
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 6, DECEMBER 1992 509

Main Memory Database Systems: An Overview
Hector Garcia-Molina, Member, E%!?, and Kenneth Salem, Member, IEEE

Invited Paper

Abstract-Memory resident database systems (MMDB’s) store
their data in main physical memory and provide very high-speed
access. Conventional database systems are optimized for the
particular characteristics of disk storage mechanisms. Memory
resident systems, on the other hand, use different optimizations
to structure and organize data, as well as to make it reliable.
This paper surveys the major memory residence optimizations
and briefly discusses some of the memory resident systems that
have been designed or implemented.

Index Terms- Access methods, application programming in-
terface, commit processing, concurrency control, data clustering,
data representation, main memory database system (MMDB),
query processing, recovery.

I. INTRODUCTION

I N a main memory database system (MMDB) data resides
permanently in main physical memory; in a conventional

database system (DRDB) it is disk resident. In a DRDB, disk
data may be cached into memory for access; in a MMDB the
memory resident data may have a backup copy on disk. So

in both cases, a given object can have copies both in memory
and on disk. The key difference is that in MMDB the primary
copy lives permanently in memory, and this has important
implications (to be discussed) as to how it is structured and
accessed.

As semiconductor memory becomes cheaper and chip den-
sities increase, it becomes feasible to store larger and larger
databases in memory, making MMDB’s a reality. Because data
can be accessed directly in memory, MMDB’s can provide
much better response times and transaction throughputs, as
compared to DRDB’s. This is especially important for real-
time applications where transactions have to be completed by
their specified deadlines.

A computer’s main memory clearly has different proper-
ties from that of magnetic disks, and these differences have
profound implications on the design and performance of the
database system. Although these differences are well known,
it is worthwhile reviewing them briefly.

1) The access time for main memory is orders of magnitude
less than for disk storage.

Manuscript received December 1, 1991; revised July 27, 1992. The work
of IS. Salem was supported by the National Science Foundation under Grant
CCR-8908898 and by CESDIS.

H. Garcia-Molina is with the Department of Computer Science, Stanford
University, Stanford, CA 94305.

K. Salem is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.

IEEE Log Number 9204082.

2) Main memory is normally volatile, while disk storage is
not. However, it is possible (at some cost) to construct
nonvolatile main memory.

3) Disks have a high, fixed cost per access that does not
depend on the amount of data that is retrieved during the

access. For this reason, disks are block-oriented storage
devices. Main memory is not block oriented.

4) The layout of data on a disk is much more critical than
the layout of data in main memory, since sequential
access to a disk is faster than random access. Sequential
access is not as important in main memories.

5) Main memory is normally directly accessible by the
processor(s), while disks are not. This may make data in
main memory more vulnerable than disk resident data
to software errors.

These differences have effects on almost every aspect of
database management, from concurrency control to application
interfaces. In this paper we will discuss these effects and

will briefly survey some MMDB’s that have been recently
designed or implemented. However, before getting started, it is
important to address three questions that are commonly asked
about MMDB’s.

Is it reasonable to assume that the entire database fits in
main memory? Yes, for some applications. In some cases, the

database is of limited size or is growing at a slower rate than
memory capacities are growing. For example, the database size
may be proportional to the number of employees or customers
in a company, and no matter how successful the company is,
it is reasonable to expect that memory can hold a few hundred
or thousand bytes per employee or customer. In some real
time applications, the data must be memory resident to meet

the real-time constraints, so the database will necessarily be
smaller than the amount of available memory. Example of
such real-time applications include telecommunications (e.g.,
800 telephone numbers need to be translated to real numbers),
radar tracking (e.g., signatures of objects need to be matched
against a database of known aircraft), and securities trading

(e.g., trading opportunities must be discovered and executed
before they vanish).

However, there are clearly cases where the database does
not and will never fit in memory, e.g., an application with
satellite image data. For such cases, DRDB will continue to be
important. Nevertheless, even in these very large applications,

it is common to find different classes of data: hot data that
is accessed frequently, usually low volume and with stringent
timing requirements, cold data that is accessed rarely and is
more voluminous, and various intermediate degrees. If this is

1041-4347/92$03.00 0 1992 IEEE

510 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 6, DECEMBER 1992

the case, it is possible to partition the data into one or more
logical databases, and to store the hottest one in main memory.
We then have a collection of databases, some managed by a
MMDB, others by a DRDB. The database systems may be
totally disjoint, so that applications access them in much the
same way they would access a lose federation of database
systems; or they may be tightly integrated, with facilities for
automatic data migration from one database system to the
other, as the access frequency of the data changes. Note that
this migration is not simply caching of values. With caching,
a temporary copy of an object is made at a different level
of the storage hierarchy. With migration, the object moves to
a different management system, and its structure and access
mechanisms may change.

There are many applications where this partition of data
arises naturally. For example, in banking, account records
(e.g., containing balances) are usually hot; customer records
(e.g., containing address, mother’s maiden name) are colder.
Historical records (showing banking activities) are usually
cold. In a telephone switching application, routing tables (e.g.,
mapping 800 phone numbers to actual numbers) are hot; data
for customers’ monthly statements are cold.

IMS, one of the earliest database systems, recognized these
access differences, and has provided two systems in one for
many years: Fast Path [9] for memory resident data, and
conventional IMS for the rest. A recent paper by Stonebraker
[25] also discusses some of the issues involved in multilevel
database systems and data migration. In the rest of this paper,
when we refer to “the database” we will be referring to that
fraction of the total data that is permanently in memory and
managed by the MMDB.

What is the difference between a MMDB and a DRDB with
a very large cache? If the cache of a DRDB is large enough,
copies of the data will reside in memory at all times. Although
such a system will perform well, it is not taking full advantage
of the memory. For example, the index structures will be
designed for disk access (e.g., B-trees), even though the data
are in memory. Also, applications may have to access data
through a buffer manager, as if the data were on disk. For
example, every time an application wishes to access a given
tuple, its disk address will have to be computed, and then the
buffer manager will be invoked to check if the corresponding
block is in memory. Once the block is found, the tuple will
be copied into an application tuple buffer, where it is actually
examined. Clearly, if the record will always be in memory, it
is more efficient to refer to it by its memory address.

What we have illustrated is only one of the possible in-
memory optimizations. Others will be described in Section II.
It is important to note that some DRDB and some object-
oriented storage systems (OOSS) are beginning to recognize
that with large caches some of their data will reside often
in memory, and are beginning to implement some of the in-
memory optimizations of MMDB. For example, some new
systems convert a tuple or object into an in-memory represen-
tation and give applications a direct pointer to it. (This is called
“swizzling” [4], [25].) As DRDB perform more and more in-
memory optimizations, they become closer to MMDB. In the
future, we expect that the differences between a MMDB and

DRDB will disappear: any good database management system
will recognize and exploit the fact that some data will reside
permanently in memory and should be managed accordingly.

Can we assume that main memory is nonvoLatile and reZiabZe
by introducing special purpose hardware? It is tempting to
make this assumption since the design of a MMDB would be
further simplified and performance would improve further (no
crash recovery code at all!). There is no “yes” or “no” answer
here. Memory is simply a storage medium that can be made
more reliable by techniques such as battery-backed up memory
boards, uninterruptable power supplies, error detecting and
correcting memory, and triple modular redundancy. However,
this only reduces the probability of media failure, but does not
make it to zero. Thus one will always have to have a backup
copy of the database, probably on disk. Note that for DRDB,
backups are also required, possibly to tape or other disks.

As the probability of media failure decreases, the frequency
of backups can decrease, and the performance implications
of these backups decreases. For example, with good disks, it
may be sufficient to back them up to tape once a week. The
overhead of scanning and copying the entire database once a
week (probably concurrently with other activities) should not
be significant. For the case of memory resident data, there are
several factors that force the frequency of backups up.

1) Since memory is directly accessible by the processor (see
item 5), Section I), it is more vulnerable to operating
system errors. So even if the hardware is very reliable,
the contents of memory will be periodically lost when
the system “crashes.”

2) When one disk fails, it can be fixed without affecting the
contents of other disks. After recovery, only a fraction
of the database (on that disk) must be restored from
the backup (and logs). Also, during recovery, the rest
of the database may still be accessible. When a memory
board fails, typically the entire machine must be powered
down, losing the entire database. Since recovery of the
data will be much more time consuming, it is desirable
to have a recent backup available. (The older the backup,
the more it takes to bring up to date from the log.)

3) Battery backed memory, or uninterruptable power sup-
plies (UPS) are “active” devices and lead to higher
probability of data loss than do disks. Disks are “passive”
and do not have to do anything to remember their data.
An UPS can run out of gas or can overheat. Batteries
can leak or lose their charge.

In summary, unless one has a lot of trust in memory
reliability, memory backups will have to be taken relatively
frequently, and the performance of the backup mechanism will
be of central importance. Also, because the cost of writing to
disk is so much higher than that of writing to memory, the
overhead of the backups will be much more significant than for
the equivalent disk to tape backups in a conventional system
(see Section II-G).

II. IMPACT OF MEMORY RESIDENT DATA

We have argued that a database system should manage
memory resident data differently from a conventional system.

GARCIA-MOLINA AND SALEM: MAIN MEMORY DATABASE SYSTEMS 511

In the following subsections, we discuss the impact of memory
residency on some of the functional components of database
management systems.

A. Concurrency Control

Because access to main memory is so much faster than
disk access, we can expect transactions to complete more
quickly in a main memory system. In systems that use lock-
based concurrency controls, this means that locks will not be
held as long, and suggests that lock contention may not be
as important as it is when the data is disk resident. (Here
we focus on locking concurrency control since it is the most
commonly used in practice and is what has been used in
MMDB prototypes. However, we expect that optimizations
similar to the ones to be described could be used for other
types of mechanisms, such as optimistic or time-stamp based.)

Systems that choose small locking granules (fields or
records) do so to reduce contention. If contention is already
low because data are memory resident, the principal advantage
of small lock granulesis effectively removed. For this reason,
it has been suggested that very large lock granules (e.g.,
relations) are most appropriate for memory resident data [171.

In the extreme, the lock granule could be chosen to be the
entire database [8], [18]. This amounts to serial execution of
transactions. Serial transaction processing is highly desirable,
since the costs of concurrency control (setting and releasing
locks, coping with deadlock) are almost completely eliminated.
Furthermore, the number of CPU cache flushes is greatly
reduced. (Each time a transaction is suspended waiting for
a lock, a new transaction is run and the contents of the CPU
cache must change. With serial execution, only one flush needs
to occur per transaction.) In high performance computers,
where cache flushes are equivalent to thousands of instructions,
the gains can be very significant. However, serial transactions
are probably not practical when long transactions (e.g., con-
versational transactions) are present. For fairness, there should
be some way to run short transactions concurrently with long-
lived ones. Furthermore, multiprocessor systems may require
some form of concurrency control even if all transactions are
short.

The actual implementation of the locking mechanism can
also be optimized for memory residence of the objects to be
locked. In a conventional system, locks are implemented via a
hash table that contains entries for the objects currently locked.
The objects themselves (on disk) contain no lock information.
If the objects are in memory, we may be able to afford a small
number of bits in them to represent their lock status.

To illustrate, say we are dealing with exclusive locks only.
(We are told IMS uses this idea, although we have not found a
published reference to it.) If the first bit is set, then the object
is locked, else it is free. If it is locked and the second bit is set,
then there are one or more waiting transactions. The identity
of these waiting transactions is stored in a conventional hash
lock table. If a transaction wishes to lock an object, it first
checks its lock bit. If it is not set, it sets it and is done with
the locking process. (Some type of test and set instruction
must be used to avoid two transactions from setting the bit.)

Later on, if a second transaction wants to wait on the object,
it sets the second bit on and adds itself to the list of waiting
transactions in the lock table.

When the original transaction releases its lock bit, it checks
if the second bit is set. If not, there are no waiting transactions
and it is done. If it is set, it must go through the conventional
procedure to wake up a waiting transaction. Clearly, we have
omitted many details. However, the key point is that by far the
most likely situation (with low contention) is for a transaction
to lock a free object, update it, and to release its lock before
any other transaction waits for it. In this case, both the lock
and the release can be done with a minimal number of machine
instructions, avoiding the hash table lookup entirely. Of course,
there is the extra space overhead to consider. However, for
“typical” database records that are tens of bytes or more long,

the overhead of two bits may not be significant.

B. Commit Processing

To protect against media failures, it is necessary to have a
backup copy (see Section I) and to keep a log of transaction
activity. Since memory is usually volatile, this log must reside
in stable storage (e.g., redundant disks). Before a transaction
can commit, its activity records must be written to the log [111.

The need for a stable log threatens to undermine the
performance advantages that can be achieved with memory
resident data. Logging can impact response time, since each
transaction must wait for at least one stable write before
committing. Logging can also affect throughput if the log
becomes a bottleneck. Although these problems also exist
when data is disk resident, they are more severe in main
memory systems because the logging represents the only disk
operation each transaction will require.

Several solutions have been suggested for this problem.
First, a small amount of stable main memory can be used to
hold a portion of the log [5]-[8], [13], [17]. A transaction is
committed by writing its log information into the stable mem-
ory, a relatively fast operation. A special process or processor
is then responsible for copying data from the stable memory
to the log disks. Although stable memory will not alleviate
a log bottleneck, it can eliminate the response time problem,
since transactions need never wait for disk operations. Studies
have suggested that only a small amount (e.g., fewer than one
hundred log pages [3]) of stable memory is needed to hold the
log tail, even in high performance systems.

In case stable memory is not available for the log tail,
transactions can be precommitted [5], [9]. Pre-committing
is accomplished by releasing a transaction’s locks as soon
as its log record is placed in the log, without waiting for
the information to be propagated to the disk. The sequential
nature of the log ensures that transactions cannot commit
before others on which they depend. Although precommitting
a transaction does not reduce its response time, it may reduce
the blocking delays (and hence, the response time) of other,
concurrent transactions.

A technique called group commits can be used to relieve a
log bottleneck [5], [9]. Under group commit, a transaction’s
log record need not be sent to the log disk as soon as it com-

512 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 6, DECEMBER 1992

When relational tuples are implemented as a set of point-
ers to the data values (as discussed in Section II-D), some
relational operations can be performed very efficiently [20].
For example, say we want to join relations R and S over
a common attribute A. To perform the join we can scan the
smaller relation, say R. For each tuple, we follow its A pointer
to the actual value, call it a;. From that value we follow back
pointers to all S tuples that use a;. We join the original R
tuple to these S tuples, and add them to the result. For this
to work, we need to have enough pointers in a; to efficiently
lead us to the S tuple that uses this value for its A attribute.
Some additional storage will be required for this, but as is
discussed in [20], the performance gains can be significant.
The key idea is that because data is in memory, it is possible to
construct appropriate, compact data structures that can speed
up queries.

mits. Instead, the records of several transactions are allowed to
accumulate in memory. When enough have accumulated (e.g.,
when a page is full), all are flushed to the log disk in a single
disk operation. Group commit reduces the total number of
operations performed by the log disks since a single operation
commits multiple transactions.

C. Access Methods

In a main memory database, index structures like B-Trees,
which are designed for block-oriented storage, lose much of
their appeal. A wide variety of index structures have been
proposed and evaluated for main memory databases [5], [16],
[26]. These include various forms of hashing and of trees.
Hashing provides fast lookup and update, but may not be as
space-efficient as a tree, and does not support range queries
well. Trees such as the T-Tree have been designed explicitly
for memory-resident databases [16]. Main memory trees need
not have the short, bushy structure of a B-Tree, since traversing
deeper trees is much faster in main memory than on a disk.

One observation common to all main memory access meth-
ods is’ that the data values on which the index is built need
not be stored in the index itself, as is done in B-Trees.
Because random access is fast in main memory, pointers can
be followed quickly. Therefore, index structures can store
pointers to the indexed data, rather than the data itself. This
eliminates the problem of storing variable length fields in an
index and saves space as long as the pointers are smaller than
the data they point to.

The use of pointers suggests perhaps the simplest way to
provide an index, which is simply to invert the relation on
the indexed field [l], [2], [26]. In a main memory database,
the inverted “relation” can simply be a list of tuple pointers

in sorted order. Such indexes are very space efficient and are
reasonably fast for range and exact-match queries, although
updates are slow.

Query processors for memory resident data must focus on
processing costs, whereas most conventional systems attempt
to minimize disk access [26]. One difficulty is that processing
costs can be difficult to measure in a complex data man-
agement system. Costly operations (e.g., creating an index
or copying data) must first be identified, and then strategies
must be designed to reduce their occurrence. Operation costs
may vary substantially from system to system, so that an
optimization technique that works well in one system may
perform poorly in another.

F. Recovery

Backups of memory resident databases must be maintained
on disk or other stable storage to insure against loss of the
vol .atile data. Recovery has

procedure used during

several
the

components, the first being
database operation to keep normal

second being the procedure the backup up-to-date, and the
used to recover from a failure.

We have already d iscussed commi
used to make sure that the results of all

t processing, which is
committed tra nsactions

are stable. Most systems that use a log fo r commit

also perform backups or checkpoi .nts to limit the
processing
amount of

D. Data Representation

Main memory databases can also take advantage of efficient
pointer following for data representation. Relational tuples can
be represented as a set of pointers to data values [20], [26].
The use of pointers is space efficient when large values appear
multiple times in the database, since the actual value needs
to only be stored once. Pointers also simplify the handling
of variable length fields since variable length data can be
represented using pointers into a heap [17], [24].

log data that must be processed to recover from a failure
[5]-[7], [13], [17], [18], [23], [24]. Checkpointing brings the
disk resident copy of the database more up-to-date, thereby
eliminating the need for the least recent log entries.

In a memory resident database system, checkpointing and
failure recov ‘cry are the only reasons

database. Application
resident

copy of the

to access the disk-
transactions never

Therefore,
tailored to

require
disk access in a
suit the needs of

observation is that disk
size. Large

access to the disk resident data.
memory resident system can be

E. Query Processing I/O should
blocks are

the checkpoin
be performed

ter alone . One
very using a large block

more efficiently written, and though they take

checkpointer (the system), and not th e applicat
longer, only the

Since sequential access is not significantly faster than ran-
dom access in a memory resident database, query processing
techniques that take advantage of faster sequential access lose
that advantage [2], [5], [15], 1201, [26]. An example is sort-
merge join processing, which first creates sequential access
by sorting the joined relations. Although the sorted relations
could be represented easily in a main memory database using
pointer lists, there is really no need for this since much of the
motivation for sorting is already lost.

ion transactions,

await the completion of those writes.
Checkpointing should interfere little possible

with transaction processing.
istent checkpoints requ cons

as as
Transaction-consistent or
ire some synchronizatio

locking) with transactions. An alternative known as fuzzy

dumping requires no synchronization. However, consistent

action-

n (e.g.,

GARCIA-MOLINA AND SALEM: MAIN MEMORY DATABASE SYSTEMS 513

checkpoints may simplify logging, since logical operations its relation name and primary key. After the first read, the sys-

can be logged. tern returns the memory address of the tuple, and it is used for
After a failure, a memory resident database manager must subsequent accesses. This avoids costly translations, but com-

restore its data from the disk resident backup and then bring mits the system to leave the object in place, at least until the
it up to date using the log. If the database is large, simply transaction that knows about the memory location terminates.
transferring the data from the disks may take a long time. A second optimization is to eliminate the private buffer
One possible solution to this problem is to load blocks of
the database “on demand” until all of the data has been

and to give transactions direct access to the object. The
performance gains can be significant: if a transaction is simple,

loaded [12], [17]. However, it is not clear how much of an most of its time may be spent copying bits from and to buffers.
improvement this will provide in a high-performance system By cutting this out, the number of instructions a transaction
which must handle the demands of thousands of transactions must execute can be cut in half or more. However, there are
in the seconds after the database has recovered. two potential problems now: once transactions can access the

Another possible solution to the database restoration prob- database directly, they can read or modify unauthorized parts;

lem is to use disk striping or disk arrays [14], [19], [22]. Here
the database is spread across multiple disks, and it is read in
parallel. For this to be effective, there must be independent
paths from the disks to memory.

and the system has no way of knowing what has been modified,

emit a code that checks for proper authorization, and logs

so it cannot log the changes. The best solution is to only run
transactions that were compiled by a special database system

every object modification [8].

compiler. For each database object access, this compiler will

G. Performance

Performance is a concern for each of the database com-
ponents we have described. With the possible exception of
commit processing, the performance of a main memory data-
base manager depends primarily on processing time, and not
on the disks. Even recovery management, which involves the
disks, affects performance primarily through the processor,
since disk operations are normally performed outside the
critical paths of the transactions. Most performance analyses of
main memory techniques reflect this and the model processing
costs [6], [17], [23]. This contrasts with models of disk-based

’ systems (e.g., [21]) which count I/O operations to determine
the performance of an algorithm.

Not only are the metrics different in MMDB analysis, but
the MMDB components under analysis tend to be different.
For example, in conventional systems, making backups (i.e.,
taking checkpoints) does not impact performance during nor-
mal system operation, so this component tends not to be

studied carefully. As we argued in Section I, in a MMDB,
backups will be more frequent and will involve writes to
devices an order of magnitude slower than memory. Thus the
performance of backup or checkpointing algorithms is much
more critical and studied more carefully (e.g., [24]).

H. Application Programming Interface and Protection

In conventional DRDB’s, applications exchange data with
the database management system via private buffers. For
instance, to read an object, the application calls the database
system, giving the object id and the address of a buffer in
its address space. The system reads the object from the disk
into its own buffer pool and then copies the object to the
application’s private buffer. To write, the application modifies
the private buffer, and calls the system. The system copies
the modified object back to its buffer pool, and makes the
corresponding log entries and I/O operations.

In a MMDB, access to objects can be more efficient. First,
applications may be given the actual memory position of the
object, which is used instead of a more general object id. For
instance, the first time an application refers to a tuple, it can use

I. Data Clustering and Migration

In a DRDB, data objects (e.g., tuples, fields) that are
accessed together are frequently stored together, or clustered.
For instance, if queries often look at a “department” and all the
“employees” that work in it, then the employee records can be
stored in the same disk page as the department they work in.
In a MMDB there is, of course, no need to cluster objects. As
a matter of fact, the components of an object may be dispersed
in memory, as suggested in Sections II-D and II-E (e.g., tuples
only have pointers to the data values stored elsewhere).

This introduces a problem that does not arise in conventional
systems: when an object is to migrate to disk (or “vacuum
cleaned” [25]), h ow and where should it be stored? There are
a variety of solutions for this, ranging from ones where the
users specify how objects are to be clustered if they migrate,
to ones where the system determines the access patterns and
clusters automatically. Our main point here is that migration
and dynamic clustering are components of a MMDB that have
no counterpart in conventional database systems.

III. SYSTEMS

Several database management systems for memory resident
data have been proposed or implemented. These efforts range
from pencil-and-paper designs (MM-DBMS, MARS, HALO)
to prototype or testbed implementations (OBE, TPK, System
M) to commercial systems (Fast Path). In the following,
we describe some of these systems. Our descriptions are
necessarily brief due to limited space. Furthermore, we focus
our discussion on how these svstems address the issues raised
by memory resident data, which we discussed in the previous
sections. This is summarized in Table I. (Blank entries in Table
I mean that that particular aspect is not studied or implemented
in the system, or that it is not described in the literature we
have.) More detailed descriptions of these systems can be
found in the references. Also, please note that our list is not
comprehensive; we are simply discussing some representative
systems.

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 6, DECEMBER 1992

MM-DBMS

MARS

HALO

OBE

TPK

System M

Fast Path

A. OBE

TABLE I
SUMMARY OF MAIN MEMORY SYSTEMS

Concurrency
Committ
Processing

Data Representation
Access
Methods

Query Processing Recovery

two-pahse locking of
relations

stable log tail by
segment

two-phase locking of
relations

stable shadow
memory, log tail

in hardware,
nearly transparent

serial transaction
execution

group committ,
precommitt

two-phase locking,
minimize concurrency

several
alternatives

VERIFY/CHANGE for
hot spots

group committ

self-contained
segments, heap per
segment, extensive
pointer use

extensive use of
pointers

arrays

self-contained
segments, heap per
segment

hashing,
T-trees,
pointers to

*
values

merge, nested-loop,
joins

segments recovered
on demand, recovery
processor

recovery processor,
fuzzy checkpoints

physical, word-level

1%

inverted
indexes

nested loop-join,
on-the-fly-index
creation,
optimization
focuses on
processor costs

two memory resident
databases, fuzzy
checkpoints

various
checkpointing,
logging options

A main memory database manager has been implemented in
conjunction with IBM’s Office-By-Example (OBE) database
project [l], [2], [26]. The system is designed to run on the
IBM 370 architecture. Its focus is on handling ad hoc queries
rather than high update loads.

Data representation in the OBE system makes heavy use of
pointers. Relations are stored as linked lists of tuples, which
in turn are arrays of pointers to attribute values. Indexes are
implemented as arrays of tuple pointers sorted according to
the attribute values on which the index was being built (i.e.,
inverted indexes).

Joins are computed using a nested-loop technique since
sorting (for sort-merge joins) is not beneficial when the data
are memory resident. An index may be created “on-the-fly”
to compute a join.

Query processing and optimization focus on reducing pro-
cessing costs since queries do not involve disk operations.
Several important processing activities, such as creation of
indexes and evaluation of query predicates, are identified and
included in the cost formulas used by the query processor.
Optimization techniques are also geared toward reducing or
eliminating processor intensive activities.

B. MM-DBMS

The MM-DBMS system was designed at the University of
Wisconsin [151, [171. Like OBE, MM-DBMS implements a
relational data model and makes extensive use of pointers
for data representation and access methods. Variable length
attribute values are represented by pointers into a heap, and
temporary relations are implemented using pointers to tuples in
the relations from which they were derived. Index structures
point directly to the indexed tuples, and do not store data
values. A variant of linear hashing is used to index unordered

data, and T-Trees (a type of balanced binary tree with multiple
values “stored” at each node) are used to access ordered data.

For recovery purposes, memory is divided into large self-
contained blocks. These blocks are the units of transfer to and
from the.backup disk resident database copy. Commit process-
ing is performed with the aid of some stable memory for log
records and with a separate recovery processor. The recovery
processor groups log records according to which blocks they
reference so that blocks can be recovered independently after
a failure. Blocks are checkpointed by the recovery processor
when they have received a sufficient number of updates. A
lock is set during the checkpoint operation to ensure that each
block is in a transaction consistent state on the disk. After a
failure, blocks are brought back into memory on demand and
are brought back up to date using their log record groups.

MM-DBMS uses two-phase locking for concurrency con-
trol. Large lock granules (entire relations) are used.

C. IMSIVS Fast Path

IMS/VS Fast Path is a commercial database product from
IBM which supports memory resident data [9]. Disk resident
data are supported as well. Each database is classified statically
as either memory or disk resident.

Fast Path performs updates to memory resident data at com-
mit time. Transactions are group committed to support high
throughput. The servicing of lock requests is highly optimized
to minimize the cost of concurrency control. Record-granule
locks are used.

Fast Path is designed to handle very frequently accessed
data, since it is particularly beneficial to place such data
in memory. It supports VERIFY/CHANGE operations for
frequently updated objects. The VERIFY operation may be
performed early in a transaction’s lifetime to check the value
of an object, but no locks are set for this operation. If the value

GARCIA-MOLINA AND SALEM: MAIN MEMORY DATABASE SYSTEMS 515

is judged acceptable, the actual update (along with another
check of the value) is performed at commit time using a very
short duration lock.

D. MARS

The MARS MMDB was designed at Southern Methodist
University [6], [7], [12]. It uses a pair of processors to provide
rapid transaction execution against memory resident data.

The MARS system includes a database processor and a
recovery processor, each of which can access a volatile main
memory containing the database. A nonvolatile memory is also
available to both processors. The recovery processor has access
to.disks for the log and for a backup copy of the database.

The database processor is responsible for the execution of
transactions up to the commit point. Updates do not modify the
primary database copy until the updating transaction commits.
Instead, the database processor records the update in the
nonvolatile memory. If the updating transaction is aborted,

the recorded update is simply discarded.
To commit a transaction, the recovery processor copies its

update records into the database from the nonvolatile memory.
The records are also copied into a nonvolatile log buffer. The
recovery processor is responsible for flushing full log buffers to
the log disks. Periodic checkpointing is also performed by the
recovery processor. Checkpoints are fuzzy dumps of modified
portions of the volatile database to the backup.

Concurrency is controlled using two-phase locking with
large lock granules (entire relations).

E. HALO

Several main memory system designs, including MM-
DBMS and MARS, propose dedicated processors for recovery
related activities such as logging and checkpointing. HArdware
Logging (HALO) is a proposed special-purpose device for
transaction logging [81. It transparently off-loads logging
activity from the processor(s) that executes transactions.

HALO intercepts communications between a processor and
memory controllers to produce a word-level log of all memory
updates. Each time a write request is intercepted, HALO
creates a log entry consisting of the location of the update and
the new and old values at that address. (HALO obtains the
old value by issuing a read request to the memory controller.)
These entries are maintained in nonvolatile buffers which are
flushed to the disk when full. After buffering a log entry,
HALO forwards the write request to the appropriate memory
controller.

HALO also accepts several special commands from the
processor. These commands (to begin, end, and switch trans-
actions) are used to inform HALO of the identifier of the
transaction that is currently being executed. HALO includes a
transaction identifier with each log record. The processor can
also cause a transaction’s effects to be undone by issuing an
abort transaction command to HALO.

F. TPK

TPK is a prototy pe multiprocessor main-memory transaction

processing system implemented at Princeton University [181.

It runs on Firefly multiprocessors. TPK’s emphasis is on
rapid execution of debit/credit type transactions. It supports a
simple data model consisting of records with unique identifiers.
Transactions may read and update records using the identifiers.

The TPK system
of four types: input,

consists of a set
execution, output,

of concurrent threads
and checkpoint. Input

threads handle transaction requests and feed work to the
execution thread via a queu e, whi le output threads externalize
transaction results and also make them available to the check-
pointer. The execution thread executes the transaction code and
is responsible for logging, and the checkpoint thread updates
the stable backup database copy. Normally, TPK consists
of a single execution thread and a single checkpointer, and
one or more input and outpu t threads. The execution thread
executes transactions serially, thereby el imin ating the need for
transaction concurrencv controls.

Two copies of the database (primary and secondary) are
retained in-memory. The primary copy supports all transaction
reads and updates. Copies of all updated records are placed
(by the execution thread) into the log. TPK implements group
commit to reduce the number of log disk writes per transaction.

The execution thread also places copies of each log record
into a queue for the checkpoint process. The checkpointer
reads these records and uses them to update the secondary
in-memory database. Periodically, the secondary database is
copied to the disk to complete a checkpoint. The purpose of
the secondarv database is to eliminate data contention between
the checkpoint and execution threads during the checkpoint
operation.

G. System M

System M is a tra nsaction processin g testbed syste
veloped at Princeton for main memory d atabases PI

m de-
. Like

the TPK prototype, System M is designed for a transactional
workload rather than ad hoc database queries. It supports a
simple record-oriented data model.

System M is implemented as a collection of cooperating
servers (threads) on the Mach operating system. Message
servers accept transaction requests and return results to clients.
Transaction servers execute requested transactions, modifying
the database and generating log data. Log servers move in-
memory log data to disk, and checkpoint servers keep the
disk-resident backup database up to date.

Unlike TPK, System M is capable of processing transac-
tions concurrently. However, it attempts to keep the number
of active transactions small. Two-phase locking is used for
concurrency control. Both precommit and group commit are
implemented for efficient log processing.

As in MM-DBMS, the primary database copy is divided
into self-contained fixed-size segments, which are the units of
transfer to and from the backup disks. Records are contained
within a segment. Variable length fields are implemented using
pointers into a per segment heap. Record index structures
reside outside of the segments since they are not included
in the backup database (nor are changes to indexes logged).
Indexes are recreated from scratch after a failure, once the
database has been restored from the backup copy and the log.

Since the f’ocus of Svstem M is empirical comparison of
rccoc~~~ techniques, a variety of ck leckpointing and logging
techniques arc implemented. System M can perform both fuzzy
and consistent checkpoints (using a \ jariety of algorithms) anb
both phvsicat and logical logging. The physical organization d
of the backup database copy car&lso be controlled.

IV. CI~NCWSI~IV

In [lO], it is argued that data that are referenced every 5 min
or more should be memory resident (assuming 1K disk blocks).
The 5min number is arrived at by analvzing the dollar cost
of accessing data in memory versus disk.‘The important thing
to note is that as the price of a byte of main memory drops
relative to the cost of disk accesses per second, the resulting
time grows. That is, we can expect the “ 5min rule” to be
the IO-min rule in the future, and so on. Thus as memory
becomes cheaper, it becomes cost effective to keep more and
more data permanently in memory. This implies that memory
resident database systems will become more common in the
future, and hence, the mechanisms and optimizations we have
discussed in this paper will become commonplace.

REFERENCES

[1] A. C. Ammann, M. B. Hanrahan, and R. Krishnamurthy, “Design of a
mcmor! resident DBMS.” in Z’I.~~C*. IEEE COMPC’OM C’otzj~. 1985.

[2) I>. Bitton, M. B. Hanrahan, and C. Tut-byfill, “Performance of complex
queries in main memory database systems.” in Prcx ltlt. C’ot$ 011 Dcrtu

L-?1~Ly?lcY~?~i?l~~, Feb. 1987, pp. 72-8 1 .
[5) 6. Copeland, R. Krishnamurtv. and M. Smith, “The case for safe RAM,”

in l’tut~. l%ll lrlf. (‘ot!fI on V&-v Lat*gc~ Dataha.sc~Ls, Amsterdam, 1989.
[II 6. (‘opeland. M. Franklin, and G. Weikum, “Uniform object manage-

Incllt." in /‘?ao(‘. ltlt. C’wlf: ot? Evtcnditzg Dutuhsc Tc~htwlng~~, Venice,
Ital!. Mar. ic~90, pp. 253-268.

131 I>. .I. I>cWitt (‘I ul “Implementation techniques for main memory
database s\rstenis.” i; r+oc. RC’M SI(;MOD Conf:, June, 1984.

161 M. H. F’ich, “A classification and comparison of main memorv database
recovery techniques.” in Pt-OCQ. ItIt. C’otl. on Data Enginwritlg, beb. 1987,
pp. 3.32-339.

171 -, “MARS: The design of a main memory database machine,” in
PIWC ht. Itiwkshop ml Dutahaw Mmchir~es, Oct. 1987.

[S 1 Il. (iarcia-Molina and K. Salem, “High performance transaction pro-
cussing \z it h memorv resident data,” in Ptwc. ltlt. Workshop ot1 High
l’t~r:Ji)r,ttltrtlt,t~ Tt-trt&~tiot~ Systcttrs, Paris, Dec. 1987.

[9] I>. Gawlick and D. Kinkade, “Varieties of concurrency control in
IMS/VS Fast Path.” Ihtu E/lx. B~cll., vol. 8, no. 2, pp. 3-10, June 1985.

[lo] J. Grav and F. Putzolu, “The 5 minute rule for trading memory for disc
accesses and the 10 byte rule for trading memory for CPU time,” in
Ptw. 1087 ‘4C’M SIC;MOI) C’otzj:, San Francisco, CA, May 1987, pp.
3T-3W.

[1 1 J .I. Gra\, and A. Rcuter. Tt-atzsac~tiotz Processing: Concepts and Tech-

t~icjlrt~s. San Francisco, CA: Morgan Kaufmann, 1992.
[121 L. Gruenwald and M. H. Eich, “MMDB reload algorithms,” in Proc.

,404 S’IGMOt1 C’onf:, Denver, CO, May 199 1, pp. 397-405.
[1.3) R. B. Ha~mann,

database &tern.”
“A crash recovery scheme for a memory-resident
IEEE Ttms. Cornput., vol. C-35, pp. 839-842, Sept.

1986.
[141 M. k. Kim. “Synchronized disk interleaving,” I,%E Ttms. Cornput.,

vol. C-35, pp. 97X-988, Nov. 1986.

[1 Cu] K. Li and J. F. Naughton. “Mu I tiproccssor main memory transaction

c
11)

120

121

[22

processing,” in Ptnc. Itit. Swap. 011 Dcrtahaw.s iii Piit~1111~1 a&i L>istr-ilmted

Systuttrs, Austin, TX, Dec. 1988, pp. 177-l t(C).
D. Patterson et al., “RAID: Redundant arrays of inexpensive disks,” in
PI-oc. Ac.M SIGMOL) C~~r~j:, Chicago, June 19X8.
P. Pucheral, J.-M. Thevenin, and P. Valduriez. “Efficient main memory
data management using the DBGraph storage model,” in 1’1’0~‘. 16fh

C’orlf: 011 Very Lur,p Lhttrr Bases Brisbane, 1990, pp. 683-695.
A. Reuter. “Performance analysis of recovery techniyues,” ACM Ttut1.s.

L)ataha.sc~ Syst.. vol. 9, no. 4, pp. 526-559, Dec. 1984.
K. Salem and H. Garcia-Molina. “Disk striping.” in Pmt. Itlt. C’ot$ ml

’ Data Etrgitwt-itlg, Los Angeles, CA, Feb. 1986, pp. 336-342.

L 31 3 i. ~, “Checkpointing memory-resident databases,” in I+c)c-. ht. corlf:
OII I’ata Etq$twetitlg. Los Angeles. CA, Feb. 1989, pp. 452-462.

I 41 2 -7 “System M: A transaction processing testbed for memory
resident data,” IEEE Tt~4t1.s. Kwwl. Data Etlg., vol. 2, pp. 1 h 1- 172,
Mar 1990.

[25] M. Stonebraker, ” Managing persistent objects in a multi-level store,” in
1’1.oc*. ‘4(‘hf S’I(;MOZ) ConJ, Denver, CO, May 199 1, pp. 2-1 1.

126) K.-Y. Whang and R. Krishnamurthy, “0 ucry optimization in a memory-
resident dom;in relational calculus system,” ACM Tt-at1.s. I)ataha.sc~ Syst.,

vol. 15, no. 1, pp. 67-95, Mar. 1990.

Hector Garcia-Molina (S’70-M’79) received the
B.S. degree in electrical engineering from the In-
stituto Tecnologico de Monterrey. Mexico. in 1974,
and the MS. degree in electrical engineering and
the Ph.D. degree in computer science from Stanford
University, in 1975 and 1979, respectively.

He is currently a Professor with the Department
of Computer Science, Stanford University, Stanford.
CA. From 1979 to 1991 he was on the faculty
of the Computer Science Department. Princeton
University, Princeton, NJ. During 1991, he was also

the Associate Director of the Matsushita Information Technology Laborator)
in Princeton. His research interests include distributed computing systems
and database systems.

Dr. Garcia-Molina is a member of the ACM.

Kenneth Salem (S’83-M’H8) received the B.S.
degree in electrical engineering and applied mathe-
matics from Carnegie-Mellon University in 1983,
and the Ph.D. degree in computer science from
Princeton University in 1989.

He is currently an Assistant Professor with the
Department of Computer Science. University of
Maryland, College Park, and a Staff Scientist with
NASA’s Center of Excellence in Space Data and
Information Sciences, located at the Goddard Space
Flight Center. His research interests include data-

base and operating systems and transaction processing.
Dr. Salem is a member of the ACM.

