� Z ��=2 log jy2j= 1� Z �0 ��log jy1j�� = A1 +A2;where A1 is the integral over [0; �=2] and A2 theintegral over [�=2; �]. We �nd that numericallym(P0) = :4056029559 : : :, which seems not to berationally related to b11. On the other hand, theintegralv(P0) = 12� Zjxj=1log jy1j = 1� Z �0 log jy1j = A1 �A2can be reduced to an integral of the form ! over abranch cut between the two branch points in jxj <1. Thus, our earlier discussion would suggest thatv(P0) should be rationally related to b11 and indeedwe �nd thatv(P0) = �:1521471417 : : : ?= �b11;veri�ed to 50 decimal place accuracy. This is inaccord with our contention that in case P vanisheson the torus, it is the integral of ! around a branchcut rather than m(P ), which should be rationallyrelated to L0(E; 0).Incidentally, we remark that the families (2{32)and (2{33) generically have trivial rational torsiongroups except for a few small values of k. Neitherof these families is of the form (2{26) because ofthe term x2y. The discriminant and a Weierstrassequation for (2{32) are k4 � k3 + 8k2 � 36k + 43andy2 = x3+(k2�12k+16)x2� 8(k�2)(k2�5k+5)x+16(k2�3k+3)2:



Boyd: Mahler’s Measure and Special Values of L-functions 67For (2{33), they are k4 � k3 � 8k2 + 36k � 11 andy2 = x3 + (k2�4)x2 � 8kx+ 16:A number of other families of the shape (2{26)have been investigated with results completely con-sistent with the above. The reader is welcome todownload the detailed results by anonymous ftp;see the section on electronic availability on page 79.It will be interesting to see if these results can beshown to be consistent with the Bloch{Beilinsonconjecture.
3. FAMILIES OF CURVES OF GENUS 2In this section, we discuss two classes of reciprocalpolynomials for which the curveZk = fPk(x; y) = 0gis generically of genus 2. The particular examplesto be considered again arose from our early exper-iments with reciprocal polynomials of small mea-sure. In contrast to most of the genus 1 exampleswe considered, the polynomials Pk(x; y) all vanishon the torus for all k. Thus there is no obviousanalogue of the set K of Section 2. In the genus 2case the assumption that Pk be reciprocal plays aadditional role: it insures that the Jacobian J(Zk)of the curve splits into the product of two ellipticcurves. Of course there are other classes of poly-nomials for which this would also be the case butwe have not yet attempted a systematic study ofsuch examples.In Section 3A, we discuss the polynomialsPk(x; y) = A(x)y2 + (B(x) + kx(x+ 1))y + C(x);

(3–1)where A(x) is one of 1, x � 1, x2 + x + 1, x2 + 1or (x � 1)2, B(x) is one of 0 or x3 + 1, and whereC(x) = xcA(1=x) is chosen so that Pk is reciprocal.As in Section 2, these families of polynomials aregiven the names a.b, where a is 1, 2, 3, 2a, 3s,respectively for the �ve choices of A listed above(for the choice x � 1, we choose whichever signmakes the polynomial nontrivial), and where b is2 or 4 for the two choices of B listed above. (The

number denotes the number of nonzero coe�cientsin the middle coe�cient of Pk). Data for thesefamilies can be obtained by anonymous ftp; seepage 79.These polynomials are a generalization of the ex-ample in (1{30). It seems that for these families,formulas of type E (or D in degenerate cases) holdfor all integer k.In Section 3B, we discuss the polynomialsPk(x; y) = A(x)y2 +Bk(x)y + C(x);where A(x) is one of 1, x2+x+1, or x4+x3+x2+x+1, where C(x) is chosen so that Pk is reciprocal,and whereBk(x) = x4 + kx3 + lx2 + kx+ 1;l being chosen so that Zk is generically of genus2, which means in particular that l = �2k + c forcertain choices of sign and integers c. That is, Pkis of the formPk(x; y) = A(x)y2 + (B(x) + kx(x� 1)2)y + C(x):
(3–2)This gives 2 choices of l in case A = 1 andfour choices in the other two cases. We denotethese families by 1.5(A or B), 3.5(A to D), and5.5(A to D). See page 79 for information on theelectronic availability of data for these families.The shape of the polynomials 3.5 is motivated bythe example (1{13) but the curve de�ned by thatpolynomial is of genus 3. In contrast to the �rstclass of examples, it seems that formulas of typeE hold only for a semi-in�nite interval of integersk: either k � k0 or k � k0 for some k0. However,it seems that this restriction does not apply to thedegenerate cases when the discriminant vanishes,which all seem to satisfy formulas of type D (inter-preted in a liberal sense in one case, (3{12)).We only consider families satisfying condition(A). Condition (G) is not appropriate here sinceit was de�ned for polynomials P (x; y) that do notvanish on the torus and for which deg(D) � 4 andneither of these conditions holds here. However,



68 Experimental Mathematics, Vol. 7 (1998), No. 1the more general condition (B) can be considered.First we discuss the branch points of y(x), the so-lution of P (x; y) = 0, dropping the subscript k forthe moment. SinceY (x) = A(x)y(x) +B(x) =pD(x);these are simply the roots of D(x) of odd order.For both classes of examples, D(x) is reciprocal.For the type (3{1), deg(D) = 6, and for the type(3{2), deg(D) = 8, but in the latter case D has afactor (x� 1)2. So there are (generically) 6 branchpoints. Since D is reciprocal, these are symmetri-cally located relative to jxj = 1. Let us say thatpoints these have distribution (a; b; c) if there area, b and c branch points outside, on and inside theunit circle jxj = 1. So a = c and hence there are4 possible distributions: (3; 0; 3), (2; 2; 2), (1; 4; 1)and (0; 6; 0). We will �nd that if the distributionis (3; 0; 3) then a formula of type E never holds. Inthe case of (2; 2; 2), we always obtain a formula oftype E. In the case of (1; 4; 1), we do obtain formu-las of type E for the families (3{1) but not for thefamilies (3{2). The only examples we have of thedistribution (0; 6; 0) are degenerate cases. All thisis consistent with condition (B) as we will discussin the individual cases.
3A. The First Class of Families of Curves of Genus 2The family 3.2, de�ned byPk(x; y) = (x2+x+1)y2+kx(x+1)y+x(x2+x+1);

(3–3)generalizes the example in (1{22), which is the spe-cial case k = 1. Completing the square, we see thatPk = 0 can be written asy21 = k2x2(x+ 1)2 � 4x(x2 + x+ 1)2 = Dk(x);where y1 = 2(x2 + x + 1)y + kx(x + 1). Thus Zkis hyperelliptic and generically of genus 2. Thediscriminant is k4(k2 � 9)(k2 + 16)2. When thisvanishes the genus is 0 or 1. Notice that Dk(x) isa reciprocal polynomial. As pointed out to me byBjorn Poonen, it is (well) known in this case that

J(Zk) is isogenous to the product of two ellipticcurves Ek � Fk. One substitutesx = (X + 1)=(X � 1); Y = (X � 1)3y1;and the equation reduces to one of the form Y 2 =h(X2), where h is cubic. Then the two ellipticcurves in question are y2 = h(x) and y2 = h�(x) =x3h(1=x) [Cassels and Flynn 1996, Chapter 14].For the family of (3{3), the Jacobian of Zk splitsinto the product of the curvesEk : y2 = x3 + (k2 � 24)x2 � 16(k2 � 9)x (3–4)and Fk : y2 = x3 + (k2 + 8)x2 + 16x: (3–5)Generically the rational torsion groups of Ek andFk are of orders 2 and 4 respectively. We need onlyconsider k � 0 because of the symmetry y ! �y.We have veri�ed for 1 � k � 33, k 6= 3, thatmk = m(Pk) ?= rkL0(Ek; 0);where rk is rational|in fact, the reciprocal of aninteger. For example, m1 ?= 13b34, m2 ?= � 16b200B,and m4 ?= � 13b224A. Clearly m0 = 0 since P0 is cy-clotomic. In the other degenerate case k = 3, thecurve E3 is the rational curve y2 = x3�15x2 and we�nd numerically that m3 ?= 16d15, giving a �rst ex-ample of the appearance of the odd Dirichlet char-acter of conductor 15. Since Ray's method [1987]does not deal with the conductor 15, it would bedesirable to �nd a proof of this equation.The last example also illustrates another inter-esting point. Note that in this case the curve Z hasgenus 1, and in fact it is birationally equivalent toE2 that is an elliptic curve of conductor 15 buthere our formula is of type D, not type E. So evenif P (x; y) is reciprocal and Z is an elliptic curve,it is not always true that m(P ) = rL0(E; 0). Thisis not in conict with the conjecture of Section 2since P3 is not of the shape considered there.To test the condition (B) for this family 3.2, we�nd that the distribution of the branch points is



Boyd: Mahler’s Measure and Special Values of L-functions 69(2; 2; 2) if 3 < jkj and (1; 4; 1) if jkj � 3. In the�rst case, Jensen's formula immediately expressesm(P ) as the integral of log jy1j over the unit circlebetween the two branch points on the circle so (B)holds just as in the earlier discussion of the recip-rocal polynomial (page 50). For the distribution(1; 4; 1) there are four branch points a; b;�b; �a on
jxj = 1, listed counterclockwise and with a and bin the upper half plane. Jensen's formula expressesm(P ) as the sum of two integrals, between a and band �b and �a. But these two integrals are equal soin this case we still have condition (B) satis�ed.Table 7 contains a summary of the results forthe family 3.2.Curve Ek Curve Fkk s NE a1 a2 a3 a4 a6 NF a1 a2 a3 a4 a61 3 34 1 0 0 �3 1 17 1 �1 1 �1 02 �6 200 0 1 0 �3 �2 40 0 0 0 �2 13 (6m3 = d15; g = 0 : y2 = x3 � 15x2) 15 1 1 1 �5 24 �3 224 0 1 0 �8 �8 32 0 0 0 �11 145 �6 410 1 0 0 �16 0 205 1 �1 1 �22 446 �12 936 0 0 0 �30 29 312 0 �1 0 �39 1087 �60 4550 1 0 0 �53 97 455 1 �1 1 �67 2268 36 4400 0 1 0 �88 228 80 0 0 0 �107 4269 �24 1746 1 �1 1 �140 591 291 1 1 1 �164 74010 �912 105560 0 1 0 �211 1014 1160 0 0 0 �242 144911 �228 21098 1 0 0 �308 1936 1507 1 �1 1 �346 256012 �72 7200 0 0 0 �435 3350 480 0 �1 0 �480 421213 216 24050 1 0 0 �598 5412 2405 1 �1 1 �652 656614 �4104 555016 0 1 0 �803 8302 2968 0 0 0 �866 980915 216 21690 1 �1 1 �1058 13281 3615 1 1 1 �1130 1415016 �480 67184 0 1 0 �1368 18772 272 0 0 0 �1451 2127417 3216 362950 1 0 0 �1743 27577 5185 1 �1 1 �1837 3075618 1680 214200 0 0 0 �2190 39125 2040 0 �1 0 �2295 4309219 �1356 157586 1 0 0 �2718 53956 7163 1 �1 1 �2836 5883020 �4464 813280 0 1 0 �3336 72664 2080 0 0 0 �3467 7857421 �624 57582 1 �1 1 �4055 99951 9597 1 1 1 �4199 10298022 240 41800 0 1 0 �4883 129238 440 0 0 0 �5042 13780123 �13608 1629550 1 0 0 �5833 170457 12535 1 �1 1 �6007 18068624 264 37296 0 0 0 �6915 220754 1776 0 �1 0 �7104 23284825 �3888 493570 1 0 0 �8141 281425 3205 1 �1 1 �8347 29559426 69312 12000664 0 1 0 �9523 353862 17992 0 0 0 �9746 37032927 �648 67050 1 �1 1 �11075 450627 2235 1 1 1 �11315 45855228 1008 173600 0 1 0 �12808 552888 1120 0 0 0 �13067 57492629 4392 646178 1 0 0 �14738 686596 24853 1 �1 1 �15016 71197030 5904 906840 0 0 0 �16878 843077 27480 0 �1 0 �17175 87210031 �51744 7208306 1 0 0 �19243 1024881 30287 1 �1 1 �19561 105788032 �6240 1055600 0 1 0 �21848 1234708 1040 0 0 0 �22187 127202633 �10128 1093950 1 �1 1 �24710 1500117 36465 1 1 1 �25070 1517402

TABLE 7. Data for the family 3.2, de�ned by (3{3). Ek and Fk are the two factors of the Jacobian, given by(3{4) and (3{5), and NE , NF are their conductors. The s column gives the value of s = 1=rk = L0(Ek; 0)=mk,inferred from the numerical computation to 28 decimal places.



70 Experimental Mathematics, Vol. 7 (1998), No. 1Call an elliptic curve over Q even if it has a ra-tional 2-torsion point and odd if it has no rational2-torsion. Notice that this is a rational isogenyinvariant. The curves of genus 1 arising from re-ciprocal polynomials that were discussed in Section2A are all even, as we pointed out there. For thecurves considered here, whereJ(Zk) ' Ek � Fk;either both factors Ek, Fk are even or both are oddsince h(x) has a rational zero if and only if h�(x)does.The three curves of conductor 11 are all odd,with torsion group of order 5 or 1, so it was achallenge to �nd a reciprocal polynomial for whichm(P ) is a rational multiple of b11. Our �rst exam-ple (1{26) of such a polynomial was obtained byconstructing the family 3s.4:(x�1)2y2+(x3+kx2+kx+1)y+x(x�1)2; (3–6)The discriminant is (k + 1)8(k2 � 11k + 116)2 andthe factors of the Jacobian areEk : y2 = x3 � 2(k+1)(k�3)x2+(k+1)3(k�7)x+ 16(k+1)4 (3–7)andFk : y2 = x3 + (k+1)(k�7)x2�32(k+1)(k�3)x+ 256(k+1)2: (3–8)Here the two curves Ek and Fk are both odd forall but �nitely many values of k. (The exceptionalvalues satisfy a diophantine equation that has only�nitely many solutions). If k = 7, for example,E7 and F7 are both odd, having conductors 11 and88 respectively, and, as we have already indicatedin (1{26), m7 ?= 13b11. For k = 0, E0 and F0each have conductor 58 but are not isogenous; theyare in Cremona's classes 58A and 58B, respectivelyand we have m0 ?= �b58A. For k = �2, the curvesE�2 and F�2 are the (odd) curves 142B and 142A,respectively, and m�2 ?= �2b142B. Experimentally,we �nd that m(Pk) ?= rkL0(Ek; 0) for jkj � 20,k 6= �1. Note that m�1 = 0. The data here is

summarized in Table 8. The distribution of branchpoints for this family is (2; 2; 2) for all k so thecondition (B) always holds as for the family 3.2.
3B. A Second Class of Families of Curves of Genus 2At one time, we had hoped that if P (x; y) is a recip-rocal polynomial satisfying the condition (A) andfor which the curve fP (x; y) = 0g of genus 1 or 2,then m(P ) should be a rational multiple of an ap-propriate L0(E; 0) or L0(�;�1). However, the classof examples to be discussed in this Section showsthis is not the case and exhibits some interestingnew features.One example from this class is the family 3.5B,Qk(x; y) = (x2 + x+ 1)y2+ (x4 + kx3 + (2k�4)x2 + kx+ 1)y+ (x4 + x3 + x2); (3–9)whose shape is suggested by (1{15). However, thecurve de�ned by (1{15) has genus 3, while the mid-dle coe�cient of (3{9) has been chosen so that thecurve de�ned by Qk = 0 is generically of genus 2.HereDk(x) = (x+ 1)2(x2 + (k � 4)x+ 1)�(x4 + (k + 2)x3 + (2k � 2)x2 + (k + 2)x+ 1):The discriminant is(k + 1)(k � 2)(k � 5)4(k � 6)(k2 � 4k + 20)2:The Jacobian splits into the two curvesEk : y2 = x3+(k2� 4k� 20)x2� 16(k� 5)(k+1)x

(3–10)andFk : y2 = x3+(k2�8k+20)x2+16(k�5)x: (3–11)We �nd, for 6 � k � 35, that mk ?= rL0(Ek; 0), butfor k < 6, mk does not seem rationally related toeither of L0(Ek; 0) or L0(Fk; 0) nor to a linear com-bination of these and other plausible terms. Forthe degenerate cases k = �1; 2; and 5, it seems



Boyd: Mahler’s Measure and Special Values of L-functions 71Curve Ek Curve Fkk s NE a1 a2 a3 a4 a6 NF a1 a2 a3 a4 a60 �1 58 1 �1 0 �1 1 58 1 1 1 5 91 �4 212 0 �1 0 �4 8 53 1 �1 1 0 02 �14 882 1 �1 0 �9 27 882 1 �1 1 1 393 �1 92 0 0 0 �1 1 184 0 �1 0 0 14 �6 550 1 1 0 �25 125 550 1 �1 1 �15 875 �20 1548 0 0 0 �39 254 387 1 �1 1 �2 26 �30 4214 1 �1 0 �58 454 4214 1 1 1 �43 1537 1=13 11 0 �1 1 0 0 88 0 0 0 �4 48 �1 138 1 1 0 �1 1 414 1 �1 1 �92 4159 �40 4900 0 0 0 �175 1750 1225 1 1 1 �8 610 �78 12826 1 1 0 �244 2534 12826 1 �1 1 �177 99311 �10 1044 0 0 0 �21 61 2088 0 0 0 �15 2312 �2 338 1 �1 0 �454 5812 338 1 1 1 �322 212713 104 13916 0 �1 0 �604 8408 3479 1 �1 1 �27 6014 248 35550 1 �1 0 �792 11866 35550 1 �1 1 �560 526715 �1=2 88 0 0 0 �4 4 352 0 �1 0 �45 13316 160 28322 1 1 0 �1306 22184 28322 1 �1 1 �930 1116917 �12 1308 0 1 0 �20 36 981 1 �1 1 �74 26218 �40 7942 1 �1 0 �2053 42739 7942 1 1 1 �1480 2132119 44 6700 0 �1 0 �158 937 13400 0 0 0 �115 47520 �204 32634 1 �1 0 �3096 75816 32634 1 �1 1 �2267 42123�1 m = 0 (g = 0 : y2 = x3) (g = 0 : y2 = x3)�2 �2 142 1 1 0 �1 �1 142 1 �1 1 �12 15�3 �4 316 0 0 0 �7 �2 79 1 1 1 �2 0�4 �2 198 1 �1 0 �18 4 198 1 �1 1 �65 209�5 �2 196 0 �1 0 �2 1 392 0 0 0 �7 7�6 �40 5450 1 �1 0 �67 91 5450 1 1 1 �178 831�7 �4 396 0 0 0 �111 214 99 1 �1 1 �17 30�8 �56 6566 1 1 0 �172 428 6566 1 �1 1 �384 2979�9 �2=13 37 0 0 1 �1 0 296 0 �1 0 �33 85�10 �8 978 1 0 1 �5 2 2934 1 �1 1 �722 7633�11 �144 17900 0 �1 0 �508 3512 4475 1 �1 1 �60 192�12 �60 11858 1 �1 0 �688 5704 11858 1 1 1 �1240 16281�13 �36 3852 0 0 0 �57 137 7704 0 0 0 �99 379�14 �424 78754 1 1 0 �1186 12914 78754 1 �1 1 �1995 34779�15 280 49588 0 0 0 �1519 19894 12397 1 1 1 �155 678�16 400 61650 1 �1 0 �1917 29241 61650 1 �1 1 �3050 65577�17 �2 296 0 �1 0 �9 13 1184 0 0 0 �232 1360�18 �840 184382 1 �1 0 �2944 57082 184382 1 1 1 �4477 113427�19 �4 588 0 �1 0 �44 120 441 1 �1 1 �335 2440�20 �76 16606 1 1 0 �4339 101069 16606 1 �1 1 �6357 196653
TABLE 8. Data for the family 3s.4, de�ned by (3{6). The curves Ek and Fk are given by (3{7) and (3{8).



72 Experimental Mathematics, Vol. 7 (1998), No. 1that one has m2 = (4=3)d4, m5 = 2d4, and theunusual m�1 ?= 13d7 + 16d15: (3–12)Incidentally, Q�1 = 0 is an elliptic curve of con-ductor 210 = 2:3:5:7.Although we cannot prove (3{12), we can provethe two formulas form2 andm5. These follow from(1{8) and (2{8) and the factorizationsQ2(x; y) = (y + x2 + x+ 1)((x2 + x+ 1)y + x2)andQ5(x; y) = (x2 + x+ 1)(y2 + (x2 + 4x+ 1)y + x2):The two cases k = 3 and k = 4 illustrate an-other interesting phenomenon. Proceeding as inthe derivation of (1{16), we �nd that m(Qk) is theintegral of a certain fk(t) over the subset of [0; �]where dk(t) = e�4itDk(eit) > 0. In case k = 3or 4, and only in these cases, the set on whichdk > 0 consists of two intervals, [0; t1], [t2; �], say.If we let m0(Qk) and m00(Qk) be the integrals offk(t) over these two intervals, then we �nd thatm0(Q3) ?= 13b34 and m0(Q4) ?= (�1=6)b200B , (corre-sponding to the curve Ek in each case), but thatm00(Qk) seems unrelated to L0(Ek; 0) or L0(Fk; 0)in either of these cases. Some data for the fam-ily 3.5B is presented in Table 9 in the format ofTable 7.To see the relevence of condition (B) here, welook at the distribution of the branch points. Fork � �1 the distribution is (3; 0; 3) and notice thatwe do not �nd a formula of type E in this range.Notice here that there are no branch points on thecircle but that Dk(x) has a double root at x = �1.So both branches of y(x) are holomorphic at x =�1 and have y(�1) = �1 there. Although Jensen'sformula allows one to express m(P ) as the integralof log jy1(x)j, over the unit circle from �1 to �1,where y1(x) is a root of P (x; y) with jy1(x)j > 1 onfjxj = 1; x 6= �1g, this root y1(x) is not a branch ofthe function y(x). Both of these branches have anexpansion y(x) = �1� c(x+ 1) + � � � near x = �1and for each jy(x)j � 1 changes sign as x crosses

�1. Thus (B) does not hold. In essence, becausethere are three branch points inside and outsidejxj = 1, if branch cuts are introduced between pairsof branch points then one of these cuts must crossthe circle. (For the most symmetric arrangementof cuts, one cut crosses the circle at x = �1).For �1 � k < 2, and for 6 < k, the distributionis (2; 2; 2), in which case (B) always holds and thisis exactly the interval where we do �nd formulasof type E.Finally, for 2 � k � 6, the distribution is (1; 4; 1),a case where we found formulas of type E for thefamily 3.2. The integers in the interval in questionare the two degenerate cases k = 2 and 6 and thetwo unusual cases k = 3 and 4 mentioned above.Here there are 4 branch points on the circle a; b;�b; �alisted as for the family 3.2. In contrast to that case,however, Jensen's formula expresses m(Qk) as thesum of two integrals along jxj = 1, m0(Qk) between�a and a and m00(Qk) between b and �b, where thesecond arc b�b contains the point �1. The integralm0(Qk) is the integral between two branch pointsof log jy1(x)j where y1(x) is a branch of y(x). Thisis the integral for whichm0(Qk) ?= rkL0(Ek; 0). Theother integral, however, is not of this type for thesame reason as in the discussion of (3; 0; 3): theroot y1(x) being integrated is not a branch of y(x)because the arc b�b contains �1.A second example is the family 1.5A with thepolynomialQk(x; y) = y2 + (x4 + kx3 + 2kx2 + kx+ 1)y + x4:
(3–13)HereDk(x) = (x+ 1)2(x2 + (k � 2)x+ 1)�(x4 + kx3 + (2k + 2)x2 + kx+ 1);and the discriminant is k3(k + 1)(k � 4)(k � 8)2.The Jacobian splits into the two curves,Ek : y2 = x3+(k2� 4k� 8)x2+16(k+1)x (3–14)andFk : y2 = x3 + (k2 � 8k + 8)x2 + 16x: (3–15)



Boyd: Mahler’s Measure and Special Values of L-functions 73For �50 � k � 4, it seems that we obtain a formulaof type E (or D in the degenerate cases) in termsof the curve Ek, as one sees from Table 13. For thedegenerate case k = 8, we do have m8 ?= 4d4 but for no k > 4 does it appear that we have a formulaof type E.The distribution of the branch points is (2; 2; 2)for k < �1 and 0 < k � 4 so (B) is satis�ed andCurve Ek Curve Fkk s NE a1 a2 a3 a4 a6 NF a1 a2 a3 a4 a60 ? 200 0 1 0 �3 �2 300 0 �1 0 �13 221 ? 34 1 0 0 �3 1 170 1 0 1 �8 62 3m = 4d4 (g = 0 : y2 = x(x � 12)2) 24 0 �1 0 �4 43 3m0 = b 34 1 0 0 �3 1 102 1 1 0 �2 04 �6m0 = b 200 0 1 0 �3 �2 20 0 1 0 �1 05 m = 2d4 (g = 0 : y2 = x3 � 15x2) (g = 0 : y2 = x3 + 5x2)6 �3 224 0 1 0 �8 �8 (g = 0 : y2 = x(x + 4)2)7 �6 410 1 0 0 �16 0 82 1 0 1 �2 08 �12 936 0 0 0 �30 29 156 0 �1 0 �5 69 �60 4550 1 0 0 �53 97 390 1 1 0 �13 1310 36 4400 0 1 0 �88 228 200 0 1 0 �28 4811 �24 1746 1 �1 1 �140 591 2910 1 1 0 �52 12412 �912 105560 0 1 0 �211 1014 2436 0 �1 0 �89 35413 �228 21098 1 0 0 �308 1936 1918 1 0 1 �143 64214 �72 7200 0 0 0 �435 3350 240 0 �1 0 �216 129615 216 24050 1 0 0 �598 5412 5550 1 1 0 �315 202516 �4104 555016 0 1 0 �803 8302 11660 0 1 0 �445 346817 216 21690 1 �1 1 �1058 13281 15906 1 1 0 �611 556518 �480 67184 0 1 0 �1368 18772 5304 0 �1 0 �820 931619 3216 362950 1 0 0 �1743 27577 55510 1 0 1 �1079 1354220 1680 214200 0 0 0 �2190 39125 35700 0 �1 0 �1393 2048221 �1356 157586 1 0 0 �2718 53956 11310 1 1 0 �1772 2798422 �4464 813280 0 1 0 �3336 72664 3536 0 1 0 �2224 3963623 �624 57582 1 �1 1 �4055 99951 46614 1 1 0 �2757 5458524 240 41800 0 1 0 �4883 129238 1140 0 �1 0 �3381 7680625 �13608 1629550 1 0 0 �5833 170457 103550 1 0 1 �4106 10090826 264 37296 0 0 0 �6915 220754 31080 0 �1 0 �4940 13530027 �3888 493570 1 0 0 �8141 281425 296142 1 1 0 �5896 17182028 69312 12000664 0 1 0 �9523 353862 175076 0 1 0 �6985 22238429 �648 67050 1 �1 1 �11075 450627 102810 1 1 0 �8218 28334830 1008 173600 0 1 0 �12808 552888 1200 0 �1 0 �9608 36571231 4392 646178 1 0 0 �14738 686596 111410 1 0 1 �11168 45330632 5904 906840 0 0 0 �16878 843077 35724 0 �1 0 �12909 56885433 �51744 7208306 1 0 0 �19243 1024881 41034 1 1 0 �14847 69016534 �6240 1055600 0 1 0 �21848 1234708 105560 0 1 0 �16996 84720035 �10128 1093950 1 �1 1 �24710 1500117 961350 1 1 0 �19370 1029600
TABLE 9. Data for the family 3.5B, de�ned by (3{9). The curves Ek and Fk are given by (3{10) and (3{11).



74 Experimental Mathematics, Vol. 7 (1998), No. 1this is exactly in the case where we �nd a formulaof type E. For k > 4, on the other hand, the dis-tribution is (3; 0; 3) so condition (B) is not satsi�edand this coincides with the k for which we �nd noformula of type E. (In the case �1 � k < 0, thedistribution is (1; 4; 1), but the only integer in thisinterval is k = �1, which is a degenerate case).All the other families of the shape (3{2) that wehave examined exhibit similar behaviour. Namely,m(Pk) ?= rkL0(Ek; 0) for one of the factors of theJacobian for all integers k in a semi-in�nite in-terval, k � k0 or k � k0 but apparently for noother integers except thatm(Pk) satis�es a formulaof type D in degenerate cases. Formulas of typeE always occur when the distribution of branchpoints is (2; 2; 2) and never when the distributionis (3; 0; 3).Finally, we point out the following unexpectedcoincidence. An examination of Tables 7 and 9will reveal that the families 3.2 of (3{3) and 3.5B of(3{9) have something in common. Indeed if Pk is asin (3{3) andQk as in (3{9), thenm(Pk) ?= m(Qk+2)for 4 � k � 33, but not for k � 3. Notice thatEk of (3{4) is the same as Ek+2 of (3{10) butthat Fk of (3{5) and Fk+2 of (3{11) are di�erent.(This is most easily checked by looking at the ta-bles). It would be interesting to prove directly thatm(Pk) = m(Qk+2) for k � 4. This presumablyshould be true for all real, not just integer, k � 4.Another coincidence of the same type relates thefamilies 1.5A of (3{13) and 2.3 of (1{31), as onesees by an examination of Tables 2 and 13. Itappears that if Pk is as in (1{31) and Qk as in(3{13), then m(Pk+2) = m(Q�k), for k � 1, butnot for other values of k. Notice that in this case,the curves of the family 2.3 are of genus 1 whilethose of the family 1.5A are of genus 2. Again, itwould be interesting to understand the reason forthis behaviour.
4. DEGENERATE CASESIn this section, we collect some of the examplesrelevant to Chinburg's conjecture that one can re-

alize all df = L0(��f ;�1) as rational multiples ofmeasures m(P (x; y)) of polynomials with integercoe�cients. The examples here occur as degener-ate cases of the families of curves studied in theprevious sections, that is, in cases where the dis-criminant vanishes. Thus the curves fP (x; y) = 0ghave genus either 0 or 1. We remind the readerthat the symbol ?= means that the formulas haveonly been veri�ed to high numerical accuracy, butnot proved.As explained earlier, plausible values for f ineach case were deduced by examining the nonva-nishing factors in the discriminant. The values ofdf were computed in a naive way from the formuladf = L0(��f ;�1) = f 3=24� L(��f ; 2):Since � has period f , one only needs to computethe values of the following sums:A(f; j) = 1Xn=0 1(fn+ j)2 ; (4–1)for 1 � j < f with j relatively prime to f . Thenone simply formsL(��f ; 2) = X(j;f)=1��f (j)A(f; j):The series in (4{1) are slowly convergent but areeasily computed by means of the Euler{Maclaurinformula (they are simply multiples of values of theHurwitz zeta function). Fortunately, the summa-tion routines of Maple handle this automaticallyand make it easy to obtain 50 decimal place accu-racy. Table 11 on page 77 contains the values of dfneeded in our study as well as a few others.Subsequently, it was realized that a more e�-cient way to compute L0(��f ;�1) for primitive odd��f is to use the formula, which Grayson [1981] at-tributes to Bloch:L0(��f ;�1) = f4� fXm=1��f (m)D(�mf ):



Boyd: Mahler’s Measure and Special Values of L-functions 75Curve Ek Curve Fkk s NE a1 a2 a3 a4 a6 NF a1 a2 a3 a4 a61 1=2 14 1 0 1 �1 0 21 1 0 0 1 02 1 36 0 0 0 0 1 24 0 �1 0 1 03 1=2 30 1 0 1 1 2 15 1 1 1 0 04 1=4 20 0 1 0 4 4 (g = 0 : y2 = x(x� 4)2)8 m = 4d4 (g = 0 : y2 = x(x+ 12)2) (g = 0 : y2 = x(x+ 4)2)�1 m = 2d3 (g = 0 : y2 = x3 � 3x2) 15 1 1 1 �5 2�2 1=3 20 0 1 0 �1 0 120 0 1 0 �15 18�3 1 66 1 0 1 �6 4 231 1 1 1 �34 62�4 1=2 36 0 0 0 �15 22 24 0 �1 0 �64 220�5 �1 130 1 0 1 �33 68 195 1 0 0 �110 435�6 6 420 0 1 0 �61 164 840 0 �1 0 �175 952�7 6 630 1 �1 0 �105 441 1155 1 1 1 �265 1550�8 1=10 14 1 0 1 �11 12 48 0 1 0 �384 2772�9 1 102 1 0 1 �256 1550 663 1 1 1 �539 4592�10 2 180 0 0 0 �372 2761 840 0 �1 0 �735 7920�11 �12 2090 1 0 1 �524 4566 3135 1 0 0 �980 11727�12 �6 660 0 1 0 �716 7140 15 1 1 1 �80 242�13 �12 1638 1 �1 0 �957 11637 4641 1 1 1 �1644 24972�14 30 4004 0 1 0 �1253 16660 1848 0 1 0 �2079 35802�15 42 4830 1 0 1 �1613 24788 6555 1 1 1 �2595 49800�16 1 90 1 �1 1 �128 587 240 0 �1 0 �3200 70752�17 1 170 1 0 1 �2554 49452 1785 1 0 0 �3905 93600�18 24 2652 0 1 0 �3153 67104 3432 0 �1 0 �4719 126360�19 �2 342 1 �1 0 �3852 92988 1311 1 1 1 �5654 161282�20 �18 2660 0 1 0 �4660 120900 840 0 1 0 �6720 209808�21 �42 6090 1 0 1 �5589 160336 3045 1 1 1 �7930 268502�22 108 13860 0 0 0 �6648 208633 17160 0 �1 0 �9295 348040�23 �84 15686 1 0 1 �7851 267074 2139 1 0 0 �10829 432840�24 1 138 1 0 1 �576 5266 336 0 �1 0 �12544 544960�25 6 990 1 �1 0 �10734 430740 4785 1 1 1 �14455 662900�26 �24 4420 0 1 0 �12441 529984 26520 0 1 0 �16575 815850�27 18 2730 1 0 1 �14344 660002 3255 1 1 1 �18920 993800�28 2 252 0 0 0 �16455 812446 42 1 1 1 �1344 18405�29 66 15022 1 0 1 �18791 989850 35409 1 0 0 �24344 1459935�30 �288 33060 0 1 0 �21365 1194900 38760 0 �1 0 �27455 1760160�31 �216 36270 1 �1 0 �24195 1454625 42315 1 1 1 �30855 2073252�32 �2 310 1 0 0 �1706 26980 240 0 1 0 �34560 2461428�33 �16 2706 1 0 1 �30686 2066384 50061 1 1 1 �38589 2901642�34 324 47124 0 0 0 �34380 2453617 54264 0 �1 0 �42959 3441480�35 246 51170 1 0 1 �38398 2892828 58695 1 0 0 �47690 4004595�36 36 4620 0 1 0 �42756 3388644 1320 0 �1 0 �52800 4687452
TABLE 10. Data for the family 1.5A, de�ned by (3{13). The curves Ek and Fk are given by (3{14) and (3{15).



76 Experimental Mathematics, Vol. 7 (1998), No. 1m(y2 + (x3 � 4x2 � 4x+ 1)y + x3) ?= d7 (4–2)m((x2 + x+ 1)(y2 + 1) + 2xy) ?= 13d8 (4–3)m((x2 + x+ 1)(y2 + x) + 3x(x+ 1)y) ?= 16d15 (4–4)m((x2 + x+ 1)(y2 + x2) + (x4 � x3 � 6x2 � x+ 1)y) ?= 13d7 + 16d15 (4–5)m((x2 + x+ 1)(y2 + 1) + 6xy) ?= 16d24 (4–6)m((x2 + x+ 1)(y2 + x) + (x3 � 4x2 � 4x+ 1)y) ?= 118d39 (4–7)m((x4 + x3 + x2 + x+ 1)(y2 + 1) + (x4 � 3x3 � 6x2 � 3x� 1)y) ?= 130d55 (4–8)Some formulas of type D.Here �f is a primitive fth root of unity and D(z)denotes the Bloch{Wigner dilogarithm. One canthen take advantage of the very rapidly convergentformula of Cohen and Zagier for D(z) [Zagier 1991,p. 387], which is implemented in PARI. The resultsobtained by either method agreed to all decimalplaces computed.Given a P for which one suspects a formula oftype D, one can then test m(P ) for rational de-pendence on an appropriate set of df by using theLLL algorithm. We used PARI's \lindep2" rou-tine for this. Indeed, for the smaller conductors,one need not make the a priori assumption thatthe character involved is the odd primitive char-acter of a certain conductor but instead can testfor rational linear relation between m(P ) and theset of f 3=2A(f; j)=(4�) and deduce the appropriatecharacter from this. For the larger conductors, thiswould require too high an accuracy because of thenumber of terms involved.The box at the top shows some of the more in-teresting examples of formulas of type D that wehave discovered in this way.The families in question are 1.4, 3.1, 3.2, 3.5B,3.1, 3.4 and 5.5A, respectively. The polynomials(4{4), (4{7) and (4{8) are the �rst known exam-ples with conductors 15, 39 and 55 while (4{2) and(4{6) are simpler than Ray's examples with con-ductors 7 and 24. His formulas, of course, have

the advantage of having been proved rigorously.Ray's construction [1987] for conductor f producesa polynomial Pf (x; y) of the form (2{3) withA(x) = C(x) = �f (x);the minimal polynomial of the f -th roots of unity.He proves that m(Pf ) = rfdf , for f = 3; 4; 7; 8; 20and 24, where the rational rf is 8=7 for f = 7and (8���f (2))=f , if f 6= 7. As explained in [Ray1987], m(P15) is not a rational multiple of d15. Hereare his examples for f = 7; 8; 20 and 24:P7(x; y) = �7(x)(y � 1)2 + 7x2(x+ 1)2y;P8(x; y) = �8(x)(y � 1)2 + 8x2y;P20(x; y) = �20(x)(y � 1)2 + 20x2(x2 � 1)2y;P24(x; y) = �24(x)(y � 1)2 + 24x2(x2 � 1)2y:Here �7(x) = (x7 � 1)=(x � 1), �8(x) = x4 + 1,�20(x) = x8 � x6 + x4 � x2 + 1 and �24(x) = x8 �x4+1. Since the polynomials with even f are evenin x, one can obtain examples of lower degree inx with the same measure by substituting x for x2.So, for example, P8(px) = (x2 + 1)(y � 1)2 + 8xy,which falls into our family 3s.1 and indeed was ourmotivation for considering that family.Each of Ray's examples factor into linear factorsover the �eld Q (pf) while the examples (4{2) to(4{8) do not, so it seems that new methods willbe needed to prove them. It should be pointed



Boyd: Mahler’s Measure and Special Values of L-functions 77f df3 0:323065947219450514093636510723806394072241840780594 0:583121808061637560276768912936789837728132307971677 1:69770245700177544677125306614726156034690091524938 1:917195093120954061798823753669784564458505591867311 2:640587358751527699179508693083334426667892269219215 5:994310989131347263469766758110459703391927459921319 5:067139677855498676934564210345257998653014792394520 8:028989859023851008487106962884151191908260971112824 9:897221191738061668136011996838058958933448898387239 26:35219169965757601523941295695102969868736602039355 39:878041517883214774769741622874262194032748392618
TABLE 11. Some values of df = L0(��f ;�1).out that Ray's proof of m(P7) = (8=7)d7 is quitedeep and involves the proof of a new dilogarithmidentity.We should also remind the reader of example(2{14), which apparently hasm((x2+x�1)y2+(x2+5x+1)y+(�x2+x+1))?= 23 log(p5 + 12 ) + 16d15: (4–9)In this case, the polynomial does factor into lin-ear factors over Q (p5) so perhaps (4{9) is moreamenable to proof. It can be reduced to a diloga-rithm identity, but this identity has not yet beenproved.

5. CONCLUSIONSince the same sort of remarkable numerical co-incidences have been displayed in many hundredsof examples, it is fairly clear that the phenomenadiscovered here are real. What is lacking at themoment is a proof of most of these results. A �rststep would be to at least reduce the formulas toan application of the Bloch{Beilinson conjectures.Hubert Bornhorn, a doctoral student at M�unsterUniversity has made some progress on this ques-tion using a motivic approach.As we have described in Section 2, Rodr��guezVillegas has used the theory of modular forms to

treat the families 1.3 and 2.3 and the families aris-ing from elliptic modular surfaces described start-ing on page 59, thus showing that the formulas dis-covered numerically would follow from the Bloch{Beilinson conjectures, except for the determinationof the constants rk. In those few cases where thecurves in question have complex multiplication, hisresults lead to a rigorous proof of the formulas in-cluding the exact values of the rk. It seems clearthat his methods will apply to a great many, per-haps all, of the families of curves of genus 1 weconsidered in Section 2.Rodr��guez Villegas' methods also apply to somefamilies of polynomials in 3 variables. These havebeen di�cult to investigate numerically because ofthe di�culty of obtaining accurate numerical val-ues for m(P ). Indeed, the only such formula pre-viously known is Smyth's remarkable formulam(1 + x+ y + z) = 7�(3)=(2�2) = 14� 0(�2);see [Boyd 1981b].
6. SOME RECENT INFORMATIONWe now report on some of the progress that hasbeen made towards some of the questions raisedabove in the time since a preprint of this paperwas circulated.



78 Experimental Mathematics, Vol. 7 (1998), No. 1It became clear that the condition (A) was anatural condition when we found that it had oc-curred before in the paper of [Cooper et al. 1994,p. 70]. There the authors consider three-manifoldsM whose boundary is a single torus. They de�nea polynomial AM (x; y), called the A-polynomialof M , that is analogous to the Alexander polyno-mial of a knot or link. They prove that the facesof these polynomials are cyclotomic; i.e., that A-polynomials satisfy our condition (A). Most of thepolynomials occuring in that paper are much morecomplicated than those we consider here, but itwould be of interest to see if m(AM ) has a geomet-ric interpretation.Independently, Hubert Bornhorn and Rodr��guezVillegas have proved that the conjecture in Section2 follows from the Bloch{Beilinson conjectures inthe case that P (x; y) does not vanish on the torus.In this case, the condition (A) turns out to beequivalent to the condition that some power of thesymbol fx; yg 2 K2(E) is in the kernel of the tamesymbol. Condition (A) also implies that m(P ) isan integer multiple of rfx; yg where r is the Blochregulator de�ned on K2(Q (E)). This is exactlywhat is needed to apply the Bloch{Beilinson con-jecture in our situation. A proof of this is sketchedin [Rodr��guez Villegas 1997].We can also report some some further progresson Chinburg's conjecture discussed in Section 4.By considering polynomials P (x; y) =A(x)y+B(x)that are linear in y rather than quadratic, we havefound examples which are (numerically) rationalmultiples of df for f = 3; 4; 7; 8; 11; 15; 20; 24; 35;39; 55 and 84. For example, we havem((x+ 1)2(x2 + x+ 1)y + (x2 � x+ 1)2) ?= 23d11;which is a conductor not previously found, andm((x+ 1)2y + (x2 + x+ 1)) ?= 13d7;which is simpler than those reported above. Theseresults turn out to be related to computations ofBrowkin [1989] concerning Lichtenbaum's conjec-ture about K2(OF ), where OF is the ring of inte-

gers of an imaginary quadratic �eld F . In thesecases it can be shown using results from [Zagier1991] that the measures of the respective polyno-mials are rational multiples of the correspondingdf . However it has not yet been proved that therational numbers are as indicated, only that theyagree with these to 50 decimal place accuracy.We have also found a construction of irreduciblepolynomials giving formulas of type DE for m(P ).The construction exploits the fact that there is a re-lation between m(Pk) and m(Qk) if Pk = A(x)y2+Bk(x)y+C(x) and Qk = y2+Bk(x)y+A(x)C(x).Note that the curves Pk = 0 and Qk = 0 areisomorphic, since both have the Weierstrass formY 2 = Dk(X) with Dk = B2k � 4AC. If k is largeenough so that Pk and hence Qk does not vanish onthe torus, then one hasm(Qk) = m(Pk). But if thepolynomials vanish on the torus then the di�erencem(Qk)�m(Pk) can be expressed as an integral of(1=�) log jAj over a subset of the unit circle. Forcertain values of the parameter k, it may happenthat this integral can be expressed by a formula oftype D. If one takes Pk to be a reciprocal family forwhich we expect formulas of type E, then one canobtain a formula of type DE for Qk. For example,if we take A = C = x2 + 1 and Bk = kx, we �ndfor k = 2 thatm(Q2) = m(P2) + d3 ?= b24 + d3:The term b24 thus comes from the fact that Q2 = 0is isomorphic to an elliptic curve of conductor 24while the term d3 comes from the way the curveQ2 = 0 intersects the torus. More details of thisand further examples will be presented in a futurepaper.
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