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 2 

Abstract: 18 

Recent advances have enabled high-quality computationally generated structures for 19 

proteins with no solved crystal structures. However, protein function data remains 20 

largely limited to experimental methods and homology mapping. Since structure 21 

determines function, it is natural that methods capable of using computationally 22 

generated structures for functional annotations need to be advanced. Our laboratory 23 

recently developed a method to distinguish between metalloenzyme and non-enzyme 24 

sites. Here we report improvements to this method by upgrading our physicochemical 25 

features to alleviate the need for structures with sub-angstrom precision and using 26 

machine learning to reduce training data labeling error. Our improved classifier identifies 27 

protein bound metal sites as enzymatic or non-enzymatic with 94% precision and 92% 28 

recall. We demonstrate that both adjustments increased predictive performance and 29 

reliability on sites with sub-angstrom variations. We constructed a set of predicted 30 

metalloprotein structures with no solved crystal structures and no detectable homology 31 

to our training data. Our model had an accuracy of 90 - 97.5% depending on the quality 32 

of the predicted structures included in our test. Finally, we found the physicochemical 33 

trends that drove this model’s successful performance were local protein density, 34 

second shell ionizable residue burial, and the pocket’s accessibility to the site. We 35 

anticipate that our model’s ability to correctly identify catalytic metal sites could enable 36 

identification of new enzymatic mechanisms and improve de novo metalloenzyme 37 

design success rates. 38 

 39 

Keywords: Enzymes, Metalloenzymes, Metalloproteins, Machine Learning 40 
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 41 

Significance statement: Identification of enzyme active sites on proteins with unsolved 42 

crystallographic structures can accelerate discovery of novel biochemical reactions, 43 

which can impact healthcare, industrial processes, and environmental remediation. Our 44 

lab has developed an ML tool for predicting sites on computationally generated protein 45 

structures as enzymatic and non-enzymatic. We have made our tool available on a 46 

webserver, allowing the scientific community to rapidly search previously unknown 47 

protein function space. 48 

 49 

Abbreviations footnote: 50 

ML = machine learning 51 

RBF = Radial Basis Function 52 

CV = cross validation  53 

MAHOMES = metal activity heuristic of metalloprotein and enzyme sites 54 

DROPP = distribution overlap of a physicochemical property  55 

PDB = Protein Data Bank  56 

PDE = probability density estimate  57 

pLDDT = predicted Local Distance Difference Test  58 

MCC = Mathews correlation coefficient 59 

TNR = true negative rate  60 

TN = true negative 61 

TP = true positive 62 

FN = false negative 63 
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FP = false positive  64 
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1. Introduction 65 

Enzymes are biological catalysts that are known to lower activation energy for over 66 

8,000 reactions (McDonald, Boyce, and Tipton 2009). Furthermore, enzymes can 67 

increase reaction rates by factors of up to 1017-fold (Wolfenden, Ridgway, and Young 68 

1998). Enzymes are also becoming increasingly prevalent in industrial processes due to 69 

their greener chemistry (Sheldon and Woodley 2018). Despite the importance and 70 

extent of enzymatic research, a reproducible physicochemical basis of catalysis remains 71 

elusive. This unknown limits de novo enzyme design or even reliable identification of 72 

enzyme active sites from structure.  73 

We have recently used protein structure-based machine learning (ML) to distinguish 74 

between very similar sites, metalloenzyme active sites and protein sites that bind metals 75 

without any enzyme activity (Feehan, Franklin, and Slusky 2021). Our model, metal 76 

activity heuristic of metalloproteins and enzyme sites (MAHOMES), uses an extra-trees 77 

algorithm to achieve better performance metrics than available enzyme function 78 

predictors. We attribute the classifier’s success to training on structural physicochemical 79 

properties of similar sites. By training on negative sites that were also in pockets and 80 

also coordinated metals, rather than on all other sites on the protein, our classifier was 81 

able to assign feature importance based on characteristics that were particular to 82 

enzyme activity.  83 

Using protein structure-based features enabled MAHOMES to focus on learning 84 

physicochemical properties related to catalysis but it relied on structurally determined 85 

proteins for its input. The PDB only has ~200,000 solved protein structures (Burley et al. 86 
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2019) thereby limiting MAHOMES utility. Recently, the ML tool AlphaFold2 generated 87 

quality protein structure predictions (Jumper et al. 2021) and now two hundred million 88 

predicted structures are available for download from AlphaFoldDB (Tunyasuvunakool et 89 

al. 2021). However, it remained unclear if these structures could be used for identifying 90 

catalytic sites. This concern was compounded by the finding that a relatively low 91 

percentage of AlphaFold models have a high enough confidence to be recommended 92 

for characterizing binding sites (Thornton, Laskowski, and Borkakoti 2021). 93 

To test usage of the computationally generated structures, we updated the calculation 94 

methods used for several of MAHOMES features to reduce the need for sub-angstrom 95 

accuracy. Then, we use the new features when cross validating ML models to reduce 96 

labeling error in our training data labels. The improved features and training data were 97 

used with a variety of ML classifiers and techniques. We found that both the feature 98 

improvement and reduced labeling error led to increased performance for ML models. 99 

Our best ML model, MAHOMES II, outperformed its predecessor on our holdout test-set 100 

with 94% precision and 92% recall. Furthermore, MAHOMES II’s predictions were more 101 

reliable for different input structures of the same site with sub-angstrom differences. We 102 

evaluated MAHOMES II on a new set of predicted metalloprotein structures, where it 103 

scored 97.5% accuracy on high confidence structures. Finally, we examined the 104 

features that MAHOMES II found to be the most important for making successful 105 

enzyme or non-enzyme predictions and found a preference for features describing 106 

enzyme sites to be densely packed, have buried second shell residues, and pockets 107 

that were highly accessible to the metal. MAHOMES II can be accessed online 108 
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(https://mahomes.ku.edu), allowing easy use for the scientific community, regardless of 109 

computational expertise.  110 

2. Results 111 

2.1 New and improved feature calculations 112 

To transform metal sites into input for ML algorithms, we identified features belonging to 113 

five categories which have previously been linked to enzymatic activity– coordination 114 

geometry, electrostatics, pocket lining, pocket void, and Rosetta energy terms (Figure 1 115 

a and b).  116 

Figure 1: Feature category input space and DROPP (a) The number of features used by 
MAHOMES and MAHOMES II for each feature category: blue for electrostatics, green for 
Rosetta energy terms, red for pocket lining, orange for pocket void, and yellow for 
coordination geometry. (b) Example of DROPP calculation for the number of residues within 
15 Å of the site feature. Kernel density estimators for the feature’s dataset values of enzymes 
(green) and non-enzymes (blue) are made and the overlapping region (purple) is calculated 
to give the features DROPP. (c-g) Comparison of MAHOMES and MAHOMES II DROPP 
probability density estimate (PDE) for each feature category:(c) pocket lining category, (d) 
pocket void category, (e) electrostatics category, (f) Rosetta energy terms category, and (g) 
geometry category. Dotted lines and triangles represent MAHOMES features. Solid lines and 
circles represent features used by MAHOMES II. Circles are colored by feature groups shown 
in figure 4b. 
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We use a metric to quantify how much a feature’s values are similar between enzymatic 117 

and non-enzymatic sites. This metric, DROPP (distribution overlap of a physicochemical 118 

property) identifies how similar the distribution is between enzymatic and non-enzymatic 119 

sites(Figure 1b)(see methods). DROPP was previously found to be lower for features 120 

that are more important for predicting enzyme sites.(Feehan, Franklin, and Slusky 121 

2021). Therefore, when trying to improve our features, we used DROPP as indicator of 122 

feature improvement (Figure 1 c-g). We made efforts to improve all feature classes 123 

except coordination geometry, though some improvements were more successful than 124 

others. 125 

Electrostatics features expansion: The most important feature used by the original 126 

MAHOMES model was an electrostatic feature (Feehan, Franklin, and Slusky 2021) , 127 

which was the mean second moment of the of the theoretical titration curve’s first 128 

derivative for ionizable residues in the second shell (3.5-9Å). We modeled this feature 129 

after the THEMATIC calculations, which have been used to identify catalytic residues 130 

due to their deviations from Henderson Hasselback titration behavior (Somarowthu, 131 

Yang, et al. 2011; Tong et al. 2009; Ko et al. 2005).  132 

To improve our enzyme activity predictions and further our understanding of 133 

electrostatic properties responsible for catalytic activity, we expanded our electrostatic 134 

features category from 37 features to 152 features (Sup. Figure S1). To further 135 

investigate the success of electrostatics in MAHOMES, we added the Z-score 136 

calculations which are used by THEMATICs to measure the relative deviation of the 137 

theoretical titration curve’s first derivative’s second, third, and fourth moments (Ko et al. 138 

2005). We also added variables output by the generalized Born program we use for 139 
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generating theoretical titration curves, BLUUES (Fogolari et al. 2012b). Moreover, since 140 

catalytic residues often show interesting shifts in pKa (Pérez-Cañadillas et al. 1998; 141 

Bate and Warwicker 2004), we added features for the pKa shift from ideal amino acid 142 

values, the pKa shift due to desolvation, the pKa shift due to the interaction with other 143 

charges in the molecule with all titratable sites in their neutral state, and the pKa shift 144 

due to the interaction between titratable sites. Additional added features in the 145 

electrostatic category are the generalized Born atomic radii, a solvation exposure 146 

parameter, and solvation energies. After removing redundant features (see methods), 147 

72 electrostatic features are used by MAHOMES II (Figure 1a). Six of these new 148 

features had lower DROPP than any of the 37 previously used electrostatic features 149 

(Figure 1e).  150 

Rosetta features reduction: In contrast to the expansion of the electrostatic feature 151 

space, we reduced the Rosetta feature space while also improving the features and 152 

improving our model reproducibility. We calculated Rosetta features in MAHOMES 153 

based on spheres with defined radii from the center of the site. In benchmarking 154 

MAHOMES, we found that sub-angstrom differences between relaxed structures of the 155 

same site caused large shifts in Rosetta feature values. To prevent sub-angstrom 156 

differences from significantly changing calculated feature values for the same site, we 157 

switched to a radial basis function (RBF) calculation for the Rosetta energy term 158 

features. The RBF calculation uses distance to weight each residue’s influence on the 159 

calculated feature, which prevents subtle changes in the structure from having a 160 

significant impact on the calculated value. The RBF Rosetta energy terms category 161 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.08.531790doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531790
http://creativecommons.org/licenses/by-nc/4.0/


 10 

decreased DROPP (Figure 1f) and the number of features used by the category (Figure 162 

1a).  163 

Pocket void and pocket lining improvements: Our previous method, Rosetta pocket 164 

measure (Johnson and Karanicolas 2013), did not detect surface pockets for 645 165 

dataset sites, therefore 19% of the MAHOMES training data was missing values for 166 

pocket void and pocket lining features. GHECOM (Kawabata 2019, 2010), a tool that 167 

uses mathematical morphology for finding multi-scale pockets on protein surfaces, 168 

generated pocket for 99.5% of the dataset sites. To improve the quality of training data, 169 

we removed dataset sites that did not have pocket. Additionally, we added various 170 

pocket descriptors, including output features from GHECOM which describe the 171 

pocket’s shallowness and size rank relative other pockets on the structure. Ultimately, 172 

the pocket output by GHECOM lowered the DROPP for features in both the pocket 173 

lining and pocket categories (Figure 1c and 1d).  174 

2.2 Reduced training data labeling error 175 

Using manual validation, we previously estimated that ~6% of our non-catalytic sites are 176 

mislabeled and that ~0% of our catalytic sites were mislabeled (Feehan, Franklin, and 177 

Slusky 2021). When using cross validation to evaluate newer (intermediate) iterations of 178 

MAHOMES, we found seemingly-incorrect predictions were often actually the sites our 179 

data generation pipeline mislabeled. We therefore intentionally used ML to hunt for 180 

mislabeled sites in our dataset via cross-validation. 181 

Cross-validation is an ML method that leaves out a fraction of the dataset during training 182 

so that it can be used to assess the model’s predictive performance. The left-out 183 
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fraction is iterated over the entire dataset, meaning a model makes predictions for each 184 

site in the training dataset. We manually examined non-enzymatic dataset sites that 185 

were predicted to be enzymatic during cross validation (see methods for more details). 186 

Because manual inspection during work on MAHOMES of 50 random dataset enzyme 187 

sites revealed an ~0% enzyme labeling error (Feehan, Franklin, and Slusky 2021), we 188 

did not examine enzymatic sites that were predicted to be non-enzymatic.  189 

We used the available literature (structure publications, RCSB (Burley et al. 2019), and 190 

UniProt (UniProt 2019)) to investigate 225 sites that were previously labeled non-191 

enzymatic but were classified during this cross validation as enzymatic. 94 of those 192 

sites had definitive literature support of catalytic activity (mislabeled) and 26 PDBs were 193 

removed from our set due to inconclusive evidence. Our previous estimate of 6% 194 

mislabeled non-catalytic sites implied approximately 158 mislabeled sites in the dataset. 195 

Therefore, we estimate that finding 94 mislabeled sites reduces our site mislabeling by 196 

60%.  197 
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2.3 ML model assessment 198 

We generated 1,792 different ML models (Figure 2) using the following steps: feature 199 

standardization, feature selection, and fourteen ML classification algorithms using one 200 

of four optimization scoring terms. Since ML algorithms require or are greatly aided by 201 

Figure 2: Cross-validation performance by algorithm. Each dot represents one of the 1,792 
models assessed in this work. The dots are colored to represent the type of ML algorithm the 
model uses: support vector machines = purples, decision-tree ensemble methods = blues, 
linear models = reds, discriminant analysis=greens, naive Bayes = yellow, nearest neighbor = 
orange, and neural network = brown. Better performing classifiers should have higher 
precision, Mathews correlation coefficient (MCC), true negative rate (TNR), and recall, meaning 
better classifiers will be close to the upper right corner. The black boxes with numbers show 
CV performance of: (1) the previously reported MAHOMES, (2) MAHOMES recalculated with 
the updated data labels, (3) MAHOMES retrained on updated labels, and (4) MAHOMES II – 
updated labels, trained on updated labels, and using new features. Right panels are zoomed in 
views of blue boxes in left panels.  
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standardization of feature values in order to make comparable scales between the 202 

values of different features, we tested four different standardization techniques (see 203 

methods). Additionally, large numbers of input features can be detrimental to certain ML 204 

algorithms. To decrease the number of features with minimal information loss, we 205 

identified four feature subsets each using a different cut off to remove correlated 206 

features (see methods). In total we tried six feature sets (four low correlation subsets, all 207 

features, and a manually curated set) The six standardized feature sets were then used 208 

as inputs to ML classification algorithms which include: linear regression, decision-tree 209 

ensemble methods, support vector machines , nearest neighbors, Bayesian 210 

classification, and simple neural networks (see methods). 211 

Selecting the best variation of the ML algorithm on the same data used to access a 212 

model can inflate performance metrics. To avoid inflated model assessment metrics, we 213 

used nested cross validation using an inner loop and an outer loop. During the inner 214 

loop, the ML algorithm was fine-tuned for a particular scalar and feature set using one of 215 

four different scoring metrics— accuracy, precision, Matthews correlation coefficient 216 

(MCC)(Matthews 1975), or a multi-score combination of accuracy, MCC, and Jaccard 217 

index(Jaccard 1907). Among our hyperparameter search space, each of the top three 218 

ranking ML algorithm variations were used to make models that were accessed using 219 

the outer loop. In total, we attempted 4,032 machine learning combinations (14 220 

algorithms x 6 feature sets x 4 standardization techniques x 4 optimization terms x 3 top 221 

algorithm variations). Due to convergence during model optimization, this process 222 

resulted in 1,792 different ML models.  223 
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The vast majority of all attempted ML models in this study outperformed the previous 224 

reported MAHOMES cross validation metrics (Figure 2, black box 1) because the 225 

training set was substantially corrected for all the new models. In order to make a more 226 

fair comparison between MAHOMES and the new models, we re-calculated MAHOMES 227 

cross validation performance metrics using the corrected enzyme/non-enzyme labels 228 

(Figure 2, black box 2). The number of MAHOMES cross validation false positives 229 

dropped from 182 to 90, which increased the precision by nearly 10% (Figure 2, top 230 

row) but the rest of the performance metrics remained far below those of our new 231 

models.  232 

To assess if the increase in performance was purely due to corrected data labels, we 233 

assessed an intermediate model, which retrained MAHOMES using the corrected data 234 

but using the old MAHOMES features (Figure 2, black box 3). Despite an increase in 235 

recall, the retrained MAHOMES still identified significantly fewer enzyme sites than 236 

similar ML models that used the new features (Figure 2, CV blue). Thus, our ML 237 

benefitted from the improvement of both the quality of training labels and the improved 238 

features. 239 

2.4 MAHOMES II performance  240 

To evaluate if these metrics are inflated from overtraining despite cross validation, we 241 

also predicted sites in an updated hold-out test set. In addition, we developed a new set 242 

derived from the hold-out test set to evaluate the reliability of the models. This set, the 243 

T-metal-sites10, includes ten different minimized structures for each site in T-metal-244 

sites. The sub-angstrom variations for each site allowed us to calculate two 245 
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reproducibility metrics. First, we calculated the divergence frequency (equation 4, 246 

methods), which is the percent of test-set sites that received both an enzyme and non-247 

enzyme prediction. Then, we calculated the divergence score (equation 5, methods), a 248 

measurement of the severity of divergent predictions. The divergence score ranges 249 

from 0 (the site receives the same prediction for every structure) to 1 (the site is 250 

predicted enzymatic for half of the structures and non-enzymatic for the other half).  251 

Table 1. ML model performance evaluations. Predictive performance of MAHOMES, 252 

retrained MAHOMES with corrected labels, and MAHOMES II on the holdout test-set, T-253 

metal-sites10, and the quality AlphaFold set, which is the subset of generated sites with 254 

confidence scores recommended to characterize binding (pLDDT>90) within 15 Å of the 255 

metal. TNR is the true negative rate and MCC is the Mathews correlation coefficient. 256 

Descriptions of performance metric calculations in methods. *Evaluation using T-metal-257 

sites, which includes ten incorrectly labeled sites and eight undeterminable sites which 258 

were removed from T-metal-sites10. 259 

ML model Evaluation Accuracy Precision Recall TNR MCC 
div. 
freq. 

div. 
score 

MAHOMES* 
T-metal-

sites 
94.2 92.2 90.1 96.2 0.87 - - 

Recalculated 
MAHOMES 

T-metal-
sites10 

92.6 94.2 85.3 96.9 0.84 6.6 0.53 

Quality 
AlphaFold 

set 
92.7 94.1 66.7 99.0 0.75 - - 

Retrained 
MAHOMES  

T-metal-
sites10 

93.4 91.9 90.0 95.4 0.86 5.9 0.55 

MAHOMES II 

T-metal-
sites10 

94.9 94.1 92.1 96.6 0.89 5.0 0.47 

Quality 
AlphaFold 

set 
97.6 95.7 91.7 99.0 0.92 - - 

 260 

For MAHOMES II, we selected a GradBoost model that used FeatureSet4. We selected 261 

that as our final model because of its high cross validation metrics. However, 262 

ExtraTrees models, which is the algorithm used by the previous MAHOMES model, had 263 
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the lowest divergence frequency (Figure S2). So, we further refined hyperparameters, 264 

which were too computationally expensive to optimize for GradBoost during our inner 265 

cross validation using GridSearch optimization to mimic those favored by the 266 

ExtraTrees models (supplemental methods MAHOMES II, fine tuning). The final 267 

MAHOMES II model had a cross validation MCC higher than any other ML model 268 

(Figure 2 black box 4). Though this could have indicated an overfit model, our final 269 

performance evaluation on the hold-out test set T-metal-sites10 (Table 1), which we 270 

only used for reproducibility metric calculations during optimization, fell within the 271 

projected performance of the CV assessment (Sup. Table S1), thereby supporting the 272 

dependability of both the CV assessment and final evaluation of MAHOMES II 273 

performance.  274 

In addition to improved performance, our aim was to lessen the effects of sub-angstrom 275 

deviations in input structures. Retraining MAHOMES with corrected labels decreased 276 

the divergency frequency but increased the divergence score (Table 1). Updated 277 

features in MAHOMES II further decreased the divergence frequency and decreased 278 

the divergence score, demonstrating that our feature improvements were effective at 279 

improving reproducibility.  280 

To test our hypothesis that upgraded features and improved training data can be used 281 

to successfully predict enzyme activity for predicted structures, we tested MAHOMES II 282 

on a set of AlphaFold generated structures (Tunyasuvunakool et al. 2021; Jumper et al. 283 

2021). However, AlphaFold generated structures do not have ligands such as metals. 284 

To create the AlphaFold set of protein structures with metals we queried UniProt 285 

(UniProt 2019) for proteins with known metal coordinating residues and no solved 286 
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crystal structure and filtered for metal ions that could be mapped to AlphaFoldDB 287 

structures. Benchmarking our metal method using dataset sites revealed sub-angstrom 288 

placement accuracy. 289 

AlphaFold predictions have a confidence metric associated with each residue. The 290 

AlphaFold authors recommend using residues with high confidence (pLDDT >90) for 291 

characterizing binding sites. Very few sites in our AlphaFold set had high confidence for 292 

all residues used to calculate the MAHOMES II features (residues within 15 Å of the 293 

metal). So, we made MAHOMES II predictions on the entire non-homologous, 294 

metalloprotein AlphaFold set and made multiple performance evaluations by requiring 295 

Figure 3. AlphaFold set performance evaluation. The number of enzyme (green bar) and 
non-enzyme (blue bar) Alphafold set sites containing only highly confident residues within X 
Å, where X ranges from 1 to 15. The recall (blue lines) and precision (orange lines) of 
MAHOMES (dotted lines) and MAHOMES II (solid lines) are shown for the Alphafold set 
sites at each cutoff. 
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residues within X Å of the site to be high quality (Figure 3, Table 1 and S2). For the 296 

entire AlphaFold set, MAHOMES II was able to 297 

correctly identify 87% of the enzyme sites (recall) 298 

and 90% of the non-enzyme sites (true negative 299 

rate)(Sup Table S2). As we removed structures 300 

with low quality residue predictions close to the 301 

metal, MAHOMES II performance increases up to 302 

an accuracy of 97.5% an improvement even over 303 

our test-set metrics (Figure 3).  304 

Interestingly, the coordinating residues’ quality was 305 

not the most important, as MAHOMES II 306 

performance increases the most as the quality 307 

range increases from 4Å to 6Å (Figure 3). 308 

MAHOMES II enzyme recall (predicting which 309 

protein sites are catalytic) was very stable over all 310 

confidence regions and vastly outmatched the 311 

previous MAHOMES model (Figure 3). 312 

2.5 Feature importance 313 

Because MAHOMES II uses a decision-tree based 314 

gradient boosting algorithm, we can measure each feature’s importance via the feature 315 

contribution to the decrease in impurity on the training data. As previously shown 316 

(Feehan, Franklin, and Slusky 2021), features with high importance had low DROPP 317 

Figure 4. Feature importance and 
DROPP. (a) Each dot represents 
MAHOMES II feature and is colored 
by physicochemical group. The y-
axis is the feature’s DROPP, or 
overlap between values for enzyme 
and non-enzyme dataset sites. The 
x-axis is feature importance for 
MAHOMES II, which is a 
measurement of the mean 
decrease of impurity by a feature 
during training. The blue dotted line 
represents the lowest feature 
DROPP from MAHOMES. (b) 
Sankey diagram of feature 
distribution between feature 
categories and feature groups, 
where width is representative of 
number of MAHOMES II features.
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(overlap between enzyme site and non-enzyme site feature values). The five most 318 

important features for MAHOMES II had lower DROPP than any MAHOMES feature 319 

(Figure 4). However, the feature with the lowest DROPP, the minimum solvent exposure 320 

parameter for outer sphere (3.5 – 9 Å) ionizable residues, was not important to 321 

MAHOMES II—it ranked 116th in feature importance for MAHOMES II (Sup Table S3). 322 

Hence, though quantitative differences, such as those measured by DROPP, can 323 

indicate potentially important features, MAHOMES II is learning more than just these 324 

numerical differences in order to successfully differentiate between enzyme and non-325 

enzyme sites. 326 

Table 2. Feature group importance. Each feature group is described by its number of 327 

included features (num total), the percent of MAHOMES II feature space accounted for 328 

by the group, the total feature importance for all group features , the mean feature 329 

importance of features in the group , the rank of the most important feature in the group, 330 

and the mean DROPP of features in the group. 331 

Feature group 
Number of 

features 
MAHOMES II 
feature space  

Feature importance  DROPP 
mean total mean Max (rank) 

Local protein 
density 

7 4.9% 14% 2.0% 6.5%   (1) 0.48 

solvation 14 9.7% 18% 1.3% 4.3%   (2) 0.46 

Pocket void 21 14.6% 22% 1.1% 3.9%   (3) 0.54 

pKa 27 18.8% 19% 0.7% 2.1% (10) 0.69 

Rosetta 14 9.7% 9% 0.6% 1.5% (17) 0.62 

Electrostatics 17 11.8% 9% 0.5% 1.7% (16) 0.63 

Pocket 
hydrophobicity 

9 6.2% 2% 0.2% 0.4% (75) 0.64 

BLUUES 
SolvEnergy 

18 12.5% 4% 0.2% 0.5% (59) 0.75 

Metal 
coordination 

geometry 
17 11.8% 3% 0.2% 0.7% (34) 0.74 

 332 

 333 
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Since the original feature categories were based on calculation method, we transitioned 334 

to feature groups (Fig. 1B) for analyzing which physicochemical properties were the 335 

most important for identifying catalytic activity. For example, the Coulombic electrostatic 336 

potential RBF feature had been in the Rosetta category but was a better fit for the 337 

electrostatic group. Due to differences in feature importance, we split features 338 

describing solvation into two groups. The BLUUES SolvEnergy group includes features 339 

calculated directly from the BLUUES solvation energy output. We placed other solvation 340 

related features in the Solvation group.  341 

The three most important feature groups are local protein density, solvation, and pocket 342 

void (Table 2). Despite only making up 29% of MAHOMES II feature space, these 343 

groups account for 55% of what the model learned during training. These feature 344 

groups also have the lowest average DROPP. Using the DROPP plots for features in 345 

these groups, we identify specific subgroups that were fundamental to MAHOMES II 346 

distinguishing between enzyme and non-enzyme sites. 347 

The local protein density feature group (seven features) has the highest average feature 348 

importance and includes Lennard-Jones energies and the number of residues within a 349 

certain distance of the site. This group includes the most important MAHOMES II 350 

feature, the number of residues within 15 Å (Figure 1B), which is more important than 351 

the 44 least important features combined (Table S3).  352 

The next most important group, the solvation feature group (fourteen features), includes 353 

Rosetta solvation features and BLUUES generalized Born features. The second most 354 

important MAHOMES II feature is the average BLUUES solvent exposure parameter for 355 
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second shell (3.5-9Å) ionizable residues. The DROPP plot for this feature shows that 356 

most second shell ionizable residues are buried for enzyme sites and relatively exposed 357 

for non-enzyme sites (Figure S3b). This group also contains the sixth most important 358 

feature, the maximum second shell generalized Born radius, which measures an atom’s 359 

shielding from high solvent dielectric (Figure S3f). Enzyme sites also have higher 360 

Rosetta solvation features that rank fifth, twelfth, and twenty-first in feature importance 361 

(Figure S3e, Table S3), which corresponds with the energetic cost associated with 362 

buried charged residues. 363 

The third most important feature group is the pocket void group (twenty-one features). 364 

The pocket void group has features that describe the pockets’ location, shape, and size. 365 

The third most important MAHOMES II feature describes the slice of the pocket closest 366 

to the metal as being larger for enzymes (Figure S3c). The fourth most important 367 

feature is the shortest distance between a metal and pocket grid point, which is smaller 368 

for enzyme sites (Figure S3d). These features combine to make a subgroup describing 369 

site accessible pockets. 370 

3. Discussion 371 

Our previous classifier, MAHOMES, outperformed available, alternative methods for 372 

classifying enzymes or non-enzymes. MAHOMES II, outperforms its predecessor with 373 

increased reliability thanks to both upgraded features and reduced training data error. 374 

MAHOMES II’s performance generalize to new, unseen metalloproteins. Moreover, 375 

MAHOMES II learned physicochemical properties related to our current understanding 376 

of enzyme function. 377 
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3.1 MAHOMES II learned general enzyme activity 378 

A key question of any classifier is if it has learned beyond its training, i.e. can it predict 379 

for examples it has never seen before. For MAHOMES II, training on solved, crystal 380 

metalloproteins structures could limit its performance to the 0.056% of proteins with 381 

experimentally determined structures (UniProt 2019). Our evaluation using the newly 382 

curated AlphaFold set finds that MAHOMES II generalizes to new enzyme reactions 383 

and even generalizes to very unrelated proteins.  384 

Alternative tools that can be used to identify enzymatic activity (Zou et al. 2019; Kumar 385 

and Skolnick 2012) are less successful than MAHOMES II at predicting if our set of 386 

metalloproteins are catalytic (Table S4). Despite using ML, these enzymatic activity 387 

classifiers and catalytic residues predictors (Somarowthu and Ondrechen 2012; Song et 388 

al. 2018) rely on homology-based features causing their performance to not be 389 

transferable to catalysis more generally or be applicable for novel or designed enzymes.  390 

To make our training data different enough from our testing data to facilitate 391 

generalizability, our training datasets and test-sets in both in this work and our previous 392 

work (Feehan, Franklin, and Slusky 2021) remove redundancy using local similarity. We 393 

only kept sites with dissimilar surrounding amino acid identities preventing training and 394 

evaluation of repeated sites among homologs and rare cases of similar active sites on 395 

different structural folds (Parasuram et al. 2016).  396 

Using the AlphaFold data set, we determined that our model was extremely 397 

generalizable and was not implicitly using homology trends. The extensive quantity of 398 

AlphaFold structures and experimental data from UniProt for enzyme labeling (instead 399 
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of homology) allowed us to use a very high E-value of 1, i.e. only proteins with no 400 

evolutionary relationship, for creating our AlphaFold set. In comparison, only 17% of our 401 

previous test set, T-metal-sites10, sequences have no detectable homology to 402 

metalloproteins used for training MAHOMES II (E-value > 1). Furthermore, only seven 403 

of the 46 biochemical reactions included in the AlphaFold set are also included in the 404 

dataset used to train MAHOMES II. Despite the use of computationally generated 405 

structures and strict redundancy removal, MAHOMES II’s 90-97.5% accuracy on the 406 

AlphaFold set was similar to its CV and T-metal-sites10 evaluations. Therefore, we 407 

believe our assessment of MAHOMES II performance will remain true for any natural 408 

metalloprotein structure uploaded by the community on the webserver, even if it is for a 409 

novel enzyme reaction. However, due to a lack of available structures, we remain 410 

uncertain if MAHOMES II performance transfers to de novo metalloproteins. 411 

3.2 The less important first shell 412 

Frequently, enzyme bioinformatics focuses on the active site’s first shell, which is the 413 

residues interacting directly with substrate(s) or cofactor(s), such as metal ion(s)(Bartlett 414 

et al. 2002; Furnham et al. 2016; Ribeiro et al. 2018). The crucial roles played by first 415 

shell residues are well supported by conservation and experimental studies (Morley and 416 

Kazlauskas 2005; Ribeiro et al. 2020). MAHOMES II has 60 features that describe only 417 

first shell properties, covering coordination geometry, inner shell electrostatics ( < 3.5 Å 418 

from metal), and pocket lining. Despite making up 42% of MAHOMES II’s feature space, 419 

first shell features account for only 18% of feature importance. Since the same metal 420 

and coordinating residues are found to participate in enzyme and non-enzyme functions 421 

(Lee et al. 2019), it makes sense that first shell features are largely incapable of 422 
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differentiating enzyme and non-enzyme sites in metalloproteins since in both the first 423 

shell coordinates metals. Consequently, despite the well-known critical roles of the first 424 

shell, distinction between metallo-enzymes and metallo-proteins is driven by more 425 

distant physicochemical properties. 426 

3.3 Comparing important MAHOMES II subgroups to current enzyme paradigms 427 

The physicochemical features most important to MAHOMES II success can be 428 

considered as three groups/subgroups–1) local protein density, 2) second shell 429 

ionizable residue burial, and 3) site accessibility of pockets (in the pocket void feature 430 

group) – align with the current paradigm of the enzyme function, which also consists of 431 

three features: 1) local environment control of functional sites through control of water 432 

access, 2) networks of residue interactions spanning from functional residues, and 3) 433 

conformational dynamics (Mazmanian, Sargsyan, and Lim 2020; Agarwal 2019).  434 

Control of water access: MAHOMES II captures local environmental control through 435 

water access with two of the important MAHOMES II feature subgroups: the local 436 

protein density group and site accessibility of pockets feature subgroup. The local 437 

protein density features, detect the dense packing of enzyme sites which protects them 438 

from high external dielectrics of bulk water, enhancing the local electrostatic effects from 439 

hydrogen-bonding and charge-charge interactions. The site accessibility of pockets 440 

subgroup identifies close pockets with large openings adjacent to the site that can 441 

enable access by individual water molecules, which commonly participate as 442 

nucleophiles, to form hydrogen-bonding networks, and to facilitate the release of 443 
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products. Hence, MAHOMES II can detect the control of water access to enzyme sites 444 

by combing local protein density and site accessibility of pockets. 445 

Networks of connected interactions: Distal residues that interact with catalytic residues 446 

or as part of networks connecting to the catalytic site are essential for fine tuning and 447 

optimization of enzyme activity(Dudev et al. 2003; Somarowthu, Brodkin, et al. 2011; 448 

Parasuram et al. 2018; Brodkin et al. 2015; Tiwari et al. 2014; Coulther, Ko, and 449 

Ondrechen 2021; Coulther et al. 2021; Ngu et al. 2020). The MAHOMES II burial of 450 

ionizable residues feature subgroup differentiates enzyme sites based on buried second 451 

shell polar and charged residues, which would be a direct result of crucial coupled 452 

interactions that enhance enzyme activity. In addition, the MAHOMES II local protein 453 

density group uses the density of residues surrounding the active site to provide the 454 

most basic description of networks of interactions connected to enzyme sites with the 455 

potential to promote activity. The combination of these two subgroups therefore seems 456 

to accurately estimate connected networks. 457 

Conformational flexibility: Although we did not design any MAHOMES II features to 458 

directly describe conformational dynamics, the final aspect of the current enzyme 459 

function paradigm, all of the three most important physicochemical subgroups describe 460 

properties that affect conformational stability. Local protein density describes tight 461 

packing that increases backbone hydrogen-bonding which increases stability and 462 

rigidity. Burial of charged residues amongst nonpolar sidechains makes for an 463 

energetically unfavorable conformation that will promote destabilization and flexibility. 464 

Moreover, interactions between charged sidechains will also increase or decrease 465 

stability of various active site conformations depending on the charges. Finally, the site 466 
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accessibility of pockets enables active site interactions with cofactors, substrates, and 467 

solvent that will change the flexibility or rigidity of an active site. Therefore, all three 468 

important subgroups contribute to the conformational changes required for enzyme 469 

activity, such as the shifting from the ground state to transition state(s). 470 

3.4 Machine learning lessons for metalloenzyme design 471 

Considering our training dataset covers all enzyme reaction types(Feehan, Franklin, 472 

and Slusky 2021), the physicochemical properties highlighted by MAHOMES II gives us 473 

insight for making better metalloenzyme designs. Their feature importance indicates a 474 

fundamental blueprint that is harnessed by a range of known catalysis mechanisms 475 

performed by nature. To this point, recent work exploring the functional space of non-476 

metallo TIM barrel enzymes has also highlighted the importance of local atomic 477 

density(Lipsh-Sokolik et al. 2023). De novo enzyme designs on non-enzyme protein 478 

backbones could benefit from selecting densely surrounded positions with large pocket 479 

openings. Furthermore, lower solvation penalties for buried for ionizable residues might 480 

also help design active sites that more closely resemble those in nature. We anticipate 481 

that dense protein regions with buried ionizable residues can improve the success rate 482 

of designed enzymes and limit additional steps that are currently necessary to reach 483 

native enzyme reaction rates, such as directed evolution (Yang, Wu, and Arnold 2019). 484 

4. Conclusion 485 

Our ML classifier, MAHOMES II (https://mahomes.ku.edu), uses protein structure-based 486 

features describing the local site to distinguish between enzyme and non-enzyme metal 487 

ion sites on proteins with 94% precision and 92% recall. We demonstrated that 488 
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MAHOMES II can make quality predictions for computationally generated structures, 489 

which greatly expands its utility when combined with the structure prediction tool 490 

AlphaFold. Additionally, the similarity among performance metrics for our cross-491 

validation, holdout test-set, and evolutionarily unrelated AlphaFold set supports that 492 

MAHOMES II evaluation is not bias, overfit, or the result of off-target learning. Finally, 493 

we were able to identify that MAHOMES II was making successful predictions due to its 494 

use of physicochemical features related to densely packed active sites, burial of second 495 

shell ionizable residues, and site accessible pockets.  496 
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5. Methods 497 

5.1 Metal ion dataset and T-metal-sites10 498 

The data developed to train and evaluate MAHOMES (Feehan, Franklin, and Slusky 499 

2021) is, to our knowledge, the largest non-redundant dataset of enzymatic and non-500 

enzymatic labeled protein bound metal ions. Briefly, protein structures containing 501 

transition metals were filtered to remove poor quality structures and structures dissimilar 502 

to metalloenzymes. Metal ion sites bound to multiple chains were removed to avoid 503 

labeling partial enzyme active sites during our homology-based enzyme labeling. 504 

Metalloenzymes were identified using explicit enzymatic annotations and homology to 505 

entries in the Mechanism and Catalytic Site Atlas (M-CSA)(Ribeiro et al. 2018), a 506 

database of enzyme active sites. Alignment with M-CSA homolog structures was used 507 

to label metal sites on metalloenzymes as enzyme or non-enzyme. Metals on 508 

metalloproteins that lacked explicit enzymatic annotations and had no M-CSA homolog 509 

were labeled as non-enzyme sites. Finally, sequence and structural homology were 510 

used to remove redundancy. Sites on structures deposited in the Protein Data Bank 511 

(PDB)(Berman et al. 2000) prior to 2018 were placed in the dataset, which was used for 512 

training ML models, ML optimization, and model selection. Sites on structures deposited 513 

in the PDB in 2018 or later were placed in a holdout test-set, called T-metal-sites, which 514 

was used for final model evaluation. 515 

All the metalloprotein structures in the dataset and T-metal-sites were relaxed using 516 

Rosetta (Conway et al. 2014) using a previously provided RosettaScript (Feehan, 517 

Franklin, and Slusky 2021). To remove loosely bound metals that are less likely to be 518 
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physiologically relevant, i.e. crystal artefacts, we removed 729 sites that moved more 519 

than 3 Å from the aligned crystal structure. We also removed 179 sites that failed 520 

MAHOMES feature calculations since this was commonly due to issues like lack of 521 

multiple coordinating atoms. New sites were defined as any metals within 5 Å of each 522 

other in a relaxed structure. Since the original dataset defined sites using the crystal 523 

structures, the revised set slightly differs in the number of sites. All sites containing a 524 

metal atom that was previously a part of an enzyme site were labeled enzyme. Any 525 

remaining site with a metal atom that was previously included in a non-enzymatic site 526 

was labeled non-enzymatic. All other sites on these structures were discarded. We 527 

found that MAHOMES was susceptible to making different predictions for the same site 528 

on different relaxed structures. To check model prediction reproducibility, we included 529 

the ten relaxed structures with the lowest Rosetta energy units for each metalloprotein 530 

in T-metal-sites, making T-metal-sites10. We repeated the labeling procedure for the T-531 

metal-sites10 sites. 532 

 We removed sites that were flagged by our automated feature process as problematic 533 

or that had extreme outlier feature values (greater than ten standard deviations from the 534 

dataset mean). Manual examination of sites with incorrect ML predictions identified a 535 

significant number of incorrect non-enzyme labels by our pipeline for sites in both the 536 

dataset and T-metal-sites10 (Table S5). Sites found to actually be enzymatic were 537 

relabeled and sites with undeterminable enzyme activity were removed. At the end of 538 

this work, the MAHOMES II dataset contained 957 enzyme sites and 2,467 non-enzyme 539 

sites. The final T-metal-sites10 consisted of 1,895 enzyme entries and 3,277 non-540 
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enzyme entries, which were representative of 189 enzyme sites and 328 non-enzyme 541 

sites. 542 

5.2 Feature engineering 543 

For machine learning input features, we calculated physicochemical properties for five 544 

categories – Rosetta energy terms, pocket void, pocket lining, electrostatics, and 545 

coordination geometry. A complete feature list with descriptions can be found in Table 546 

S6. For exact calculations, please see our available github code(Feehan et al. 2022). 547 

5.2.1 Rosetta energy terms 548 

Rosetta 3.13 was used to score all residues in a metalloprotein structure for all energy 549 

terms in the energy function beta_nov16 with all weights set to one(Alford et al. 2017). 550 

For each energy term, E, a squared inverse radial basis function (Eq. 1) was used to 551 

calculate the energy for a given site, s. 552 

 𝐸(𝒔) = ∑
𝐸(𝒓)

𝑑(𝒓)2𝒓     (Eq. 1) 553 

where r is a residue with a distance d(r) < 15 Å from the site center. We included the 554 

number of residues used for these calculations as a feature. Our Rosetta energy terms 555 

category included 25 features in total.  556 

5.2.2 Pocket void terms 557 

We used GHECOM (Kawabata 2019) – a program for detecting multiscale pockets via 558 

grid representations and probes – to identify all pockets for a given metalloprotein. 559 

Then, for each site on the metalloprotein, we identify all adjacent pockets – pockets with 560 
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a grid point within 5Å of the site’s center. For sites with multiple adjacent pockets, we 561 

select the closest adjacent pocket with a volume greater than 100 Å3 as its pocket. In all 562 

other cases, the GHECOM pocket with the closest grid point is selected.  563 

We used the selected pocket to calculate the pocket void features previously used by 564 

MAHOMES (Feehan, Franklin, and Slusky 2021), which include volume, Euclidean and 565 

Manhattan distance between pocket centroid and site center, terms describing the size 566 

and shape of three pocket slices at the site center, pocket center, and midpoint of site 567 

center and pocket center.  568 

We added pocket void features output by GHECOM for the relative rank among all the 569 

metalloprotein’s detected pockets and terms that describe the pockets shallowness and 570 

openness of the pocket. Then, we rotated the pocket so that the z-axis runs from the 571 

protein centroid to the pockets centroid and calculate its height, max z – min z, and 572 

depth, the Euclidean distance between the grid points with the max z and min z. Finally, 573 

we calculate the site’s height and depth in the pocket using the Euclidean distance 574 

between the site center and the max z grid point or min z grid point respectively. 575 

5.2.3 Pocket lining 576 

The selected GHECOM pocket was used to identify pocket adjacent residues (within 3.0 577 

Å). We identified pocket lining residues as pocket adjacent residues with a sidechain 578 

distance of less than 2.2 Å or where the sidechain was closer to the pocket than the 579 

backbone. The pocket lining residues were used to calculate the average, minimum, 580 

maximum, skew, and standard deviation of the hydrophobicity for both Eisenberg 581 

(Eisenberg et al. 1984) and Kyte-Doolittle (Kyte and Doolittle 1982). We also calculated 582 
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the sum of the pocket lining residues van der Waals sidechain volumes, the volume of 583 

the pocket without the lining residues’ sidechains, and the percent of that volume 584 

occupied by the sidechains. Finally, the number of pocket lining residues and the 585 

number of backbone adjacent residues (pocket adjacent but not considered pocket 586 

lining) were included as features. 587 

5.2.4 Electrostatic terms 588 

Our previous electrostatics features were based on the use of theoretical titration curves 589 

by THEMATICS (Ondrechen, Clifton, and Ringe 2001; Somarowthu, Yang, et al. 2011; 590 

Ko et al. 2005). To calculate these, we used the generalized Borne program, BLUUES 591 

(Fogolari et al. 2012a). For the first derivative of the theoretical titration curve, we 592 

calculated the second, third, and fourth moment of each ionizable residue using SciPy’s 593 

(Virtanen et al. 2020) variation, skew, and kurtosis functions respectively. The mean, 594 

standard deviation, maximum, minimum, and range was calculated for two shells. The 595 

first, inner shell included ionizable residues within 3.5 Å of a site’s metal atom(s). The 596 

second, outer shell included ionizable residues within 9 Å of a site’s metal atom(s), 597 

excluding residues that are in the first shell. For each moment calculation, the Z-score 598 

was calculated (Eq. 2), where x is the residue’s moment value, 𝜇 is the moment’s average 599 

for all of the structure’s ionizable residues, and 𝜎 is the moment’s standard deviation. We 600 

turned this into a site feature by counting the number of residues with a Z-score greater 601 

than 1.  602 

 𝑧 =  
𝑥− 𝜇

𝜎
     (Eq. 2) 603 
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All residues from both shells were used to calculate an environmental feature for each 604 

moment using a squared inverse radial basis function (Eq. 1). The number of residues 605 

used for the inner shell, outer shell, and environmental feature calculations were also 606 

saved to be used as features. 607 

The inner shell, outer shell and environmental features were also calculated for additional 608 

BLUUES outputs, which included: generalized Born radius, residuals for the deviation of 609 

the theoretical titration curve from a sigmoidal curve, pKa shift from ideal amino acid 610 

values, pKa shift due to desolvation, pKa shift due to the interaction with other charges in 611 

the molecule with all titratable sites in their neutral state, pKa shift due to the interaction 612 

between titratable sites, solvation energies, and solvent exposure parameter. All of the 613 

structure’s residues were sorted by BLUUES solvation energy and placed into five bins; 614 

destabilizing ranks were assigned from highest to lowest solvation energy and stabilizing 615 

ranks were assigned from lowest to highest solvation energy. The inner shell, outer shell 616 

and environmental features were calculated for both destabilizing and stabilizing ranks. 617 

Overall, there are 152 electrostatic features. 618 

5.2.5 Coordination geometry terms 619 

We used FindGeo (Andreini, Cavallaro, and Lorenzini 2012) to determine the 620 

coordination geometries of the site’s metal atom(s). First, we record the total number of 621 

ligand N, O, S, and other atoms used as input for FindGeo (within 3.5 Å of any site 622 

metal). Then, we record if the metal atom(s) were identified as a regular, distorted, or 623 

irregular geometry. If the geometry is regular or distorted, we use the RMSD from the 624 

idealized geometry, the number of coordinating atoms for the geometry, and if it is 625 
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completely or partially filled. To prevent issues with ML algorithms and categorical 626 

features, the number of coordinating geometries are one hot key encoded, giving us a 627 

total of 20 coordination geometry features.  628 

5.2.6 Feature analysis 629 

DROPP was calculated as previously described for feature similarity (Feehan, Franklin, 630 

and Slusky 2021). For discrete features, we used the Jaccard index between the 631 

proportions observed in the enzymatic and non-enzymatic sites (Jaccard 1907). For 632 

continuous features, we calculated the overlap of the kernel density estimators for the 633 

values of the enzymatic and non-enzymatic sites. To prevent extreme outliers from 634 

having large influence on DROPP, values greater than ten standard deviations the 635 

mean were ignored. Only dataset sites were used for calculating DROPP. The code for 636 

the DROPP calculation can be found in the MAHOMES II repository file 637 

FeatureCalculations/CalcFeatureDROPP.py (Feehan et al. 2022). 638 

Any feature that had the same value calculated for the entire dataset was discarded, 639 

leaving a total of 250 features. To decrease feature space with minimal information loss, 640 

additional subsets of features were identified for ML input using maximum correlation 641 

cutoffs between features in the same category (Sup. Figure S1). For highly correlated 642 

features, the feature with the higher DROPP was removed. FeatureSet2, FeatureSet3, 643 

and FeatureSet5 used correlation cutoffs of 0.99, 0.9, and 0.75 respectively. Due to the 644 

dramatic increase of electrostatic features, FeatureSet4 used a correlation cutoff of 0.75 645 

for electrostatic features and 0.9 for other categories. Finally, we manually selected 646 

features for FeatureSet6. 647 
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5.2.7 Preparation for ML 648 

ML algorithms require or are greatly aided by standardization of feature values to take 649 

them close to zero and make comparable scales between the values of different 650 

features. We selected four different standardization techniques available in scikit-learn 651 

(Pedregosa et al. 2011) to use during model optimization and selection. The 652 

StandardScaler removes the mean and divides by the features standard deviation. The 653 

RobustScaler removes the median and divides by range between the 20th and 80th 654 

quantile to mitigate the effect of extreme outliers. We also examined uniform and 655 

gaussian QuantileTransformers which use non-linear transformations to map feature 656 

values to uniform or gaussian distributions respectively. All scalars include an imputer to 657 

fill missing feature values with the dataset sites’ average feature values. MAHOMES II 658 

used the uniform QuantileTransformer. 659 

5.3 Machine Learning 660 

5.3.1 Classification performance metric calculations  661 

To calculate predictive performance metrics, a prediction is counted as a true positive 662 

(TP) if it is an enzyme prediction for an enzyme labeled site. It is considered a false 663 

positive (FP) if it is an enzyme prediction for a non-enzyme labeled site. A true negative 664 

(TN) is a non-enzyme prediction for a non-enzyme labeled site. Finally, a false negative 665 

(FN) is a non-enzyme prediction for an enzyme labeled site. The TP, FP, TN, and FN 666 

counts are then used to calculate a model’s accuracy, precision, recall, true negative 667 

rate (TNR), and Matthews correlation coefficient (MCC)(Matthews 1975). 668 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
    (Eq. 3) 669 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (Eq. 4) 670 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (Eq. 5) 671 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (Eq. 6) 672 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   (Eq. 7) 673 

5.3.2 Optimization of ML model(s)  674 

Since the best performing hyperparameters for ML classification algorithm can change 675 

depending on input feature subset and standardization technique, a nested cross 676 

validation (CV) strategy was used to find the optimal ML models. The outer CV used 677 

stratified k-fold and the inner loop used stratified shuffle split. During the inner loop, 678 

different hyperparameters sets were attempted and scored using one of four terms - 679 

accuracy, precision, MCC, or a multi-score combination of accuracy, MCC and Jaccard 680 

index. The hyperparameter sets were ranked according to the average of the scoring 681 

metric. Our multi-score optimization ranked each scoring metric and then averaged the 682 

rankings. Due to the potential for ties, the top three were selected as the optimized ML 683 

models. Depending on the convergence of the different scoring terms, ML algorithm, 684 

feature subset, and standardization could have between three and twelve optimized ML 685 

models. To reliably compare optimized ML models, we used the average performance 686 

metrics during stratified k-fold CV with ten repetitions during each iteration using 687 

different random state hyperparameters for the classifier when applicable.  688 
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5.3.3 Evaluating a model’s reproducibility 689 

For considering a model’s reproducibility, different minimized structure inputs in T-690 

metal-sites10 were used to make a set of predictions, p, for the same site, s. The site’s 691 

divergence, d(s), was calculated using Equation 8, where pi is either 1 (enzyme 692 

prediction) or -1 (non-enzyme prediction) and n is the number of minimized input 693 

versions for s. 694 

𝑑(𝑠) = 1 − |
∑ 𝑝𝑖

𝑛
𝑖=1

𝑛
|      (Eq. 8) 695 

Therefore, d(s) ranges from 0 to 1, where 0 is a site with the same prediction for all 696 

minimized inputs and 1 is a site with five enzyme predictions and five non-enzyme 697 

predictions. Using the set of all sites in T-metal-sites10, T, and the subset of divergent 698 

sites, 𝑫 = {𝑠 | 𝑠 ∈  𝑻 𝑎𝑛𝑑 𝑑(𝑠) > 0}, we calculated our reliability metrics. The divergence 699 

frequency is the percent of sites in T-metal-sites10 that were divergent (Eq. 9).  700 

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝒏(𝑫) 

𝒏(𝑻 )
=

𝒏({𝑠 | 𝑠 ∈  𝑻 𝑎𝑛𝑑 𝑑(𝑠) > 0}) 

𝒏(𝑻 )
   (Eq. 9) 701 

The divergence score is the average site divergence of the divergent sites (Eq. 10). 702 

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
∑{𝑑(𝑠) | 𝑠 ∈ 𝑫}

𝒏(𝑫)
=  

∑ 𝑑(𝑠){𝑠 | 𝑠 ∈  𝑻 𝑎𝑛𝑑 𝑑(𝑠) > 0}

𝒏({𝑠 | 𝑠 ∈  𝑻 𝑎𝑛𝑑 𝑑(𝑠) > 0})
  (Eq. 10) 703 

Since only divergent sites are considered, the lowest divergence score is 0.2. 704 

5.3.4 ML guided dataset manual annotation 705 
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We optimized decision tree-based algorithms (ExtraTrees, GradBoost, and 706 

RandomForest) using FeatureSet4 and selected an ExtraTrees model with high MCC 707 

and high recall. We manually checked non-enzyme sites that were predicted to be 708 

enzyme sites during the k-fold CV using available structure publications, RCSB(Burley 709 

et al. 2019), and UniProt(UniProt 2019). We changed the labels for 73 sites that were 710 

actually enzyme sites and removed all sites from 16 metalloproteins that were 711 

undeterminable, for reasons such as lack of publication and enzymatic homologs. We 712 

repeated the process without ExtraTrees models to minimize redundancy of 713 

mispredicted sites. We fixed 19 additional site labels found during the second iteration, 714 

removed all sites from eight undeterminable metalloproteins. We also removed two sites 715 

that were located on the edge of active sites, meaning they could be correctly labeled 716 

as both enzymatic and non-enzymatic. 717 

5.3.5 Recalculated MAHOMES and Retrained MAHOMES 718 

Since we were able to identify a significant amount of labeling error in the data used for 719 

previously reported MAHOMES performance evaluations, we made updated 720 

performance evaluations to enable more fair comparisons between MAHOMES and 721 

MAHOMES II. We recalculated the k-fold performance for the MAHOMES predictions 722 

using the corrected dataset labels for what was and wasn’t an enzyme. Since we made 723 

new relaxed structures for T-metal-site10 (the MAHOMES II test set), new MAHOMES 724 

predictions were made for T-metal-sites10. Both variations of the test-set received 725 

nearly the same predictions, but the performance evaluation changes significantly due 726 

to reduced labeling error in T-metal-sites10. 727 
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The recalculated MAHOMES performance evaluations were still from a model that was 728 

trained using dataset sites which have since been identified as mislabeled. So, we 729 

made a retrained MAHOMES model, which differs from recalculated MAHOMES in two 730 

ways. The first difference is that the fixed dataset with updated labels and removed 731 

undeterminable sites were used during training. The number of enzyme sites increases 732 

by 10% when the dataset labels are fixed, which prevents under-sampling at a ratio of 3 733 

non-enzyme:1 enzyme site during training. So, the retrained MAHOMES model under-734 

samples by randomly removing 10% of the enzyme sites, followed by random removal 735 

of non-enzyme sites until the ratio of training data is 3 non-enzyme:1 enzyme sites. 736 

Otherwise, retrained MAHOMES model uses the same methods as the recalculated 737 

MAHOMES model, including calculated feature values, algorithm, and optimized 738 

hyperparameter set.  739 

5.3.6 Model selection and performance evaluation 740 

Despite the favorable performance of decision tree-based classifiers during work on 741 

MAHOMES(Feehan, Franklin, and Slusky 2021), we tested fourteen ML classification 742 

algorithms from Scikit-learn(Pedregosa et al. 2011) for MAHOMES II, which include: 743 

linear regression, decision-tree ensemble methods, support vector machines , nearest 744 

neighbors, Bayesian classification, and simple neural networks. We decided to attempt 745 

these various algorithms because decision tree ensemble-based classifiers are known 746 

to be robust against mislabeled data, large feature spaces, and outlier feature values. 747 

So, our upgraded features and reduced training label error does not affect decision tree 748 

ensemble-based algorithms as much as it affects alternative ML classification 749 

algorithms.  750 
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In total, we assessed 4,032 machine learning combinations (14 algorithms x 6 feature 751 

sets x 4 standardization techniques x 4 optimization terms x 3 top hyperparameter sets). 752 

However, we only ended up with 1,792 unique ML models due to convergence during 753 

model optimization. The specific code used for the algorithms, standardization 754 

techniques, and hyperparameters can be found in the MAHOMES II repository file 755 

MachineLearning/GeneralML.py (Feehan et al. 2022). 756 

We selected a model that used a gradient boosting classifier with FeatureSet4 and a 757 

uniform QuantileTransformer because it had the highest recall for models with greater 758 

than 0.845 MCC and 88.5% precision. For MAHOMES II, we further refined this model 759 

to improve both its cross validation MCC, divergence frequency and divergence score 760 

by adjusting hyper-parameters that were too computationally expensive to optimize 761 

during our inner cross validation using GridSearch optimization (Sup. methods).  762 

5.3.7 Feature importance 763 

For algorithms using decision-tree classifiers, sci-kit learn has a built in feature 764 

importance output that measures the mean decrease in impurity that a feature was 765 

responsible for during training. The MAHOMES II feature importance is the average of 766 

feature importance output of the models trained during k-fold cross validation. 767 

5.4 AlphaFold set 768 

5.4.1 AlphaFold set generation 769 

To make the AlphaFold set, we queried UniProt(UniProt 2019) for reviewed entries with 770 

no solved crystal structure, an AlphaFold model (as of February 15, 2022), and metal 771 
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binding data. Entries with no EC number and no catalytic activity annotation of any kind 772 

were labeled as non-enzyme. Entries with annotated with experimental catalytic activity 773 

were labeled as enzyme. Remaining unlabeled entries were removed.  774 

Since each entry is a protein sequence at this point, we chose to remove homology with 775 

training and evaluating data next. We used PHMMER (Eddy 2011) to search each 776 

protein sequence against all sequences in the PDB as of May 21, 2020. Entries with 777 

detected homology, using an E-value < 1, to any protein sequence in the dataset or 778 

test-set were removed.  779 

To go from sequence to the site level data, we retrieved all available metal binding data 780 

from UniProt for each of the remaining entries. We removed data for metals other than 781 

Copper, Iron, Magnesium, Manganese, Zinc, and Nickel. To ensure that the labels were 782 

accurate at the site level, we removed enzyme labeled entries that did not include 783 

‘catalytic’ annotations for the metal binding site. Due to automatic metal site annotations 784 

or lack of EC coverage, non-enzyme labeled entries with ‘catalytic’ metal binding 785 

annotations also had to be removed. Entries with only one or two listed metal binding 786 

residue(s) were removed. We did not relax or perform any additional structure 787 

minimization. The resulting AlphaFold set contains 1740 computationally generated 788 

structures with 1583 non-enzyme sites and 157 enzyme sites.  789 

We placed metals in sites using the average coordinates of the atoms binding to the 790 

metals. For hydrophilic amino acids, we used the coordinate of the sidechain atom 791 

capable of binding a metal ion (N, O, or S). For amino acids with multiple sidechain 792 

atoms capable of binding metal residues (GLU, ASP, GLN, ASN), we used the average 793 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.08.531790doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.08.531790
http://creativecommons.org/licenses/by-nc/4.0/


 42 

of these atomic coordinates. For GLY, we used the average coordinate of the backbone 794 

N and O. Some entries also listed other non-polar amino acids as coordinating residues. 795 

We found the average coordinate of sidechain carbons worked best for placing these 796 

metals without any steric clash. Since some entries with multiple metal binding sites did 797 

not differentiate different bound metal sites, we removed any entries if the coordinating 798 

residues where more than 12 Å from each other. The resulting 1,675 metalloprotein 799 

structures and enzyme/non-enzyme labels are available on Zenodo (Feehan 2023). 800 

5.4.2 AlphaFold set metal ion placement accuracy  801 

We evaluated the accuracy of the AlphaFold set metal placement by adding a metal to 802 

the sites in our dataset and test-set using UniProt data and comparing it to the metal 803 

location in the relaxed crystal structures.  804 

To find appropriate crystalographically-resolved sites to compare with the AlphaFold set 805 

metal placement, we retrieved available binding site data for 2,608 of the 2,643 UniProt 806 

entries in our dataset and test-set. However, only 1,207 entries included data for relevant 807 

metal binding sites -- CHEBI ids: 29105 (Zn2+), 29033 (Fe2+), 29034 (Fe3+), 29035 808 

(Mn2+), 29036 (Cu2+), 49552 (Cu+), 18420 (Mg2+), or 49786 (Ni2+). To create the 809 

dataset for benchmarking, we removed UniProt entries and PDBs with multiple sites. 810 

Also, entries with different metals in the PDB and UniProt binding data were removed. To 811 

accurately depict the placement of sites in our AlphaFold set, we removed sites with fewer 812 

than three coordinating residues. Finally, coordinating residues had to be among the 813 

previously described amino acid types, resolved in the PDB, and indexed with the same 814 
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numbers in UniProt and the PDB. These filtering steps resulted in a total of 103 sites 815 

remaining for benchmarking. 816 

The final benchmark set consists of 103 successfully placed sites. The average distance 817 

between the placed metal and the metal in the relaxed crystal structure was 0.87 Å (Fig. 818 

S4). For comparison, the same 103 sites moved an average of 0.54 Å during minimization 819 

of the crystal structure with Rosetta relax. Moreover, 56% of sites were placed within 1 Å, 820 

96% were placed within 2 Å, and only one was more than 3 Å from its respective 821 

experimentally resolved location in the PDB structure.  822 

The UniProt metal binding annotations were converted to binding site annotations 823 

(Coudert et al. 2023).This data conversion occurred after we created the AlphaFold set 824 

but before we benchmarked our metal binding site placement method. This conversion 825 

therefore required different data retrieval scripts for the benchmarking set than for the 826 

AlphaFold set. 827 

5.5 webserver 828 

The MAHOMES Web Server was implemented in Python 3 on the back end using the 829 

Flask framework with Jinja for templates in creating the HTML client-side interfaces. 830 

When a PDB file and email are submitted to MAHOMES, metadata about the job is 831 

stored in a JSON file. The information necessary to schedule the job for processing is 832 

placed into an SQLite3 database. 833 

 834 
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The job execution program, which is written in Python 3, monitors the SQLite database 835 

for new user submissions, and then handles executing the job, monitoring the job 836 

execution, and then sending an email to the user with a link to the results page.  837 

 838 

The jobs and the web application are run on the Slusky Lab web server, which is a 839 

virtual machine running in the University of Kansas’s enterprise data center. Running 840 

this service as a virtual machine has allowed us to scale up the hardware backing the 841 

instance as we have needed additional resources while working to control the long-term 842 

costs associated with running the MAHOMES service. 843 

 844 

6. Supplementary material description 845 

Figure S1. Comparison of feature sets.  846 

Figure S2. ML models reproducibility.  847 

Figure S3. Top 6 feature DROPP plots 848 

Figure S4. Metal binding site placement accuracy 849 

Table S1. Performance evaluations.  850 

Table S2. AlphaFold set evaluations.  851 

Table S3. MAHOMES II feature importance 852 

Table S4. Comparison of MAHOMES II performance to similar tools that make 853 

enzymatic and non-enzymatic predictions 854 
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Table S5. Manually annotated sites 855 

Table S6. Feature details 856 
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