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Abstract-Memory resident database systems (MMDB’s) store 
their data in main physical memory and provide very high-speed 
access. Conventional database systems are optimized for the 
particular characteristics of disk storage mechanisms. Memory 
resident systems, on the other hand, use different optimizations 
to structure and organize data, as well as to make it reliable. 
This paper surveys the major memory residence optimizations 
and briefly discusses some of the memory resident systems that 
have been designed or implemented. 

Index Terms- Access methods, application programming in- 
terface, commit processing, concurrency control, data clustering, 
data representation, main memory database system (MMDB), 
query processing, recovery. 

I. INTRODUCTION 

I N a main memory database system (MMDB) data resides 
permanently in main physical memory; in a conventional 

database system (DRDB) it is disk resident. In a DRDB, disk 
data may be cached into memory for access; in a MMDB the 
memory resident data may have a backup copy on disk. So 

in both cases, a given object can have copies both in memory 
and on disk. The key difference is that in MMDB the primary 
copy lives permanently in memory, and this has important 
implications (to be discussed) as to how it is structured and 
accessed. 

As semiconductor memory becomes cheaper and chip den- 
sities increase, it becomes feasible to store larger and larger 
databases in memory, making MMDB’s a reality. Because data 
can be accessed directly in memory, MMDB’s can provide 
much better response times and transaction throughputs, as 
compared to DRDB’s. This is especially important for real- 
time applications where transactions have to be completed by 
their specified deadlines. 

A computer’s main memory clearly has different proper- 
ties from that of magnetic disks, and these differences have 
profound implications on the design and performance of the 
database system. Although these differences are well known, 
it is worthwhile reviewing them briefly. 

1) The access time for main memory is orders of magnitude 
less than for disk storage. 
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2) Main memory is normally volatile, while disk storage is 
not. However, it is possible (at some cost) to construct 
nonvolatile main memory. 

3) Disks have a high, fixed cost per access that does not 
depend on the amount of data that is retrieved during the 

access. For this reason, disks are block-oriented storage 
devices. Main memory is not block oriented. 

4) The layout of data on a disk is much more critical than 
the layout of data in main memory, since sequential 
access to a disk is faster than random access. Sequential 
access is not as important in main memories. 

5) Main memory is normally directly accessible by the 
processor(s), while disks are not. This may make data in 
main memory more vulnerable than disk resident data 
to software errors. 

These differences have effects on almost every aspect of 
database management, from concurrency control to application 
interfaces. In this paper we will discuss these effects and 

will briefly survey some MMDB’s that have been recently 
designed or implemented. However, before getting started, it is 
important to address three questions that are commonly asked 
about MMDB’s. 

Is it reasonable to assume that the entire database fits in 
main memory? Yes, for some applications. In some cases, the 

database is of limited size or is growing at a slower rate than 
memory capacities are growing. For example, the database size 
may be proportional to the number of employees or customers 
in a company, and no matter how successful the company is, 
it is reasonable to expect that memory can hold a few hundred 
or thousand bytes per employee or customer. In some real 
time applications, the data must be memory resident to meet 

the real-time constraints, so the database will necessarily be 
smaller than the amount of available memory. Example of 
such real-time applications include telecommunications (e.g., 
800 telephone numbers need to be translated to real numbers), 
radar tracking (e.g., signatures of objects need to be matched 
against a database of known aircraft), and securities trading 

(e.g., trading opportunities must be discovered and executed 
before they vanish). 

However, there are clearly cases where the database does 
not and will never fit in memory, e.g., an application with 
satellite image data. For such cases, DRDB will continue to be 
important. Nevertheless, even in these very large applications, 

it is common to find different classes of data: hot data that 
is accessed frequently, usually low volume and with stringent 
timing requirements, cold data that is accessed rarely and is 
more voluminous, and various intermediate degrees. If this is 
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the case, it is possible to partition the data into one or more 
logical databases, and to store the hottest one in main memory. 
We then have a collection of databases, some managed by a 
MMDB, others by a DRDB. The database systems may be 
totally disjoint, so that applications access them in much the 
same way they would access a lose federation of database 
systems; or they may be tightly integrated, with facilities for 
automatic data migration from one database system to the 
other, as the access frequency of the data changes. Note that 
this migration is not simply caching of values. With caching, 
a temporary copy of an object is made at a different level 
of the storage hierarchy. With migration, the object moves to 
a different management system, and its structure and access 
mechanisms may change. 

There are many applications where this partition of data 
arises naturally. For example, in banking, account records 
(e.g., containing balances) are usually hot; customer records 
(e.g., containing address, mother’s maiden name) are colder. 
Historical records (showing banking activities) are usually 
cold. In a telephone switching application, routing tables (e.g., 
mapping 800 phone numbers to actual numbers) are hot; data 
for customers’ monthly statements are cold. 

IMS, one of the earliest database systems, recognized these 
access differences, and has provided two systems in one for 
many years: Fast Path [9] for memory resident data, and 
conventional IMS for the rest. A recent paper by Stonebraker 
[25] also discusses some of the issues involved in multilevel 
database systems and data migration. In the rest of this paper, 
when we refer to “the database” we will be referring to that 
fraction of the total data that is permanently in memory and 
managed by the MMDB. 

What is the difference between a MMDB and a DRDB with 
a very large cache? If the cache of a DRDB is large enough, 
copies of the data will reside in memory at all times. Although 
such a system will perform well, it is not taking full advantage 
of the memory. For example, the index structures will be 
designed for disk access (e.g., B-trees), even though the data 
are in memory. Also, applications may have to access data 
through a buffer manager, as if the data were on disk. For 
example, every time an application wishes to access a given 
tuple, its disk address will have to be computed, and then the 
buffer manager will be invoked to check if the corresponding 
block is in memory. Once the block is found, the tuple will 
be copied into an application tuple buffer, where it is actually 
examined. Clearly, if the record will always be in memory, it 
is more efficient to refer to it by its memory address. 

What we have illustrated is only one of the possible in- 
memory optimizations. Others will be described in Section II. 
It is important to note that some DRDB and some object- 
oriented storage systems (OOSS) are beginning to recognize 
that with large caches some of their data will reside often 
in memory, and are beginning to implement some of the in- 
memory optimizations of MMDB. For example, some new 
systems convert a tuple or object into an in-memory represen- 
tation and give applications a direct pointer to it. (This is called 
“swizzling” [4], [25].) As DRDB perform more and more in- 
memory optimizations, they become closer to MMDB. In the 
future, we expect that the differences between a MMDB and 

DRDB will disappear: any good database management system 
will recognize and exploit the fact that some data will reside 
permanently in memory and should be managed accordingly. 

Can we assume that main memory is nonvoLatile and reZiabZe 
by introducing special purpose hardware? It is tempting to 
make this assumption since the design of a MMDB would be 
further simplified and performance would improve further (no 
crash recovery code at all!). There is no “yes” or “no” answer 
here. Memory is simply a storage medium that can be made 
more reliable by techniques such as battery-backed up memory 
boards, uninterruptable power supplies, error detecting and 
correcting memory, and triple modular redundancy. However, 
this only reduces the probability of media failure, but does not 
make it to zero. Thus one will always have to have a backup 
copy of the database, probably on disk. Note that for DRDB, 
backups are also required, possibly to tape or other disks. 

As the probability of media failure decreases, the frequency 
of backups can decrease, and the performance implications 
of these backups decreases. For example, with good disks, it 
may be sufficient to back them up to tape once a week. The 
overhead of scanning and copying the entire database once a 
week (probably concurrently with other activities) should not 
be significant. For the case of memory resident data, there are 
several factors that force the frequency of backups up. 

1) Since memory is directly accessible by the processor (see 
item 5), Section I), it is more vulnerable to operating 
system errors. So even if the hardware is very reliable, 
the contents of memory will be periodically lost when 
the system “crashes.” 

2) When one disk fails, it can be fixed without affecting the 
contents of other disks. After recovery, only a fraction 
of the database (on that disk) must be restored from 
the backup (and logs). Also, during recovery, the rest 
of the database may still be accessible. When a memory 
board fails, typically the entire machine must be powered 
down, losing the entire database. Since recovery of the 
data will be much more time consuming, it is desirable 
to have a recent backup available. (The older the backup, 
the more it takes to bring up to date from the log.) 

3) Battery backed memory, or uninterruptable power sup- 
plies (UPS) are “active” devices and lead to higher 
probability of data loss than do disks. Disks are “passive” 
and do not have to do anything to remember their data. 
An UPS can run out of gas or can overheat. Batteries 
can leak or lose their charge. 

In summary, unless one has a lot of trust in memory 
reliability, memory backups will have to be taken relatively 
frequently, and the performance of the backup mechanism will 
be of central importance. Also, because the cost of writing to 
disk is so much higher than that of writing to memory, the 
overhead of the backups will be much more significant than for 
the equivalent disk to tape backups in a conventional system 
(see Section II-G). 

II. IMPACT OF MEMORY RESIDENT DATA 

We have argued that a database system should manage 
memory resident data differently from a conventional system. 
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In the following subsections, we discuss the impact of memory 
residency on some of the functional components of database 
management systems. 

A. Concurrency Control 

Because access to main memory is so much faster than 
disk access, we can expect transactions to complete more 
quickly in a main memory system. In systems that use lock- 
based concurrency controls, this means that locks will not be 
held as long, and suggests that lock contention may not be 
as important as it is when the data is disk resident. (Here 
we focus on locking concurrency control since it is the most 
commonly used in practice and is what has been used in 
MMDB prototypes. However, we expect that optimizations 
similar to the ones to be described could be used for other 
types of mechanisms, such as optimistic or time-stamp based.) 

Systems that choose small locking granules (fields or 
records) do so to reduce contention. If contention is already 
low because data are memory resident, the principal advantage 
of small lock granulesis effectively removed. For this reason, 
it has been suggested that very large lock granules (e.g., 
relations) are most appropriate for memory resident data [ 171. 

In the extreme, the lock granule could be chosen to be the 
entire database [8], [18]. This amounts to serial execution of 
transactions. Serial transaction processing is highly desirable, 
since the costs of concurrency control (setting and releasing 
locks, coping with deadlock) are almost completely eliminated. 
Furthermore, the number of CPU cache flushes is greatly 
reduced. (Each time a transaction is suspended waiting for 
a lock, a new transaction is run and the contents of the CPU 
cache must change. With serial execution, only one flush needs 
to occur per transaction.) In high performance computers, 
where cache flushes are equivalent to thousands of instructions, 
the gains can be very significant. However, serial transactions 
are probably not practical when long transactions (e.g., con- 
versational transactions) are present. For fairness, there should 
be some way to run short transactions concurrently with long- 
lived ones. Furthermore, multiprocessor systems may require 
some form of concurrency control even if all transactions are 
short. 

The actual implementation of the locking mechanism can 
also be optimized for memory residence of the objects to be 
locked. In a conventional system, locks are implemented via a 
hash table that contains entries for the objects currently locked. 
The objects themselves (on disk) contain no lock information. 
If the objects are in memory, we may be able to afford a small 
number of bits in them to represent their lock status. 

To illustrate, say we are dealing with exclusive locks only. 
(We are told IMS uses this idea, although we have not found a 
published reference to it.) If the first bit is set, then the object 
is locked, else it is free. If it is locked and the second bit is set, 
then there are one or more waiting transactions. The identity 
of these waiting transactions is stored in a conventional hash 
lock table. If a transaction wishes to lock an object, it first 
checks its lock bit. If it is not set, it sets it and is done with 
the locking process. (Some type of test and set instruction 
must be used to avoid two transactions from setting the bit.) 

Later on, if a second transaction wants to wait on the object, 
it sets the second bit on and adds itself to the list of waiting 
transactions in the lock table. 

When the original transaction releases its lock bit, it checks 
if the second bit is set. If not, there are no waiting transactions 
and it is done. If it is set, it must go through the conventional 
procedure to wake up a waiting transaction. Clearly, we have 
omitted many details. However, the key point is that by far the 
most likely situation (with low contention) is for a transaction 
to lock a free object, update it, and to release its lock before 
any other transaction waits for it. In this case, both the lock 
and the release can be done with a minimal number of machine 
instructions, avoiding the hash table lookup entirely. Of course, 
there is the extra space overhead to consider. However, for 
“typical” database records that are tens of bytes or more long, 

the overhead of two bits may not be significant. 

B. Commit Processing 

To protect against media failures, it is necessary to have a 
backup copy (see Section I) and to keep a log of transaction 
activity. Since memory is usually volatile, this log must reside 
in stable storage (e.g., redundant disks). Before a transaction 
can commit, its activity records must be written to the log [ 111. 

The need for a stable log threatens to undermine the 
performance advantages that can be achieved with memory 
resident data. Logging can impact response time, since each 
transaction must wait for at least one stable write before 
committing. Logging can also affect throughput if the log 
becomes a bottleneck. Although these problems also exist 
when data is disk resident, they are more severe in main 
memory systems because the logging represents the only disk 
operation each transaction will require. 

Several solutions have been suggested for this problem. 
First, a small amount of stable main memory can be used to 
hold a portion of the log [5]-[8], [13], [17]. A transaction is 
committed by writing its log information into the stable mem- 
ory, a relatively fast operation. A special process or processor 
is then responsible for copying data from the stable memory 
to the log disks. Although stable memory will not alleviate 
a log bottleneck, it can eliminate the response time problem, 
since transactions need never wait for disk operations. Studies 
have suggested that only a small amount (e.g., fewer than one 
hundred log pages [3]) of stable memory is needed to hold the 
log tail, even in high performance systems. 

In case stable memory is not available for the log tail, 
transactions can be precommitted [5], [9]. Pre-committing 
is accomplished by releasing a transaction’s locks as soon 
as its log record is placed in the log, without waiting for 
the information to be propagated to the disk. The sequential 
nature of the log ensures that transactions cannot commit 
before others on which they depend. Although precommitting 
a transaction does not reduce its response time, it may reduce 
the blocking delays (and hence, the response time) of other, 
concurrent transactions. 

A technique called group commits can be used to relieve a 
log bottleneck [5], [9]. Under group commit, a transaction’s 
log record need not be sent to the log disk as soon as it com- 
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When relational tuples are implemented as a set of point- 
ers to the data values (as discussed in Section II-D), some 
relational operations can be performed very efficiently [20]. 
For example, say we want to join relations R and S over 
a common attribute A. To perform the join we can scan the 
smaller relation, say R. For each tuple, we follow its A pointer 
to the actual value, call it a;. From that value we follow back 
pointers to all S tuples that use a;. We join the original R 
tuple to these S tuples, and add them to the result. For this 
to work, we need to have enough pointers in a; to efficiently 
lead us to the S tuple that uses this value for its A attribute. 
Some additional storage will be required for this, but as is 
discussed in [20], the performance gains can be significant. 
The key idea is that because data is in memory, it is possible to 
construct appropriate, compact data structures that can speed 
up queries. 

mits. Instead, the records of several transactions are allowed to 
accumulate in memory. When enough have accumulated (e.g., 
when a page is full), all are flushed to the log disk in a single 
disk operation. Group commit reduces the total number of 
operations performed by the log disks since a single operation 
commits multiple transactions. 

C. Access Methods 

In a main memory database, index structures like B-Trees, 
which are designed for block-oriented storage, lose much of 
their appeal. A wide variety of index structures have been 
proposed and evaluated for main memory databases [5], [16], 
[26]. These include various forms of hashing and of trees. 
Hashing provides fast lookup and update, but may not be as 
space-efficient as a tree, and does not support range queries 
well. Trees such as the T-Tree have been designed explicitly 
for memory-resident databases [16]. Main memory trees need 
not have the short, bushy structure of a B-Tree, since traversing 
deeper trees is much faster in main memory than on a disk. 

One observation common to all main memory access meth- 
ods is’ that the data values on which the index is built need 
not be stored in the index itself, as is done in B-Trees. 
Because random access is fast in main memory, pointers can 
be followed quickly. Therefore, index structures can store 
pointers to the indexed data, rather than the data itself. This 
eliminates the problem of storing variable length fields in an 
index and saves space as long as the pointers are smaller than 
the data they point to. 

The use of pointers suggests perhaps the simplest way to 
provide an index, which is simply to invert the relation on 
the indexed field [l], [2], [26]. In a main memory database, 
the inverted “relation” can simply be a list of tuple pointers 

in sorted order. Such indexes are very space efficient and are 
reasonably fast for range and exact-match queries, although 
updates are slow. 

Query processors for memory resident data must focus on 
processing costs, whereas most conventional systems attempt 
to minimize disk access [26]. One difficulty is that processing 
costs can be difficult to measure in a complex data man- 
agement system. Costly operations (e.g., creating an index 
or copying data) must first be identified, and then strategies 
must be designed to reduce their occurrence. Operation costs 
may vary substantially from system to system, so that an 
optimization technique that works well in one system may 
perform poorly in another. 

F. Recovery 

Backups of memory resident databases must be maintained 
on disk or other stable storage to insure against loss of the 
vol .atile data. Recovery has 

procedure used during 

several 
the 

components, the first being 
database operation to keep normal 

second being the procedure the backup up-to-date, and the 
used to recover from a failure. 

We have already d iscussed commi 
used to make sure that the results of all 

t processing, which is 
committed tra nsactions 

are stable. Most systems that use a log fo r commit 

also perform backups or checkpoi .nts to limit the 
processing 
amount of 

D. Data Representation 

Main memory databases can also take advantage of efficient 
pointer following for data representation. Relational tuples can 
be represented as a set of pointers to data values [20], [26]. 
The use of pointers is space efficient when large values appear 
multiple times in the database, since the actual value needs 
to only be stored once. Pointers also simplify the handling 
of variable length fields since variable length data can be 
represented using pointers into a heap [17], [24]. 

log data that must be processed to recover from a failure 
[5]-[7], [13], [17], [18], [23], [24]. Checkpointing brings the 
disk resident copy of the database more up-to-date, thereby 
eliminating the need for the least recent log entries. 

In a memory resident database system, checkpointing and 
failure recov ‘cry are the only reasons 

database. Application 
resident 

copy of the 

to access the disk- 
transactions never 

Therefore, 
tailored to 

require 
disk access in a 
suit the needs of 

observation is that disk 
size. Large 

access to the disk resident data. 
memory resident system can be 

E. Query Processing I/O should 
blocks are 

the checkpoin 
be performed 

ter alone . One 
very using a large block 

more efficiently written, and though they take 

checkpointer (the system), and not th e applicat 
longer, only the 

Since sequential access is not significantly faster than ran- 
dom access in a memory resident database, query processing 
techniques that take advantage of faster sequential access lose 
that advantage [2], [5], [15], 1201, [26]. An example is sort- 
merge join processing, which first creates sequential access 
by sorting the joined relations. Although the sorted relations 
could be represented easily in a main memory database using 
pointer lists, there is really no need for this since much of the 
motivation for sorting is already lost. 

ion transactions, 

await the completion of those writes. 
Checkpointing should interfere little possible 

with transaction processing. 
istent checkpoints requ cons 

as as 
Transaction-consistent or 
ire some synchronizatio 

locking) with transactions. An alternative known as fuzzy 

dumping requires no synchronization. However, consistent 

action- 

n (e.g., 
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checkpoints may simplify logging, since logical operations its relation name and primary key. After the first read, the sys- 

can be logged. tern returns the memory address of the tuple, and it is used for 
After a failure, a memory resident database manager must subsequent accesses. This avoids costly translations, but com- 

restore its data from the disk resident backup and then bring mits the system to leave the object in place, at least until the 
it up to date using the log. If the database is large, simply transaction that knows about the memory location terminates. 
transferring the data from the disks may take a long time. A second optimization is to eliminate the private buffer 
One possible solution to this problem is to load blocks of 
the database “on demand” until all of the data has been 

and to give transactions direct access to the object. The 
performance gains can be significant: if a transaction is simple, 

loaded [12], [17]. However, it is not clear how much of an most of its time may be spent copying bits from and to buffers. 
improvement this will provide in a high-performance system By cutting this out, the number of instructions a transaction 
which must handle the demands of thousands of transactions must execute can be cut in half or more. However, there are 
in the seconds after the database has recovered. two potential problems now: once transactions can access the 

Another possible solution to the database restoration prob- database directly, they can read or modify unauthorized parts; 

lem is to use disk striping or disk arrays [14], [19], [22]. Here 
the database is spread across multiple disks, and it is read in 
parallel. For this to be effective, there must be independent 
paths from the disks to memory. 

and the system has no way of knowing what has been modified, 

emit a code that checks for proper authorization, and logs 

so it cannot log the changes. The best solution is to only run 
transactions that were compiled by a special database system 

every object modification [8]. 

compiler. For each database object access, this compiler will 

G. Performance 

Performance is a concern for each of the database com- 
ponents we have described. With the possible exception of 
commit processing, the performance of a main memory data- 
base manager depends primarily on processing time, and not 
on the disks. Even recovery management, which involves the 
disks, affects performance primarily through the processor, 
since disk operations are normally performed outside the 
critical paths of the transactions. Most performance analyses of 
main memory techniques reflect this and the model processing 
costs [6], [17], [23]. This contrasts with models of disk-based 

’ systems (e.g., [21]) which count I/O operations to determine 
the performance of an algorithm. 

Not only are the metrics different in MMDB analysis, but 
the MMDB components under analysis tend to be different. 
For example, in conventional systems, making backups (i.e., 
taking checkpoints) does not impact performance during nor- 
mal system operation, so this component tends not to be 

studied carefully. As we argued in Section I, in a MMDB, 
backups will be more frequent and will involve writes to 
devices an order of magnitude slower than memory. Thus the 
performance of backup or checkpointing algorithms is much 
more critical and studied more carefully (e.g., [24]). 

H. Application Programming Interface and Protection 

In conventional DRDB’s, applications exchange data with 
the database management system via private buffers. For 
instance, to read an object, the application calls the database 
system, giving the object id and the address of a buffer in 
its address space. The system reads the object from the disk 
into its own buffer pool and then copies the object to the 
application’s private buffer. To write, the application modifies 
the private buffer, and calls the system. The system copies 
the modified object back to its buffer pool, and makes the 
corresponding log entries and I/O operations. 

In a MMDB, access to objects can be more efficient. First, 
applications may be given the actual memory position of the 
object, which is used instead of a more general object id. For 
instance, the first time an application refers to a tuple, it can use 

I. Data Clustering and Migration 

In a DRDB, data objects (e.g., tuples, fields) that are 
accessed together are frequently stored together, or clustered. 
For instance, if queries often look at a “department” and all the 
“employees” that work in it, then the employee records can be 
stored in the same disk page as the department they work in. 
In a MMDB there is, of course, no need to cluster objects. As 
a matter of fact, the components of an object may be dispersed 
in memory, as suggested in Sections II-D and II-E (e.g., tuples 
only have pointers to the data values stored elsewhere). 

This introduces a problem that does not arise in conventional 
systems: when an object is to migrate to disk (or “vacuum 
cleaned” [25]), h ow and where should it be stored? There are 
a variety of solutions for this, ranging from ones where the 
users specify how objects are to be clustered if they migrate, 
to ones where the system determines the access patterns and 
clusters automatically. Our main point here is that migration 
and dynamic clustering are components of a MMDB that have 
no counterpart in conventional database systems. 

III. SYSTEMS 

Several database management systems for memory resident 
data have been proposed or implemented. These efforts range 
from pencil-and-paper designs (MM-DBMS, MARS, HALO) 
to prototype or testbed implementations (OBE, TPK, System 
M) to commercial systems (Fast Path). In the following, 
we describe some of these systems. Our descriptions are 
necessarily brief due to limited space. Furthermore, we focus 
our discussion on how these svstems address the issues raised 
by memory resident data, which we discussed in the previous 
sections. This is summarized in Table I. (Blank entries in Table 
I mean that that particular aspect is not studied or implemented 
in the system, or that it is not described in the literature we 
have.) More detailed descriptions of these systems can be 
found in the references. Also, please note that our list is not 
comprehensive; we are simply discussing some representative 
systems. 
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MM-DBMS 

MARS 

HALO 

OBE 

TPK 

System M 

Fast Path 

A. OBE 

TABLE I 
SUMMARY OF MAIN MEMORY SYSTEMS 

Concurrency 
Committ 
Processing 

Data Representation 
Access 
Methods 

Query Processing Recovery 

two-pahse locking of 
relations 

stable log tail by 
segment 

two-phase locking of 
relations 

stable shadow 
memory, log tail 

in hardware, 
nearly transparent 

serial transaction 
execution 

group committ, 
precommitt 

two-phase locking, 
minimize concurrency 

several 
alternatives 

VERIFY/CHANGE for 
hot spots 

group committ 

self-contained 
segments, heap per 
segment, extensive 
pointer use 

extensive use of 
pointers 

arrays 

self-contained 
segments, heap per 
segment 

hashing, 
T-trees, 
pointers to 

* 
values 

merge, nested-loop, 
joins 

segments recovered 
on demand, recovery 
processor 

recovery processor, 
fuzzy checkpoints 

physical, word-level 

1% 

inverted 
indexes 

nested loop-join, 
on-the-fly-index 
creation, 
optimization 
focuses on 
processor costs 

two memory resident 
databases, fuzzy 
checkpoints 

various 
checkpointing, 
logging options 

A main memory database manager has been implemented in 
conjunction with IBM’s Office-By-Example (OBE) database 
project [l], [2], [26]. The system is designed to run on the 
IBM 370 architecture. Its focus is on handling ad hoc queries 
rather than high update loads. 

Data representation in the OBE system makes heavy use of 
pointers. Relations are stored as linked lists of tuples, which 
in turn are arrays of pointers to attribute values. Indexes are 
implemented as arrays of tuple pointers sorted according to 
the attribute values on which the index was being built (i.e., 
inverted indexes). 

Joins are computed using a nested-loop technique since 
sorting (for sort-merge joins) is not beneficial when the data 
are memory resident. An index may be created “on-the-fly” 
to compute a join. 

Query processing and optimization focus on reducing pro- 
cessing costs since queries do not involve disk operations. 
Several important processing activities, such as creation of 
indexes and evaluation of query predicates, are identified and 
included in the cost formulas used by the query processor. 
Optimization techniques are also geared toward reducing or 
eliminating processor intensive activities. 

B. MM-DBMS 

The MM-DBMS system was designed at the University of 
Wisconsin [ 151, [ 171. Like OBE, MM-DBMS implements a 
relational data model and makes extensive use of pointers 
for data representation and access methods. Variable length 
attribute values are represented by pointers into a heap, and 
temporary relations are implemented using pointers to tuples in 
the relations from which they were derived. Index structures 
point directly to the indexed tuples, and do not store data 
values. A variant of linear hashing is used to index unordered 

data, and T-Trees (a type of balanced binary tree with multiple 
values “stored” at each node) are used to access ordered data. 

For recovery purposes, memory is divided into large self- 
contained blocks. These blocks are the units of transfer to and 
from the.backup disk resident database copy. Commit process- 
ing is performed with the aid of some stable memory for log 
records and with a separate recovery processor. The recovery 
processor groups log records according to which blocks they 
reference so that blocks can be recovered independently after 
a failure. Blocks are checkpointed by the recovery processor 
when they have received a sufficient number of updates. A 
lock is set during the checkpoint operation to ensure that each 
block is in a transaction consistent state on the disk. After a 
failure, blocks are brought back into memory on demand and 
are brought back up to date using their log record groups. 

MM-DBMS uses two-phase locking for concurrency con- 
trol. Large lock granules (entire relations) are used. 

C. IMSIVS Fast Path 

IMS/VS Fast Path is a commercial database product from 
IBM which supports memory resident data [9]. Disk resident 
data are supported as well. Each database is classified statically 
as either memory or disk resident. 

Fast Path performs updates to memory resident data at com- 
mit time. Transactions are group committed to support high 
throughput. The servicing of lock requests is highly optimized 
to minimize the cost of concurrency control. Record-granule 
locks are used. 

Fast Path is designed to handle very frequently accessed 
data, since it is particularly beneficial to place such data 
in memory. It supports VERIFY/CHANGE operations for 
frequently updated objects. The VERIFY operation may be 
performed early in a transaction’s lifetime to check the value 
of an object, but no locks are set for this operation. If the value 
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is judged acceptable, the actual update (along with another 
check of the value) is performed at commit time using a very 
short duration lock. 

D. MARS 

The MARS MMDB was designed at Southern Methodist 
University [6], [7], [12]. It uses a pair of processors to provide 
rapid transaction execution against memory resident data. 

The MARS system includes a database processor and a 
recovery processor, each of which can access a volatile main 
memory containing the database. A nonvolatile memory is also 
available to both processors. The recovery processor has access 
to.disks for the log and for a backup copy of the database. 

The database processor is responsible for the execution of 
transactions up to the commit point. Updates do not modify the 
primary database copy until the updating transaction commits. 
Instead, the database processor records the update in the 
nonvolatile memory. If the updating transaction is aborted, 

the recorded update is simply discarded. 
To commit a transaction, the recovery processor copies its 

update records into the database from the nonvolatile memory. 
The records are also copied into a nonvolatile log buffer. The 
recovery processor is responsible for flushing full log buffers to 
the log disks. Periodic checkpointing is also performed by the 
recovery processor. Checkpoints are fuzzy dumps of modified 
portions of the volatile database to the backup. 

Concurrency is controlled using two-phase locking with 
large lock granules (entire relations). 

E. HALO 

Several main memory system designs, including MM- 
DBMS and MARS, propose dedicated processors for recovery 
related activities such as logging and checkpointing. HArdware 
Logging (HALO) is a proposed special-purpose device for 
transaction logging [ 81. It transparently off-loads logging 
activity from the processor(s) that executes transactions. 

HALO intercepts communications between a processor and 
memory controllers to produce a word-level log of all memory 
updates. Each time a write request is intercepted, HALO 
creates a log entry consisting of the location of the update and 
the new and old values at that address. (HALO obtains the 
old value by issuing a read request to the memory controller.) 
These entries are maintained in nonvolatile buffers which are 
flushed to the disk when full. After buffering a log entry, 
HALO forwards the write request to the appropriate memory 
controller. 

HALO also accepts several special commands from the 
processor. These commands (to begin, end, and switch trans- 
actions) are used to inform HALO of the identifier of the 
transaction that is currently being executed. HALO includes a 
transaction identifier with each log record. The processor can 
also cause a transaction’s effects to be undone by issuing an 
abort transaction command to HALO. 

F. TPK 

TPK is a prototy pe multiprocessor main-memory transaction 

processing system implemented at Princeton University [ 181. 

It runs on Firefly multiprocessors. TPK’s emphasis is on 
rapid execution of debit/credit type transactions. It supports a 
simple data model consisting of records with unique identifiers. 
Transactions may read and update records using the identifiers. 

The TPK system 
of four types: input, 

consists of a set 
execution, output, 

of concurrent threads 
and checkpoint. Input 

threads handle transaction requests and feed work to the 
execution thread via a queu e, whi le output threads externalize 
transaction results and also make them available to the check- 
pointer. The execution thread executes the transaction code and 
is responsible for logging, and the checkpoint thread updates 
the stable backup database copy. Normally, TPK consists 
of a single execution thread and a single checkpointer, and 
one or more input and outpu t threads. The execution thread 
executes transactions serially, thereby el imin ating the need for 
transaction concurrencv controls. 

Two copies of the database (primary and secondary) are 
retained in-memory. The primary copy supports all transaction 
reads and updates. Copies of all updated records are placed 
(by the execution thread) into the log. TPK implements group 
commit to reduce the number of log disk writes per transaction. 

The execution thread also places copies of each log record 
into a queue for the checkpoint process. The checkpointer 
reads these records and uses them to update the secondary 
in-memory database. Periodically, the secondary database is 
copied to the disk to complete a checkpoint. The purpose of 
the secondarv database is to eliminate data contention between 
the checkpoint and execution threads during the checkpoint 
operation. 

G. System M 

System M is a tra nsaction processin g testbed syste 
veloped at Princeton for main memory d atabases PI 

m de- 
. Like 

the TPK prototype, System M is designed for a transactional 
workload rather than ad hoc database queries. It supports a 
simple record-oriented data model. 

System M is implemented as a collection of cooperating 
servers (threads) on the Mach operating system. Message 
servers accept transaction requests and return results to clients. 
Transaction servers execute requested transactions, modifying 
the database and generating log data. Log servers move in- 
memory log data to disk, and checkpoint servers keep the 
disk-resident backup database up to date. 

Unlike TPK, System M is capable of processing transac- 
tions concurrently. However, it attempts to keep the number 
of active transactions small. Two-phase locking is used for 
concurrency control. Both precommit and group commit are 
implemented for efficient log processing. 

As in MM-DBMS, the primary database copy is divided 
into self-contained fixed-size segments, which are the units of 
transfer to and from the backup disks. Records are contained 
within a segment. Variable length fields are implemented using 
pointers into a per segment heap. Record index structures 
reside outside of the segments since they are not included 
in the backup database (nor are changes to indexes logged). 
Indexes are recreated from scratch after a failure, once the 
database has been restored from the backup copy and the log. 



Since the f’ocus of Svstem M is empirical comparison of 
rccoc~~~ techniques, a variety of ck leckpointing and logging 
techniques arc implemented. System M can perform both fuzzy 
and consistent checkpoints (using a \ jariety of algorithms) anb 
both phvsicat and logical logging. The physical organization d 
of the backup database copy car&lso be controlled. 

IV. CI~NCWSI~IV 

In [ lO], it is argued that data that are referenced every 5 min 
or more should be memory resident (assuming 1K disk blocks). 
The 5min number is arrived at by analvzing the dollar cost 
of accessing data in memory versus disk.‘The important thing 
to note is that as the price of a byte of main memory drops 
relative to the cost of disk accesses per second, the resulting 
time grows. That is, we can expect the “ 5min rule” to be 
the IO-min rule in the future, and so on. Thus as memory 
becomes cheaper, it becomes cost effective to keep more and 
more data permanently in memory. This implies that memory 
resident database systems will become more common in the 
future, and hence, the mechanisms and optimizations we have 
discussed in this paper will become commonplace. 
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