
1

Maintainability and Source Code Conventions:
An Analysis of Open Source Projects

Michael Smit, Barry Gergel, H. James Hoover, and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

Email: {msmit,gergel,hoover,stroulia}@cs.ualberta.ca

Abstract—Maintainability is a desirable property of software,
and a variety of metrics have been proposed for measuring it,
all based on different notions of complexity. Although these
metrics are useful, complexity is only one factor influencing
maintainability. Practical experience in software development
has led to a set of best practices and coding conventions that
are believed to make source code easier to read, understand
and maintain. Based on a survey of software engineers, we
identify the relative importance of 71 coding conventions to
maintainability. We propose a metric that offers a different
perspective on maintenance, namely a “convention adherence”
metric based on the number and severity of violations of these
coding conventions. We examine the code repositories of four
open-source Java projects to measure their adherence to coding
conventions over the life of the project, based on both their
self-identified conventions and those of the convention-adherence
metric. Through our analysis, we discovered several interesting
phenomena, including pre-release effort to bring new code in line
with desirable conventions, effective usage of automated code
convention checkers as part of the build process to improve
adherence, variations in adherence over the software lifecycle,
and a class of conventions consistently ignored in open source
projects.

I. INTRODUCTION

Maintainability is an important aspect of software quality.
Software systems are part of the backbone structure of every
modern organization and represent a significant and ongoing
capital expense. Management is keenly interested in the main-
tainability of software deployed within their organizations,
and how to reduce software maintenance costs while satis-
fying evolving user software requirements. More importantly,
organizations face a challenge in the modern competitive
landscape: speed and surprise are becoming required tools
in the race for competitive advantage [1]. The accelerating
pace of innovation and change leaves organizations with
smaller windows of opportunity, and technology is reinforcing
the importance of knowledge management within organiza-
tions [2]. Customers are becoming more fickle and demanding
as they push for higher quality, more choice, and better
service. This shrinks product life cycles and challenges the
profitability of organizations [3]. The increasing uncertainty
and unpredictability of this dynamic environment is forcing
organizations to search for new tools and methods to cope
with this accelerated pace of change.

Existing metrics for maintainability focus on complexity.
While valuable, we suggest these metrics would benefit by

including more factors believed to play a role in writing read-
able and maintainable code, namely, software development
best-practices and code conventions that have evolved over
time. Advocates of these conventions suggest that they produce
better code, and software projects generally publish some set
of conventions they adhere to, in order to keep the source
code consistent. The intuition behind these conventions is
plausible: hard-coded strings and numeric constants make code
more difficult to update; well-formatted comments help new
developers understand the code or use an API; a well-defined
naming style that matches existing libraries helps associate
syntax with semantic meaning.

To analyze the potential of code-convention adherence as
a predictor of maintainability, we systematically examined all
of the revisions of four open-source Java projects, checking
for adherence to their self-imposed standards and to a set of
conventions a panel of software engineers identify as important
to maintainability. To support this work, we developed a set
of tools and visualizations to semi-automate this process. We
found that, when conscious of the conventions, i.e. when the
project has an explicit code-convention adherence policy en-
forced by automated code-convention checkers, developers are
willing to expend maintenance effort to improve adherence;
when not as conscious of them, violations are prevalent. Some
of the projects that make a conscious effort to improve the code
quality in accordance with their conventions do so prior to a
new software release. Automated code convention checkers
appear to help projects improve adherence to their coding
conventions. Finally, we observed that there is a distinct set of
standard conventions that are consistently broken in the open
source projects used in our study.

The remainder of the paper is as follows. Section II explores
the background and related work that has motivated this paper.
In Section III, we take a closer look at source code conventions
and best practices. We describe the methodology we used to
study the four open source applications in Section IV and
present our results in Section V. Finally in Section VI and
Section VII, we suggest possible future research directions
and review our results.

II. BACKGROUND & RELATED WORK

The quality of a software system is an important factor to
its success i.e.broad adoption and long-term use and evolution;

2

however, software-quality metrics remain difficult to evaluate
as the various stakeholder groups often have varying agendas
and concerns. Consequently, a variety of software-quality
models have been proposed but no single model is universally
recognized. One widely accepted quality model is defined in
the ISO/IEC 9126-1 standard [4]. The model defines software
quality using six attributes: functionality, reliability, usability,
efficiency, maintainability, and portability.

Developers and users are inherently concerned about qual-
ity, yet view quality from two different perspectives. Users
view quality characteristics that focus on attributes such as
usability and performance. Tonella and Abebe define these
characteristics as external qualities [5]. They are dynamic and
generally measured at run-time. Conversely, internal qualities,
such as maintainability, are more likely to be reflected in
the static structures of the software [5], [6], and developers
are very interested in these qualities. Mari and Eila grouped
these two categories using alternative descriptive terms where
internal qualities are defined as evolution qualities and ex-
ternal qualities are execution qualities [6]. In this work, we
focus on maintainability, which is an internal static quality
characteristic. The evolution quality view proposed by Mari
and Eila is particularly descriptive of the evolving role that
maintainability plays in software quality.

Maintainability has a significant impact on the success of
a software application. The cost of maintenance through the
life cycle is generally accepted to be between 50-70% of
the total cost for the software. Unsurprisingly, maintainability
has received significant attention from software engineers and
developers. The ISO/IEC 25010-2011 standard defines main-
tainability as [7] “The capability of the software product to
be modified. Modifications may include corrections, improve-
ments or adaptation of the software to changes in environment,
and in requirements and functional specifications.”

Multiple metrics have been proposed for measuring main-
tainability. The majority of these metrics focus on evaluating
complexity. The Halstead complexity metric [8] and McCabe’s
cyclomatic metic [9] are two prominent complexity metrics.
These metrics are combined with the number of lines of code
to compute the maintainability index [10]. But complexity is
only one factor affecting maintainability. Practitioners intu-
itively agree that, even complex software can become more
maintainable when it is understandable, whether through good
documentation or through improved code readability [11].
These properties are also important in evaluating the main-
tainability of software.

Software source code is a written language that codifies
the design of the software. Implementation decisions made by
developers, such as the use of magic numbers and hard coded
strings, negatively impact the readability, the understandability
and, ultimately, the maintainability of a software system by
introducing brittleness that reduces modifiability. Source-code
conventions are established to improve the maintainability of
source code and capture best practices [12], [13]. Li and Prasad
reported that although developers understood the importance
of using code conventions, they did not follow them when
development needed to be completed quickly [14].

III. SOURCE CODE CONVENTIONS

Source code conventions have co-evolved with program-
ming languages, motivated by the assumption that code devel-
oped using consistent conventions on issues such as naming
of programming elements, inlined documentation, and orga-
nization of the syntactic structures is easier to read, is likely
to suffer less from careless mistakes, and is more likely to
conform to best practices. As a result, such code is likely to
be more maintainable and of higher quality, in general.

Some conventions are generally applicable while others are
specific to one language (e.g.Java) or to a paradigm (e.g.object-
oriented programming). Tools can be used to enforce these
conventions (for example, FindBugs1, Checkstyle2, and Jtest3).
The term code conventions is used as a broad umbrella term
that includes best practices around naming, syntactic and com-
menting style. Clearly, not all of these conventions are equally
relevant as far as the code’s readability, understandability and
maintainability is concerned.

To identify the code conventions most important to main-
tainable code, we solicited input from a ‘panel’ of seven
software engineers. Each had a Masters degree or higher,
with many years programming experience and theoretical
knowledge of coding conventions and best practices. All
panel members have current or former associations with our
research lab but are not involved directly in this project. A
total of 71 different coding conventions were presented to the
panel. The conventions and their descriptions were modified
from the Checkstyle documentation (and so are automatically
detectable), with the checks that were not specific or difficult
to enforce excluded. For each, the rationale was provided
(and the source identified where possible). The respondents
were asked to answer on a 7-point Likert importance scale4

how important they believed the convention was to “ensure
the ability to change, adapt, or update source code to meet
changing requirements or fix bugs”. They were asked to
provide a rating for both Per-project and Universal importance
(that is, the relative importance if a project identifies this
convention as one they intend to follow, versus the importance
of this convention to all (or most) software projects).

The average scores for each code convention are shown in
Table I. We’ve grouped the code conventions into three groups
(Important, Minor, and Unimportant): values that are (or round
up to) Important or Very Important are labelled Important;
values that are (or round up to) Somewhat Important are
Minor, and the remainder are labelled unimportant. Values
with high standard deviation (> 1.5) are noted with an asterisk.

Some of the code conventions use “magic number” thresh-
olds; i.e., fixed numeric constants that are set based on
some set of best practices. For these, the question used the
default in Checkstyle; however, respondents were asked if
they would suggest a different number. Their suggestions were
incorporated into the set of Important and Minor standards
that we use in our experiments. In particular, the maximum

1http://findbugs.sourceforge.net/
2http://checkstyle.sourceforge.net/
3http://www.parasoft.com/jsp/products/jtest.jsp?itemId=14
47 is very important, 6 important, 5 somewhat important, 4 neutral, 3

somewhat unimportant, 2 unimportant, 1 very unimportant.

3

Convention Universal Per-Project
Public methods and constructors require javadoc-style comments. 6.8 7.0
Public classes and interfaces require javadoc-style comments. 6.8 7.0
String literals should not be compared using == or !=. 6.8 6.8
Each variable declaration should be its own statement and on its own line. 6.7 6.7
Classes that override Object.equals() must also override Object.hashCode(). 6.5 6.7
Loop control variables must not be modified inside the for block. 6.5 6.5
The fields of a class should be declared private (exceptions: static final members, serialVersionUID). 6.3 6.8
Javadoc comments must be well-formed (per the requirements of the javadoc tool from Sun/Oracle). 6.3 6.8
Utility classes (classes that contain only static methods or fields in their API) should not have public constructors. 6.3 6.7
The default case should appear after all the cases in a switch statement. 6.3 6.5
Avoid .* imports. 6.2 6.7
Omit any unnecessary import statements. 6.2 6.5
Magic Numbers are numeric literals ’buried’ in the code instead, and should be avoided (except -1, 0, 1, and 2). 6.2 6.3
Multiple occurrences of the same string literal within a single file should be refactored to a constant. 6.2 6.3
Limit the number of parameters for methods and constructors to 7 at most. 6.0 6.3
If any equals() method is defined, Object.equals(Object o) must be overridden. 6.0 6.2
Limit the number of methods in a class to 100 or fewer. 6.0 6.2
Even when optional (e.g. after while, if, for statements), curly braces should be used. * 5.8 6.3
Checks for uncommented main() methods (debugging leftovers). 5.8 6.0
Cyclomatic complexity less than 10 5.8 6.0
Do not use nested ‘free’ blocks (not associated with control statement). 5.8 5.8
Exceptions should be immutable; that is, have only final fields. 5.7 6.3
Variables should not be assigned in subexpressions, such as in String s = Integer.toString(i = 2); 5.7 6.2
Catching (or throwing) java.lang.Exception, .Throwable or .RuntimeException is almost never acceptable. 5.7 5.8
Only one statement per line is permitted. 5.7 5.8
Follow the Java naming conventions. 5.5 6.5
Local variables that never have their values changed should be declared final. * 5.5 * 5.8
Long constants should be defined with an upper ell, i.e. (2345L not 2345l). 5.5 5.7
Method parameters must not be assigned new values. 5.5 5.7
There should be no space between the identifier of a method definition and the left parenthesis of the parameter list. 5.5 5.7
Avoid overly complicated boolean expressions: (b == true), (!false), if (valid()) return true, etc. * 5.5 * 5.5
Classes should rely on a maximum of 20 other classes 5.5 5.5
String literals being compared to String variables should be on the left side of an equals() comparison. 5.4 5.8
The finalize() method should never be used. 5.4 5.6
All switch statements must have a ‘default’ clause. * 5.3 6.5
The Object.clone() method should not be overridden. 5.3 6.0
Empty blocks should be avoided. 5.3 5.7
Imports must be precisely ordered and grouped. 5.3 5.7
The parts of a class or interface declaration should appear in the Sun conventions order. 5.3 5.5
Limit lines of code to no more than 80 characters. 5.3 5.2
Private methods and constructors require javadoc-style comments. 5.2 5.3
Private classes and interfaces require javadoc-style comments. 5.2 5.3
The number of possible execution paths through a function should be limited. 5.2 5.2
Whitespace around the Generic tokens < and > should meet the Sun standard. * 5.2 6.2
End of line comments should not be used. 5.2 5.8
References to instance variables and methods of the present object must be explicitly of the form this.varName etc. 5.2 5.8
Certain Java tokens should be preceded and followed by whitespace. 5.2 5.5
The number of instantiations of other classes within a given class should be less than 7. 5.0 5.4
Certain classes (e.g. Abstract) should not be used as types in variable declarations, return values or parameters. * 5.0 5.3
Nested (internal) classes/interfaces should be declared at the bottom of the class after all method and field declarations. 5.0 5.3
Indent 4 spaces for each nested block, closing parentheses aligned with the statement starting the block. * 4.8 * 5.2
A local variable or a parameter should never have the same variable name as a field in the same class. * 4.7 5.5
All classes should declare constructors (i.e. never rely on a default constructor). * 4.7 * 5.2
Interfaces are designed to describe a type and should therefore define at least one method (and not just constants). * 4.7 * 5.2
There should be no spaces immediately following an open parenthesis or following a closing parenthesis. 4.7 5.2
Files should end with a new line. * 4.7 * 5.0
Array-type definitions should be Java-style: String[] args and not C-style: String args[]. 4.7 * 4.8
Methods are limited to 50 SLOC, classes to 1500, and files to 2000. * 4.5 * 5.0
Restrict the number of number of &&, etc. in an expression. 4.5 4.8
Restrict throws statements to 1 Exception. * 4.3 * 5.7
A local variable should not have the same name as a field, EXCEPT in the constructor and in Setter method parameters. 4.3 5.0
Array initializations that span multiple lines should contain a trailing comma. * 4.3 4.7
Method/constructor/catch block parameters must be final. 4.3 4.7
The order of modifiers should follow the suggestions of the Java Language specification. 4.3 4.7
Opening curly brace {: end of control statement line. Closing curly brace }: end of its own line after the block. * 4.2 5.0
If, For, and Try statements should each have at most additional statement nested inside. * 4.2 * 4.5
Classes should be ‘designed for extension’: No code is permitted in public methods of extensible classes. 4.0 5.0
Avoid redundant modifiers. * 4.0 * 4.2
Avoid unnecessary parentheses. * 4.0 * 4.0
Avoid inline conditionals like: expression ? true : false. * 3.7 * 4.2
The number of return statements in a method should be limited (Default: 2). Exception: all equals() methods. * 3.7 * 4.0

TABLE I: Average importance scores for 71 code conventions, partitioned into “Important”, “Minor”, and “Unimportant”.
Scores with high standard deviation are denoted with *.

4

Name Start SLOC End SLOC Committers Start Date End Date ∆ Time ∆ SLOC SLOC/Day
Ant 3849 106547 47 13/01/2000 11/03/2011 4075 102698 25.20
Derby 235485 353398 36 11/08/2004 28/03/2011 2420 117913 48.72
Hadoop 37636 68531 29 18/05/2009 24/03/2011 675 30895 45.77
JFreeChart 82434 100354 2 19/06/2007 30/03/2010 1015 17920 17.66

TABLE II: Metadata for the open source projects included in this paper.

Fig. 1: Screen capture of tool for interactive exploration of lines of code, code violations, and svn commit messages for Apache
Ant (code violations scaled 10x).

number of methods in a class was decreased from 100 to 75
(best design practices suggest a significantly lower limit; 75
was chosen as a level respondents agreed was definitely bad).

It should be noted that this set of results does not offer a
consensus. For all but one convention, at least one respondent
answered Important or Very Important. For all but the top
20, at least one respondent entered 4 or lower; for one-third
of the conventions, at least one respondent entered a 2 or
lower. We recognize that our identification of “Important”
conventions, as agreed upon by our “expert panel” will not
be universally accepted. From conversations with the respon-
dents, it is clear they believe that every good convention
has exceptions, and adherence to conventions in general is
secondary to compliance with functional specifications. In the
future, we plan to conduct a broader survey of the software
engineering community at large, to examine whether a clearer
consensus might be reached on the relative importance of these
conventions; nevertheless, we believe that through our panel’s
answers we have a good initial view.

IV. METHODOLOGY

We examined four open-source projects (Table II) for their
adherence with code conventions over time. The projects were
chosen to represent a wide range of activities within the open
source community. They vary in size, in terms of physical size,
overall complexity, and the number of participating developers.
Some of projects, such as Ant, use tools to enforce coding
convention standards, while others do not. The selection of
application also represents software from a range of domains.
Furthermore, each project is primarily Java and uses an SVN

repository. With the data from each project, we examined only
the trunk of the svn repository, which is typically the base of
development for the project. Branches were ignored until their
code was merged into the trunk. Our study consisted of the
folowing steps.

Identification of relevant revisions. Every commit to
an SVN repository increments the revision number. Some
commits do not modify the trunk source tree and can be safely
ignored5. We used the svn log command on the path to
the project of interest to obtain a set of all relevant commits.
Meta data (relevant revision numbers, dates, committers, svn
log messages) is collected and stored.

Identification of change sets. We then iteratively check
out each of the relevant revisions and obtain a list of added,
deleted, and updated (including merged) files. These change
sets are subsequently filtered for relevance; the following files
are excluded: all non-Java files, all files that appear to be only
for testing6 (JUnit or otherwise), and code identified as non-
core by manual examination of the SVN repository.

Analysis of the change set. We count the total source
lines of code (SLOC) in each file in the filtered change set
(using CLOC7). The complete output for every change set is
stored in XML format. We then use the Checkstyle tool to test
adherence to code conventions; every violation of all three sets,

5This especially relevant for Apache projects, as all projects are in the same
SVN repository; only 2000-6000 of the 1,100,000 commits are relevant to the
projects of interest.

6Arguably code conventions that are relevant to the core source are just as
important to the test cases; however, our results showed substantially more
code-convention violations in the testing classes in most projects.

7http://cloc.sourceforge.net/

5

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 500 1000 1500 2000

St
yl

e
Vi

ol
at

io
ns

 P
er

 L
in

e
of

 C
od

e

Days since First Commit

Ant
JFreeChart

Hadoop Common
Derby

Eclipse

Fig. 2: Code convention violations per line of code, based on self-imposed standards.

Project Conventions
Ant checkstyle configuration file
Derby “The Derby community has not approved a common

body of coding standards”10; developers are pointed to
Sun’s conventions. Javadoc is mandatory (not enforced).

Eclipse Mostly Sun’s11.
Hadoop checkstyle configuration file
JFreeChart checkstyle configuration file

TABLE III: Style guidelines self-imposed by projects.

for every revision of every file, is stored in XML.
1) Their own standards as identified by their own check-

style configuration file (where applicable, otherwise we
created a checkstyle configuration file for them based on
their documented coding standards).

2) Important standards as identified by our expert panel.
3) Minor standards as identified by our expert panel.
Analysis of code-convention violations. We explore the

cached convention violation data and SLOC metrics using
three approaches. The first is a set of tools for extrcting select
information from the XML and generating visualizations using
Gnuplot. The second uses the Google Charts API to pro-
duce interactive visualizations with zoomable time windows;
mouse-over a data point produces dates and exact values. The
third is built on an open-source extentions [15] of the time
series graph in the Google Charts API. Shown in Figure 1,
it offers the same zoomable time windows, but shows svn
commit message metadata when hovering the mouse over
any point. By zooming into anomalies in the violations and
examining the svn commit logs, we can gain insight into what
was happening. For example, in the figure we are examining a
sharp drop in violations. We see two users making a number
of commits specifically intended to improve adherence, and
note they are doing so in the midst of adding new features to
the code and implementing new tests.

V. RESULTS

The following sections review some of our findings based
on our detailed examination of four open-source projects
over time. We focus on adherence to self-imposed standards

and adherence to those conventions labelled as important
by our panel. The “minor” conventions are excluded since
their sheer number requires separate treatment in future work
(at the latest revision we examined, Ant: 53,000 (0.5 per
line of code); Derby: 361,270 (.55); Hadoop: 26,116 (.38);
JFreeChart: 12,296 (0.12)).

A. Self-imposed Standards
Software projects typically identify a set of coding con-

ventions to be followed by their developers. We examined
adherence to the standards set by the open-source projects
shown in Table III. We include the adherence of a 2010
snapshot of the entire Eclipse repository to get a sense of
results for a multi-million line project. Three of the projects
we examined use a checkstyle configuration file to specify
required code conventions; targets are defined in their build
script to report on violations. The Derby project does not have
a set of standards agreed upon by the community, though
they do require javadoc comments and point developers to
the Sun conventions, so we evaluated adherence to the Sun
conventions. The other two document their standards but do
not include tool support or adherence notification. We created
Checkstyle configuration files based on their documented
standards. In all cases, we excluded all white space checks.

We first examined the ratio of violations to the size of the
project (lines of code), over time. The maximum possible ratio
is not fixed; types of violations vary based on the code, and
some violations relate to comments. There is no objective
measure of what the ratio of violations to source lines of code
should be; however, relative comparisons can be made.

Fig. 2 shows how violations per line of code changed over
time, measured by days since the first commit we examined.
This generally indicates the date on which the source code
was made public (e.g., committed to a public repository like
Apache or Sourceforge), but with the exception of Apache
Ant is not the first day of development. The time window
is truncated at 2000 days, which mostly affects Ant. Eclipse
is shown as a line, but is actually only a single data point.
Hadoop and JFreeChart, both Checkstyle users, show con-
sistently low results. Ant, also a Checkstyle user, shows low

6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

01
/0

1/
00

01
/0

1/
01

01
/0

1/
02

01
/0

1/
03

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

 0

 20000

 40000

 60000

 80000

 100000

 120000

St
yl

e
Vi

ol
at

io
ns

Li
ne

s
of

 C
od

e

Time

x

x

x

x
x x

xx

x xx x

xxx

x

x

x
x x

Style Violations
Lines of Code

(a) Apache Ant

40000

45000

50000

55000

60000

65000

70000

75000

80000

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

220000

240000

260000

280000

300000

320000

340000

360000

St
yl

e
Vi

ol
at

io
ns

Li
ne

s
of

 C
od

e

Time

xx x
x x x |

| xx
x

x
|x x x x

Style Violations
Lines of Code

(b) Apache Derby

6000

7000

8000

9000

10000

11000

05
/0

1/
09

07
/0

1/
09

09
/0

1/
09

11
/0

1/
09

01
/0

1/
10

03
/0

1/
10

05
/0

1/
10

07
/0

1/
10

09
/0

1/
10

11
/0

1/
10

01
/0

1/
11

03
/0

1/
11

05
/0

1/
11

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

St
yl

e
Vi

ol
at

io
ns

Li
ne

s
of

 C
od

e

Time

x x
x

x
Style Violations

Lines of Code

(c) Apache Hadoop Common

3000

3500

4000

4500

5000

04
/0

1/
07

07
/0

1/
07

10
/0

1/
07

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

 60000

 70000

 80000

 90000

 100000

St
yl

e
Vi

ol
at

io
ns

Li
ne

s
of

 C
od

e

Time

xxx x x x
x

Style Violations
Lines of Code

(d) JFreeChart

Fig. 3: Violations of self-imposed code standards (left axis) and SLOC (right axis); release points shown by ’x’.

results eventually – it should be noted that the Checkstyle tool
is in use today, but did not exist when Apache Ant first started.

Ant shows a particularly interesting pattern, but all four
exhibit noticeable spikes and drops. A closer examination of
the four projects is shown in Fig. 3; the violations are shown on
their own axis to better show how the violation count changes
in relation to the source code. The lines are annotated with
release points (though it is not always clear exactly which
SVN revision was packed for release, these points are close to
accurate). The varying axes across all four subfigures (and the
fact that four different standards were enforced) make across-
project comparisons difficult for anything but the relationship
between the growth of the code and the number of violations.

Checkstyle was first introduced to the Ant project in early
2002, which led to the first sharp drop – before that, violations
had been increasing in step with the size of the code. In
subsequent years, the recurring pattern is growth of the code
and the number of violations, followed by a few weeks or
even months of deliberate effort to reduce these violations.
These sharp drops appear to immediately precede notable
releases. Most convention-related fixes have happened in the
maintenance phase of the software, where the pace of new
additions to the code has slowed down. JFreeChart exhibits a
similar though less pronounced pattern in the first few years:

effort to “clean up” the code immediately prior to release.
However, this cleaning effort hasn’t happened recently.

Derby and Hadoop do not exhibit this intentional effort;
the growth of the code base has a strong positive correlation
with the increase in violations. We calculated the Pearson
correlation coefficients (ρ) for the SLOC and violation counts;
+1 is a perfect increasing linear relationship between the two;
−1 is a perfect decreasing linear relationship. While Derby and
Hadoop have ρ = 0.955 and ρ = 0.979 respectively, Ant is
slightly negatively correlated (ρ = −0.455) and JFreeChart is
slightly positively correlated (ρ = 0.233).

B. Important code conventions

We now examine adherence to code conventions identified
as “Important” by our panel. We begin with Fig. 4, showing the
violations per line of code. As in the graph for the self-imposed
standards (Fig. 2), we use days since the first commit we
examined as a timeline, truncated at 2000 days (Ant descends
to .16 over 2000 more days; Derby continues unchanged for
400 days). Eclipse is shown as a line for visibility, but is a
single data point.

Comparing to the results for self-imposed standards, the
projects using Checkstyle configuration files show an increased

7

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 500 1000 1500 2000

St
yl

e
Vi

ol
at

io
ns

 P
er

 L
in

e
of

 C
od

e

Days since First Commit

Ant
JFreeChart

Hadoop Common
Derby

Eclipse

Fig. 4: Code convention violations per line of code, for conventions identified as Important.

-1

0

1

01
/0

1/
00

01
/0

1/
01

01
/0

1/
02

01
/0

1/
03

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

Pe
ar

so
n

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Time

(a) Apache Ant

-1

0

1

01
/0

1/
04

01
/0

1/
05

01
/0

1/
06

01
/0

1/
07

01
/0

1/
08

01
/0

1/
09

01
/0

1/
10

01
/0

1/
11

01
/0

1/
12

Pe
ar

so
n

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Time

(b) Apache Derby

Fig. 5: Pearson correlation coefficient for sliding 100-commit windows.

ratio of violations per lines-of-code, by a factor of approxi-
mately 3. In contrast, the projects held to the (apparently more
exacting) Sun conventions exhibit little movement in the ratio.
Again with the exception of Ant, the ratio for all the projects
remained nearly constant over the life of the project. This is
in contrast to our expectations: we expected to see fluctuation
around the time of the release points as developers cut corners
to produce working code. It is possible this phenomenon exists
but is hidden by the large number of violations (e.g., 50,000+
for both Ant and Derby), or that the projects employ a more
relaxed release strategy.

There are spikes throughout the Ant line and occasionally
in the Derby line. Examination of the commit log indicates
there was a check-in of contributed code from outside the
regular development team with enough violations to skew the
ratio; shortly thereafter, a regular developer cleans up the
check-in code. There is intentional effort to keep the ratio
from growing. Inspection of commit logs suggests that Ant
accepts the most code from outside contributors, though this
has not been empirically validated. The Ant ratio peaks after
the initial commits of code, in the first few months. However,
by the end of the first year of the project, the ratio is at its

lowest point ever: a reduction of 36%. This effort to “clean”
their code predates their use of the Checkstyle tool. Also note
that projects using the checkstyle tool were more compliant
with their self-identified standards, but when held to our single
standard did not exhibit substantially lower ratios of violations
to lines of code.

Next we examine how the correlation between lines of
code and violations changes over the life of a project, using
a sliding window of 100 commits (sliding-ρ). We suggest
that a strongly positive correlation in a 100-commit window
indicates consistent use (or misuse) of conventions: that is,
that as lines of code are added, roughly the same proportion
of convention violations are added, consistently over time. This
does not say anything about the slope of the linear relationship
– that is, how many violations are introduced per line of code
– only that the two grow together. A weak correlation indicates
a mix of commits, some increasing (or decreasing) SCAA
substantially and some continuing the usual trend. A strongly
negative correlation indicates effort (over all 100 commits) to
increase adherence to conventions.

The sliding-ρ graph for JFreeChart and Hadoop is not shown
here – they were both fairly flat at or near +1; Hadoop shows

8

one valley into a small negative correlation. In the case of
JFreeChart, this may be explained by the small size of the
development team. Sliding-ρ for Ant and Derby is shown
in Fig. 5. Ant shows periodic 100-commit windows with
strong negative correlation. Though new commits increase the
number of violations at a higher rate than the other projects,
this periodic intentional effort to “clean up” the code decreases
the per-line ratio to normal levels (.2) at the current state
of the project. Derby shows varying levels of adherence to
standards in the commits; only the last valley is deep enough
to potentially indicate cleaning effort.

C. Specific Violations

Finally, we examined the types of violations reported (the
data presented here is from only the latest revision of each
project). The two most common violations were commenting
and final local variable violations: together they accounted
for around two-thirds of the violations reported in all of the
projects. For the former convention, we counted only missing
or incomplete Javadoc-style comments on public types and
methods only. JFreeChart is well-documented; the others less
so. The latter convention suggests that if a local variable is
declared and assigned but not modified, it should be declared
final12. The rationale is that this allows the compiler to enforce
the fact that the variable never changes – this can avoid
bugs that may occur when maintenance efforts add code
that changes the value of a variable that other code did not
expect to change. It is self-documenting code in that it is a
clear explanation of the intent of the field. Detractors of this
convention point out that “good” design limits the length of
methods, reducing the chances of unanticipated changes. The
final keyword can also cause confusion: an array or an object
reference can be declared final, but the elements of an array
and the state of an object can still change. Whether it has
merit or not, it is apparent that the convention is not strictly
adhered to in these projects.

The results (Fig. 6) show first a pie chart comparing the
number of the top two violations to all of the other viola-
tions, then show the details of all the other violations in a
histogram. The next two problems occurring most frequently
in each project (except Apache Derby) are Magic Numbers and
Multiple String Literals; that is, in-line numeric values are used
instead of appropriately named numeric constants, and String
literals are repeated instead of using a common constant. The
latter category is especially troubling for maintenance, as when
one of these String literals changes it has to be changed in
(at least) two places. Using common constants also enables
intent-checking: if you use the value 3.24 without assigning it
to a named value, you might have mistyped π, or might mean
a different number. Derby has a high occurrence of missing
braces (the compiler considers braces optional for single-line
blocks, but best practices suggest that they be included anyway
in case additional statements need to be added to the block).

Two violations surprisingly high in count were violations
of naming conventions and missing or incorrect visibility
modifiers. We previously considered these to be generally

12For our test, we excluded method parameters (see Parameter Assignment).

accepted conventions – not necessarily the most important to
maintenance, but widely accepted in general.

Particularly troubling were lingering uncommented
main(String[] args) methods (Derby for instance has
37), public constructors in classes with only static fields and
methods (Hide Utility Class Constructor), control variables
being modified inside for loops, and overly broad catch
statements that catch Exception. The first two make it
more difficult for new users and new maintainers to identify
the correct entry points to the software (first) and how to use
utility classes (second); the first can be useful for debugging
but the second is vestigial code. The third is a dangerous
practice; maintainers will likely not expect the control variable
to be modified outside the control statement. The fourth can
result in maintainers adding code to a try block that throws
(for example) an IOException without realizing they have
done so, and failing to add appropriate handling code to the
catch block resulting in exceptions being quietly ignored.

In summary, while some convention violations are of
questionable gravity, there is evidence of generally accepted
conventions not being adhered to, as well as some potentially
dangerous violations. There is support for our suggestion
that the number, ratio, and type of convention violations has
bearing on the maintainability of a software project.

VI. FUTURE WORK

The initial collection of data and the preliminary analysis
presented in this paper are the first step in a broader ex-
amination of code-convention adherence practices and their
impact on software maintainability. We intend to conduct
further analysis of the data collected – e.g., how individual
contributors impact adherence, how individual conventions or
categories of conventions change over the life of the project,
how individual files change as they mature, anything related
to the minor violations, and weighting the types of violations
based on the scores assigned by the panel. We have also
collected the same adherence data for more software projects
and are continuing to grow the dataset. The need for further
analysis motivates additional tools and visualizations; for
example, a heat map showing source code files in proportional
size, coloured according to their adherence.

In addition to expanding our analysis of code-convention
violations and maintainability, we are also interested in un-
derstanding the interplay of these violations with the notion
of “technicval debt”. Technical debt is a metaphor used to
describe the practice of sacrificing long-term goals in exchange
for the [cheap,fast] achievement of short-term goals (e.g.,
[16]). We believe that one indicator of growing technical
debt is the growing deviation from code conventions and
best practices; for example, when a deadline looms, it may
be faster to use a literal string than it is to define and
document a new constant variable. We have not yet quantified
or proven this relationship. Dijkstra references the Buxton
Index [17], describing it as the length of time over which
an organization or an individual makes plans. We hypothesize
that technical debt – and with it, code convention adherence
– is related to this notion; that sacrifices of long-term goals

9

!" #!!" $!!" %!!" &!!" '!!!" '#!!" '$!!" '%!!" '&!!"

()*+,"-./012"

(.34531"672+8*"9+712)3:"

;+:+0+3+7<"(=>+?12"

-)/+8*""

@<,3=/)4,"@=/531A+7<"

B331*)3"@)7,C"

-11>"D2),1:"

E)2)/1712"F::+*8/187"

FG=+>"67)2"B/5=27"

HC+71:5),1""

(.34531";)2+)031"I1,3)2)4=8:"

B8812"F::+*8/187"

@3)::"J)8"K.7"@=/531A+7<"

(=>+?1>"@=872=3";)2+)031"

L+>1"M43+7<"@3)::"@=8:72.,7=2"

FG=+>"-1:71>"D3=,N:"

E)2)/1712"-./012"

K81"67)71/187"E12"9+81"

M8,=//1871>"()+8"

(17C=>"@=.87"

B331*)3"OC2=P:"

Q1>.8>)87"B/5=27"

(.7)031"RA,154=8"

6+/53+S<"D==31)8"Q17.28"

RT.)3:"L):C"@=>1"

6+/53+S<"D==31)8"RA521::+=8"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

9:1'

 !",,%#;'
()"*+%,-.'

::1'

(a) Apache Ant
!" #!!!" $!!!" %!!!" &!!!" '!!!" (!!!")!!!" *!!!" +!!!"

,--."/012-3"

41562",789-0"

,186:5""

;63696<6=>"4?.6@-0"

AB6=-3C12-""

47<DC<-"E=06:5"F6=-01<3"

G>2<?81D2"G?8C<-H6=>"

I1018-=-0"J3365:8-:="

K-.7:.1:="L8C?0="

L<<-51<"G1=2B"

I1018-=-0",789-0"

L::-0"J3365:8-:="

JM?6.",-3=-."/<?2N3"

JM?6."E=10"L8C?0="

G<133"O1:"P7="G?8C<-H6=>"

E68C<6Q>"/??<-1:"RHC0-336?:"

47<DC<-";10619<-"S-2<101D?:3"

T6.-"UD<6=>"G<133"G?:3=072=?0"

4-=B?."G?7:="

47=19<-"RH2-CD?:"

E68C<6Q>"/??<-1:"K-=70:"

4?.6@-."G?:=0?<";10619<-"

P:-"E=1=-8-:="I-0"F6:-"

U:2?88-:=-."416:"

L<<-51<"VB0?W3"

RX71<3"T13B"G?.-"

S-Q17<="G?8-3"F13="

E=06:5"F6=-01<"RX71<6=>"

G?M1061:="RX71<3"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

9:1'

 !",,%#;'
()"*+%,-.'

<<1'

(b) Apache Derby

!" #!!" $!!" %!!" &!!" '!!!" '#!!" '$!!" '%!!" '&!!"

()*+,"-./012"

(.34531"672+8*"9+712)3:"

-11;"<2),1:"

=+:+0+3+7>"(?;+@12"

-)/+8*""

A)2)/1712"B::+*8/187"

C>,3?/)4,"C?/531D+7>"

BE?+;"67)2"F/5?27"

F8812"B::+*8/187"

F331*)3"C)7,G"

BE?+;"-1:71;"<3?,H:"

I+;1"J43+7>"C3)::"C?8:72.,7?2"

(?;+@1;"C?872?3"=)2+)031"

K81"67)71/187"A12"9+81"

(.34531"=)2+)031"L1,3)2)4?8:"

C3)::"M)8"K.7"C?/531D+7>"

NG+71:5),1""

A)2)/1712"-./012"

O1;.8;)87"F/5?27"

(.7)031"PD,154?8"

J8,?//1871;"()+8"

6+/53+Q>"<??31)8"PD521::+?8"

F331*)3"RG2?S:"

(17G?;"C?.87"

672+8*"9+712)3"PT.)3+7>"

6+/53+Q>"<??31)8"O17.28"

PT.)3:"I):G"C?;1"

L1Q).37"C?/1:"9):7"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

9:1'

 !",,%#;'
()"*+%,-.'

/<1'

(c) Hadoop Common
!" #!!" $!!!" $#!!" %!!!" %#!!" &!!!" &#!!" '!!!"

()*+,"-./012"

(.34531"672+8*"9+712)3:"

;<,3=/)4,";=/531>+7<"

?@.)3:"A):B";=C1"

-)/+8*""

D+:+0+3+7<"(=C+E12"

F)2)/1712"-./012"

F)2)/1712"G::+*8/187"

;3)::"H)8"I.7";=/531>+7<"

(.34531"D)2+)031"J1,3)2)4=8:"

-11C"K2),1:"

L331*)3";)7,B"

MB+71:5),1""

L8812"G::+*8/187"

N8,=//1871C"()+8"

(17B=C";=.87"

A+C1"N43+7<";3)::";=8:72.,7=2"

I81"67)71/187"F12"9+81"

(=C+E1C";=872=3"D)2+)031"

GO=+C"67)2"L/5=27"

6+/53+P<"K==31)8"Q17.28"

6+/53+P<"K==31)8"?>521::+=8"

Q1C.8C)87"L/5=27"

GO=+C"-1:71C"K3=,R:"

 !"#$%#&"#'
()"*+%,-.'

/01'

234#5+'6"75+'
85)45*+%'
()"*+%,-.'

091'

 !",,%#:'
()"*+%,-.'

;1'

(d) JFreeChart

Fig. 6: The type of code convention violations; the pie chart compares final local variable, comment, and other code convention
problems; the histogram is details of the other code conventions.

10

are made unconsciously by developers, who (quite rightly)
are looking into only the immediate future. The architects
who take a longer view would not make the same choices.
There is limited support for this hypothesis in [14], where
Li reported that though developers recognized the importance
of code conventions to code quality, they did not follow
them in practice when meeting deadlines. We are currently
formulating a user study that asks users to rate code readability
or perform a maintenance task on code with varying levels
of convention adherence. This will quantify the relationship
between code convention adherence and maintainability. Ad-
herence to certain types of code conventions over time may
also be a predictor of technical debt; this relationship should
be explored. We are particularly interested in projects with
more constrained release schedules and in projects with greater
separation between architects and developers.

Finally, combining this static analysis with other forms
of analysis could be revealing. For instance, a combination
with dynamic analysis of code hot spots (or analyzing high-
maintenance files from repositories) could be used to place
greater importance on code convention violations in high-
maintenance or heavily-used code. Combining with analysis
of bug tracking data could quantify the relationship between
bugs and code conventions – a relationship we expect exists
but which has little empirical evidence.

VII. CONCLUSION

Existing metrics for measuring maintainability focus pri-
marily on the complexity of the source code. We examined
adherence to programming best practices and code conventions
as a potential proxy measure for maintainability. We collected
data on four open-source Java projects by mining their source
code repositories and running an automated code convention
adherence checker. We first examined adherence to their own
agreed-upon community standards. We then identified the
code conventions that a panel of software engineers and
developers considered important to writing maintainable code,
and examined adherence to those. We briefly described a set
of tools we developed to semi-automate this type of analysis.

We found that projects that use an automated best practices
checker had better adherence to their self-imposed standards,
but did not have better adherence to our set of code con-
ventions important to maintainability. We found two projects
that exhibited intentional effort to decrease the number of
convention violations as the project matured, particularly right
before release points. In the absence of such efforts, the
number of violations grows in a linear relationship with the
length of the code (almost perfectly positively correlated) –
even for well-respected software projects. The project with the
smallest development team had the best convention adherence.
We found contributions from outsiders were likely to increase
the number of convention violations disproportionately, but
that in at least two projects regular contributors made an effort
to resolve these violations.

When examining the types of violations, we found problems
with basic Javadoc-style comments – typically one of the top
two violations, and also the most important convention iden-
tified by our panel. Also prevalent were instances of numeric

and string literals hard-coded into source code, and missing
braces. We identified hundreds of occurrences of programming
practices known to be confusing to new developers.

There is support for our suggestion that the number, ratio,
and type of convention violations has bearing on the main-
tainability of a software project. Further work is required to
quantify the relationship between the various types of code
conventions and maintainability.

ACKNOWLEDGEMENTS

Our thanks to the software engineering research lab at the
University of Alberta for their input to this process. Special
thanks to Nikolaos Tsantalis, Marios Fokaefs, Dave Chodos,
Ken Bauer, Camilo Arango, Ricardo Sanchez, and Ken Wong.
We would also like to thank Ray Patterson from the School of
Business at the University of Alberta and Erik Rolland from
the A. Gary Anderson Graduate School of Management at the
Univerity of California, Riverside for their valuable input and
insightful perspective.

REFERENCES

[1] V. Sambamurthy, A. Bharadwaj, and V. Grover, “Shaping agility through
digital options: Reconceptualizing the role of information technology in
contemporary firms.” MIS Quarterly, vol. 27, no. 2, pp. 237–263, 2003.

[2] S. Mathiyalkan, N. Ashrafi, W. Zhang, F. Waage, J.-P. Kuilboer, and
D. Heimann, “Defining business agility: an exploratory study,” in
Information Resources Management Conference, 2005, pp. 848–849.

[3] G. Fliedner and R. J. Vokurka, “Agility: competitive weapon of the 1990s
and beyond?” Production & Inventory Management, vol. 38, no. 3, pp.
19–24, 1997.

[4] “Information technology - software quality characteristics and metrics -
part 1: Quality characteristics and sub-characteristics,” p. 21, 1996.

[5] P. Tonella and S. L. Abebe, “Code quality from the programmer’s per-
spective,” in Advanced Computing and Analysis Techniques in Physics
Research. Proceedings of Science, November 2008, pp. 1–11.

[6] M. Mari and N. Eila, “The impact of maintainability on component-
based software systems,” in Euromicro Conference, 2003. Proceedings.
29th, Sept 2003, pp. 25 – 32.

[7] “Systems and software engineering — systems and software quality
requirements and evaluation (square) — system and software quality
models,” 2011.

[8] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). New York, USA: Elsevier Science Inc., 1977.

[9] T. J. McCade, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[10] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using metrics to
evaluate software system maintainability,” Computer, vol. 27, pp. 44–49,
1994.

[11] D. Posnett, A. Hindle, and P. D. Vanbu, “A simpler model of software
readability,” in Working Conference on Mining Software Repositories
(MSR-11). Waikiki, USA: To Appear, May 2011.

[12] P. W. Oman and C. R. Cook, “A taxonomy for programming style,” in
Proceedings of the 1990 ACM annual conference on Cooperation, ser.
CSC ’90. New York, NY, USA: ACM, 1990, pp. 244–250.

[13] “Sun/Oracle code conventions for the java programming language,”
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html.

[14] X. Li and C. Prasad, “Effectively teaching coding standards in program-
ming,” in Proceedings of the 6th conference on Information technology
education, ser. SIGITE ’05. New York, NY, USA: ACM, 2005, pp.
239–244.

[15] B. Meutner, “Google finance with Flex code,” http://www.meutzner.com.
[16] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,

A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sul-
livan, and N. Zazworka, “Managing technical debt in software-reliant
systems,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research. NY, USA: ACM, 2010, pp. 47–52.

[17] E. W. Dijkstra, “On the fact that the Atlantic Ocean has two sides,” in
Selected Writings on Computing: A Personal Perspective. Springer-
Verlag, 1982, pp. 268–276.

